Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 866
Filter
1.
Atherosclerosis ; 395: 117584, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38823352

ABSTRACT

BACKGROUND AND AIMS: Apolipoprotein C-III (apoC-III) proteoform composition shows distinct relationships with plasma lipids and cardiovascular risk. The present study tested whether apoC-III proteoforms are associated with risk of peripheral artery disease (PAD). METHODS: ApoC-III proteoforms, i.e., native (C-III0a), and glycosylated with zero (C-III0b), one (C-III1) or two (C-III2) sialic acids, were measured by mass spectrometry immunoassay on 5,734 Multi-Ethnic Study of Atherosclerosis participants who were subsequently followed for clinical PAD over 17 years. Ankle-brachial index (ABI) was also assessed at baseline and then 3 and 10 years later in 4,830 participants. RESULTS: Higher baseline C-III0b/C-III1 and lower baseline C-III2/C-III1 were associated with slower decline in ABI (follow-up adjusted for baseline) over time, independently of cardiometabolic risk factors, and plasma triglycerides and HDL cholesterol levels (estimated difference per 1 SD was 0.31 % for both, p < 0.01). The associations between C-III2/C-III1 and changes in ABI were stronger in men (-1.21 % vs. -0.27 % in women), and in Black and Chinese participants (-0.83 % and -0.86 % vs. 0.12 % in White). Higher C-III0b/C-III1 was associated with a trend for lower risk of PAD (HR = 0.84 [95%CI: 0.67-1.04]) that became stronger after excluding participants on lipid-lowering medications (0.73 [95%CI: 0.57-0.94]). Neither change in ABI nor clinical PAD was related to total apoC-III levels. CONCLUSIONS: We found associations of apoC-III proteoform composition with changes in ABI that were independent of other risk factors, including plasma lipids. Our data further support unique properties of apoC-III proteoforms in modulating vascular health that go beyond total apoC-III levels.

2.
BMC Pregnancy Childbirth ; 24(1): 347, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711000

ABSTRACT

BACKGROUND: This study investigates the causal relationship between lipid traits and GDM in an effort to better understand the aetiology of GDM. METHODS: Employing a two-sample Mendelian Randomization (MR) framework, we used Single Nucleotide Polymorphisms (SNPs) as instrumental variables to examine the impact of lipids and apolipoproteins on GDM. The research comprised univariable and multivariable MR analyses, with a prime focus on individual and combined effects of lipid-related traits. Statistical techniques included the fixed-effect inverse variance weighted (IVW) method and supplementary methods such as MR-Egger for comprehensive assessment. RESULTS: Our findings revealed the following significant associations: apoA-I and HDL cholesterol were inversely correlated with GDM risk, while triglycerides showed a positive correlation. In multivariable analysis, apoA-I consistently exhibited a strong causal link with GDM, even after adjusting for other lipids and Body Mass Index (BMI). CONCLUSION: The study demonstrates a significant causal relationship between apoA-I and GDM risk.


Subject(s)
Apolipoprotein A-I , Cholesterol, HDL , Diabetes, Gestational , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide , Triglycerides , Humans , Female , Pregnancy , Diabetes, Gestational/genetics , Diabetes, Gestational/blood , Triglycerides/blood , Apolipoprotein A-I/blood , Apolipoprotein A-I/genetics , Cholesterol, HDL/blood , Apolipoproteins/blood , Apolipoproteins/genetics , Body Mass Index , Lipids/blood , Risk Factors
3.
J Alzheimers Dis ; 98(4): 1361-1375, 2024.
Article in English | MEDLINE | ID: mdl-38578887

ABSTRACT

Background: Apolipoproteins and contactin 5 are proteins associated with Alzheimer's disease (AD) pathophysiology. Apolipoproteins act on transport and clearance of cholesterol and phospholipids during synaptic turnover and terminal proliferation. Contactin 5 is a neuronal membrane protein involved in key processes of neurodevelopment. Objective: To investigate the interactions between contactin 5 and apolipoproteins in AD, and the role of these proteins in response to neuronal damage. Methods: Apolipoproteins (measured by Luminex), contactin 5 (measured by Olink's proximity extension assay), and cholesterol (measured by liquid chromatography mass spectrometry) were assessed in the cerebrospinal fluid (CSF) and plasma of cognitively unimpaired participants (n = 93). Gene expression was measured using polymerase chain reaction in the frontal cortex of autopsied-confirmed AD (n = 57) and control subjects (n = 31) and in the hippocampi of mice following entorhinal cortex lesions. Results: Contactin 5 positively correlated with apolipoproteins B (p = 5.4×10-8), D (p = 1.86×10-4), E (p = 2.92×10-9), J (p = 2.65×10-9), and with cholesterol (p = 0.0096) in the CSF, and with cholesterol (p = 0.02), HDL (p = 0.0143), and LDL (p = 0.0121) in the plasma. Negative correlations were seen between CNTN5, APOB (p = 0.034) and APOE (p = 0.015) mRNA levels in the brains of control subjects. In the mouse model, apoe and apoj gene expression increased during the reinnervation phase (p <  0.05), while apob (p = 0.023) and apod (p = 0.006) increased in the deafferentation stage. Conclusions: Extensive interactions were observed between contactin 5 and apolipoproteins and cholesterol, possibly due to neuronal damage. The alterations in gene expression of apolipoproteins suggest a role in axonal, terminal, and synaptic remodeling in response to entorhinal cortex damage.


Subject(s)
Alzheimer Disease , Humans , Mice , Animals , Alzheimer Disease/metabolism , Apolipoproteins/genetics , Apolipoproteins E/metabolism , Apolipoproteins B , Cholesterol , Contactins
4.
Biofactors ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38661230

ABSTRACT

High-density lipoproteins (HDLs) play a vital role in lipid metabolism and cardiovascular health, as they are intricately involved in cholesterol transport and inflammation modulation. The proteome of HDL particles is indeed complex and distinct from other components in the bloodstream. Proteomics studies have identified nearly 285 different proteins associated with HDL; however, this review focuses more on the 15 or so traditionally named "apo" lipoproteins. Important lipid metabolizing enzymes closely working with the apolipoproteins are also discussed. Apolipoproteins stand out for their integral role in HDL stability, structure, function, and metabolism. The unique structure and functions of each apolipoprotein influence important processes such as inflammation regulation and lipid metabolism. These interactions also shape the stability and performance of HDL particles. HDLs apolipoproteins have multifaceted roles beyond cardiovascular diseases (CVDs) and are involved in various physiological processes and disease states. Therefore, a detailed exploration of these apolipoproteins can offer valuable insights into potential diagnostic markers and therapeutic targets. This comprehensive review article aims to provide an in-depth understanding of HDL apolipoproteins, highlighting their distinct structures, functions, and contributions to various physiological processes. Exploiting this knowledge holds great potential for improving HDL function, enhancing cholesterol efflux, and modulating inflammatory processes, ultimately benefiting individuals by limiting the risks associated with CVDs and other inflammation-based pathologies. Understanding the nature of all 15 apolipoproteins expands our knowledge of HDL metabolism, sheds light on their pathological implications, and paves the way for advancements in the diagnosis, prevention, and treatment of lipid and inflammatory-related disorders.

5.
Nutr Res Pract ; 18(2): 194-209, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38584811

ABSTRACT

BACKGROUND/OBJECTIVES: High levels of plasma low-density lipoprotein (LDL) cholesterol are an important determinant of atherosclerotic lesion formation. The disruption of cholesterol efflux or reverse cholesterol transport (RCT) in peripheral tissues and macrophages may promote atherogenesis. The aim of the current study was to examine whether bioactive ellagic acid, a functional food component, improved RCT functionality and high-density lipoprotein (HDL) function in diet-induced atherogenesis of apolipoproteins E (apoE) knockout (KO) mice. MATERIALS/METHODS: Wild type mice and apoE KO mice were fed a high-cholesterol Paigen diet for 10 weeks to induce hypercholesterolemia and atherosclerosis, and concomitantly received 10 mg/kg ellagic acid via gavage. RESULTS: Supplying ellagic acid enhanced induction of apoE and ATP-binding cassette (ABC) transporter G1 in oxidized LDL-exposed macrophages, facilitating cholesterol efflux associated with RCT. Oral administration of ellagic acid to apoE KO mice fed on Paigen diet improved hypercholesterolemia with reduced atherogenic index. This compound enhanced the expression of ABC transporters in peritoneal macrophages isolated from apoE KO mice fed on Paigen diet, indicating increased cholesterol efflux. Plasma levels of cholesterol ester transport protein and phospholipid transport protein involved in RCT were elevated in mice lack of apoE gene, which was substantially reduced by supplementing ellagic acid to Paigen diet-fed mice. In addition, ellagic acid attenuated hepatic lipid accumulation in apoE KO mice, evidenced by staining of hematoxylin and eosin and oil red O. Furthermore, the supplementation of 10 mg/kg ellagic acid favorably influenced the transcriptional levels of hepatic LDL receptor and scavenger receptor-B1 in Paigen diet-fed apoE KO mice. CONCLUSION: Ellagic acid may be an athero-protective dietary compound encumbering diet-induced atherogenesis though improving the RCT functionality.

6.
Atherosclerosis ; : 117545, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38688749

ABSTRACT

Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease, characterized by raised blood glucose levels and impaired lipid metabolism resulting from insulin resistance and relative insulin deficiency. In diabetes, the peculiar plasma lipoprotein phenotype, consisting in higher levels of apolipoprotein B-containing lipoproteins, hypertriglyceridemia, low levels of HDL cholesterol, elevated number of small, dense LDL, and increased non-HDL cholesterol, results from an increased synthesis and impaired clearance of triglyceride rich lipoproteins. This condition accelerates the development of the atherosclerotic cardiovascular disease (ASCVD), the most common cause of death in T2DM patients. Here, we review the alteration of structure, functions, and distribution of circulating lipoproteins and the pathophysiological mechanisms that induce these modifications in T2DM. The review analyzes the influence of diabetes-associated metabolic imbalances throughout the entire process of the atherosclerotic plaque formation, from lipoprotein synthesis to potential plaque destabilization. Addressing the different pathophysiological mechanisms, we suggest improved approaches for assessing the risk of adverse cardiovascular events and clinical strategies to reduce cardiovascular risk in T2DM and cardiometabolic diseases.

7.
Metabolites ; 14(4)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38668320

ABSTRACT

Peripheral artery disease (PAD) compromises walking and physical activity, which results in further loss of skeletal muscle. The cross-sectional area of the thigh muscle has been shown to be correlated with systemic skeletal muscle volume. In our previous pilot study, we observed an increase in thigh muscle mass following endovascular treatment (EVT) in patients with proximal vascular lesions affecting the aortoiliac and femoropopliteal arteries. Considering the potential interactions between skeletal muscle, lipid profile, and glucose metabolism, we aimed to investigate the relationship between thigh muscle mass and apolipoproteins as well as glucose metabolism in PAD patients undergoing EVT. This study is a prespecified sub-study conducted as part of a pilot study. We prospectively enrolled 22 symptomatic patients with peripheral artery disease (PAD) and above-the-knee lesions, specifically involving the blood vessels supplying the thigh muscle. The mid-thigh muscle area was measured with computed tomography before and 6 months after undergoing EVT. Concurrently, we measured levels of apolipoproteins A1 (Apo A1) and B (Apo B), fasting blood glucose, 2 h post-load blood glucose (using a 75 g oral glucose tolerance test), and glycated hemoglobin A1c (HbA1c). Changes in thigh muscle area (delta muscle area: 2.5 ± 8.1 cm2) did not show significant correlations with changes in Apo A1, Apo B, fasting glucose, 2 h post-oral glucose tolerance test blood glucose, HbA1c, or Rutherford classification. However, among patients who experienced an increase in thigh muscle area following EVT (delta muscle area: 8.41 ± 5.93 cm2), there was a significant increase in Apo A1 (pre: 121.8 ± 15.1 mg/dL, 6 months: 136.5 ± 19.5 mg/dL, p < 0.001), while Apo B remained unchanged (pre: 76.4 ± 19.2 mg/dL, 6 months: 80.5 ± 4.9 mg/dL). Additionally, post-oral glucose tolerance test 2 h blood glucose levels showed a decrease (pre: 189.7 ± 67.5 mg/dL, 6 months: 170.6 ± 69.7 mg/dL, p = 0.075). Patients who exhibited an increase in thigh muscle area demonstrated more favorable metabolic changes compared to those with a decrease in thigh muscle area (delta muscle area: -4.67 ± 2.41 cm2). This pilot sub-study provides insights into the effects of EVT on thigh muscle, apolipoproteins, and glucose metabolism in patients with PAD and above-the-knee lesions. Further studies are warranted to validate these findings and establish their clinical significance. The trial was registered on the University Hospital Medical Information Network Clinical Trials Registry (UMIN000047534).

8.
J Lipid Res ; 65(4): 100528, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38458338

ABSTRACT

Dyslipidemia has long been implicated in elevating mortality risk; yet, the precise associations between lipid traits and mortality remained undisclosed. Our study aimed to explore the causal effects of lipid traits on both all-cause and cause-specific mortality. One-sample Mendelian randomization (MR) with linear and nonlinear assumptions was conducted in a cohort of 407,951 European participants from the UK Biobank. Six lipid traits, consisting of low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), triglycerides, apolipoprotein A1 (ApoA1), apolipoprotein B (ApoB), and lipoprotein(a), were included to investigate the causal associations with mortality. Two-sample MR was performed to replicate the association between each lipid trait and all-cause mortality. Univariable MR results showed that genetically predicted higher ApoA1 was significantly associated with a decreased all-cause mortality risk (HR[95% CI]:0.93 [0.89-0.97], P value = 0.001), which was validated by the two-sample MR analysis. Higher lipoprotein(a) was associated with an increased risk of all-cause mortality (1.03 [1.01-1.04], P value = 0.002). Multivariable MR confirmed the direct causal effects of ApoA1 and lipoprotein(a) on all-cause mortality. Meanwhile, nonlinear MR found no evidence for nonlinearity between lipids and all-cause mortality. Our examination into cause-specific mortality revealed a suggestive inverse association between ApoA1 and cancer mortality, a significant positive association between lipoprotein(a) and cardiovascular disease mortality, and a suggestive positive association between lipoprotein(a) and digestive disease mortality. High LDL-C was associated with an increased risk of cardiovascular disease mortality but a decreased risk of neurodegenerative disease mortality. The findings suggest that implementing interventions to raise ApoA1 and decrease lipoprotein(a) levels may improve overall health outcomes and mitigate cancer and digestive disease mortality.


Subject(s)
Lipids , Mendelian Randomization Analysis , Humans , Male , Female , Lipids/blood , Middle Aged , Risk Factors , Apolipoprotein A-I/blood , Apolipoprotein A-I/genetics , Lipoprotein(a)/blood , Lipoprotein(a)/genetics , Cause of Death , Aged
9.
Postgrad Med J ; 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38491971

ABSTRACT

BACKGROUND: Endometriosis is a poorly understood disease that affects up to 196 million women worldwide and imposes high costs in terms of economic burden and quality of life of women. Traits of circulating lipids have been related to the onset and progression of endometriosis in previous observational studies but the results have remained contradictory. METHODS: We performed univariable and multivariable Mendelian randomization (MR) analyses using instrument variables to genetically predict the associations of low-density lipoprotein (LDL) and high-density lipoprotein (HDL) cholesterol, triglycerides, and apolipoprotein (apo) A-I and B from the UK Biobank with endometriosis (consisting of 8288 cases and 68 969 controls from the FinnGen consortium). The inverse-variance weighted (IVW) method was used as the primary estimate, whereas MR-Egger and weighted median were conducted as complements to the IVW model. RESULTS: Increased levels of triglycerides were associated with higher risk of endometriosis and endometriosis of the pelvic peritoneum in the univariable MR analyses. In multivariable MR analysis including apoB, LDL cholesterol, and triglycerides in the same model, triglycerides still retained a robust effect. Decreased levels of apoA-I and HDL cholesterol were associated with increased risk of endometriosis and endometriosis of the pelvic peritoneum in univariable MR analyses. After mutual adjustment, HDL cholesterol retained a robust effect whereas the association for apoA-I was attenuated. CONCLUSIONS: This is the first MR-based evidence to suggest that triglycerides and HDL cholesterol are the predominant traits that account for the aetiological relationship of lipoprotein lipids with risk of endometriosis, in particular endometriosis of the pelvic peritoneum. Further well-designed randomized controlled trials are needed to address these results.

10.
Arterioscler Thromb Vasc Biol ; 44(5): 1144-1155, 2024 May.
Article in English | MEDLINE | ID: mdl-38511326

ABSTRACT

BACKGROUND: Elevated apoB-containing lipoproteins (=remnants+LDLs [low-density lipoproteins]) are a major risk factor for atherosclerotic cardiovascular disease, including peripheral artery disease (PAD) and myocardial infarction. We tested the hypothesis that remnants and LDL both explain part of the increased risk of PAD conferred by elevated apoB-containing lipoproteins. For comparison, we also studied the risk of chronic limb-threatening ischemia and myocardial infarction. METHODS: apoB, remnant cholesterol, and LDL cholesterol were measured in 93 461 individuals without statin use at baseline from the Copenhagen General Population Study (2003-2015). During up to 15 years of follow-up, 1207 had PAD, 552 had chronic limb-threatening ischemia, and 2022 had myocardial infarction in the Danish National Patient Registry. Remnant and LDL cholesterol were calculated from a standard lipid profile. Remnant and LDL particle counts were additionally measured with nuclear magnetic resonance spectroscopy in 25 347 of the individuals. Results were replicated in 302 167 individuals without statin use from the UK Biobank (2004-2010). RESULTS: In the Copenhagen General Population Study, multivariable adjusted hazard ratios for risk of PAD per 1 mmol/L (39 mg/dL) increment in remnant and LDL cholesterol were 1.9 (95% CI, 1.5-2.4) and 1.1 (95% CI, 1.0-1.2), respectively; corresponding results in the UK Biobank were 1.7 (95% CI, 1.4-2.1) and 0.9 (95% CI, 0.9-1.0), respectively. In the association from elevated apoB to increased risk of PAD, remnant and LDL cholesterol explained 73% (32%-100%) and 8% (0%-46%), respectively; corresponding results were 63% (30%-100%) and 0% (0%-33%) for risk of chronic limb-threatening ischemia and 41% (27%-55%) and 54% (38%-70%) for risk of myocardial infarction; results for remnant and LDL particle counts corroborated these findings. CONCLUSIONS: PAD risk conferred by elevated apoB-containing lipoproteins was explained mainly by elevated remnants, while myocardial infarction risk was explained by both elevated remnants and LDL.


Subject(s)
Apolipoprotein B-100 , Biomarkers , Cholesterol, LDL , Cholesterol , Lipoproteins , Peripheral Arterial Disease , Adult , Aged , Female , Humans , Male , Middle Aged , Apolipoprotein B-100/blood , Biomarkers/blood , Cholesterol/blood , Cholesterol, LDL/blood , Denmark/epidemiology , Ischemia/blood , Ischemia/epidemiology , Ischemia/diagnosis , Myocardial Infarction/epidemiology , Myocardial Infarction/blood , Myocardial Infarction/diagnosis , Peripheral Arterial Disease/epidemiology , Peripheral Arterial Disease/blood , Peripheral Arterial Disease/diagnosis , Prospective Studies , Registries , Risk Assessment , Risk Factors , Time Factors , Triglycerides
11.
J Lipid Res ; 65(4): 100531, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38490635

ABSTRACT

Altered apolipoprotein kinetics play a critical role in promoting dyslipidemia and atherogenesis. Human apolipoprotein kinetics have been extensively evaluated, but similar studies in mice are hampered by the lack of robust methods suitable for the small amounts of blood that can be collected at sequential time points from individual mice. We describe a targeted liquid chromatography tandem mass spectrometry method for simultaneously quantifying the stable isotope enrichment of several apolipoproteins represented by multiple peptides in serial blood samples (15 µl each) obtained after retro-orbital injection of 13C6,15N2-lysine (Lys8) in mice. We determined apolipoprotein fractional clearance rates (FCRs) and production rates (PRs) in WT mice and in two genetic models widely used for atherosclerosis research, LDL receptor-deficient (Ldlr-/-) and apolipoprotein E-deficient (Apoe-/-) mice. Injection of Lys8 produced a unique and readily detectable mass shift of labeled compared with unlabeled peptides with sensitivity allowing robust kinetics analyses. Ldlr-/- mice showed slower FCRs of APOA1, APOA4, total APOB, APOB100, APOCs, APOE and APOM, while FCRs of APOA1, APOB100, APOC2, APOC3, and APOM were not lower in Apoe-/- mice versus WT mice. APOE PR was increased in Ldlr-/- mice, and APOB100 and APOA4 PRs were reduced in Apoe-/- mice. Thus, our method reproducibly quantifies plasma apolipoprotein kinetics in different mouse models. The method can easily be expanded to include a wide range of proteins in the same biospecimen and should be useful for determining the kinetics of apolipoproteins in animal models of human disease.


Subject(s)
Apolipoproteins , Isotope Labeling , Proteomics , Animals , Mice , Proteomics/methods , Apolipoproteins/blood , Kinetics , Receptors, LDL/genetics , Receptors, LDL/metabolism , Apolipoproteins E/deficiency , Apolipoproteins E/blood , Chromatography, Liquid/methods , Mice, Inbred C57BL , Mice, Knockout , Male
12.
Transfus Apher Sci ; 63(3): 103918, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38555232

ABSTRACT

INTRODUCTION: Therapeutic plasma exchange (TPE), with solvent/detergent (S/D)-treated plasma as replacement fluid, is an extracorporeal blood purification technique with major impact on both coagulation and lipids. Our previous in vitro study showed that S/D-plasma enhances thrombin generation by lowering intact protein S (PS) levels. AIMS: To evaluate the impact of altered lipid balance on coagulation phenotype during heparin-anticoagulated TPE with S/D-plasma, and to investigate whether the lowered intact PS levels with concomitant procoagulant phenotype, are recapitulated in vivo. METHODS: Coagulation biomarkers, thrombin generation with Calibrated Automated Thrombogram (CAT), and lipid levels were measured before and after the consecutive 1st, 3rd and 5th episodes of TPE performed to six patients with Guillain-Barré syndrome or myasthenia gravis. The effects of in vitro dilution of S/D-plasma on thrombin generation were explored with CAT to mimic TPE. RESULTS: Patients did not have coagulation disorders, except elevated FVIII. Intact PS, lipoproteins, especially LDL, Apolipoprotein CIII (ApoC3) and ApoB/ApoA1 ratio declined (p < 0.05). In contrast, VLDL and triglyceride levels stayed intact. CAT lag time shortened (p < 0.05). In vitro dilution of S/D plasma with co-transfused Ringer's lactate and 4% albumin partially reduced its procoagulant phenotype in CAT, which is mainly seen as peak thrombin, and modestly shortened lag time. CONCLUSIONS: After the five settings of TPE using S/D-plasma in vivo, which associated with heparinization and reduced coagulation factor activities, our observations of declining natural anticoagulant intact PS and apolipoproteins refer to rebalance of the hemostatic and lipid profiles.


Subject(s)
Apolipoproteins , Plasma Exchange , Protein S , Thrombin , Humans , Plasma Exchange/methods , Male , Thrombin/metabolism , Apolipoproteins/blood , Female , Middle Aged , Protein S/metabolism , Adult , Aged
14.
Arterioscler Thromb Vasc Biol ; 44(5): 1042-1052, 2024 May.
Article in English | MEDLINE | ID: mdl-38545782

ABSTRACT

The brain is the most lipid-rich organ in the body, and the intricate interplay between lipid metabolism and pathologies associated with neurodegenerative disorders is being increasingly recognized. The brain is bathed in cerebrospinal fluid (CSF), which, like plasma, contains lipid-protein complexes called lipoproteins that are responsible for extracellular lipid transport. Multiple CSF lipoprotein populations exist, some of which are produced de novo in the central nervous system and others that appear to be generated from protein constituents that are produced in the periphery. These CSF lipoproteins are thought to play key roles in maintaining lipid homeostasis in the central nervous system, while little else is known due to their limited accessibility and their low abundance in CSF. Recent work has provided new insights into the compositional complexity of CSF lipoprotein families and their metabolism in cerebral circulation. The purpose of this review is to summarize our current state of knowledge on the composition, origin, and metabolism of CSF lipoproteins.


Subject(s)
Lipoproteins , Humans , Animals , Lipoproteins/cerebrospinal fluid , Brain/metabolism , Lipid Metabolism , Neurodegenerative Diseases/cerebrospinal fluid , Neurodegenerative Diseases/blood
15.
BMC Cardiovasc Disord ; 24(1): 138, 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38431594

ABSTRACT

AIMS: Recent studies have indicated an association between intestinal flora and lipids. However, observational studies cannot indicate causality. In this study, we aimed to investigate the potentially causal relationships between the intestinal flora and blood lipids. METHODS: We performed a bidirectional two-sample Mendelian Randomization (MR) analysis to investigate the causal relationship between intestinal flora and blood lipids. Summary statistics of genome-wide association studies (GWASs) for the 211 intestinal flora and blood lipid traits (n = 5) were obtained from public datasets. Five recognized MR methods were applied to assess the causal relationship with lipids, among which, the inverse-variance weighted (IVW) regression was used as the primary MR method. A series of sensitivity analyses were performed to test the robustness of the causal estimates. RESULTS: The results indicated a potential causal association between 19 intestinal flora and dyslipidemia in humans. Genus Ruminococcaceae, Christensenellaceae, Parasutterella, Terrisporobacter, Parabacteroides, Class Erysipelotrichia, Family Erysipelotrichaceae, and order Erysipelotrichales were associated with higher dyslipidemia, whereas genus Oscillospira, Peptococcus, Ruminococcaceae UCG010, Ruminococcaceae UCG011, Dorea, and Family Desulfovibrionaceae were associated with lower dyslipidemia. After using the Bonferroni method for multiple testing correction, Only Desulfovibrionaceae [Estimate = -0.0418, 95% confidence interval [CI]: 0.9362-0.9826, P = 0.0007] exhibited stable and significant negative associations with ApoB levels. The inverse MR analysis did not find a significant causal effect of lipids on the intestinal flora. Additionally, no significant heterogeneity or horizontal pleiotropy for IVs was observed in the analysis. CONCLUSION: The study suggested a causal relationship between intestinal flora and dyslipidemia. These findings will provide a meaningful reference to discover dyslipidemia for intervention to address the problems in the clinic.


Subject(s)
Atherosclerosis , Dyslipidemias , Gastrointestinal Microbiome , Humans , Genome-Wide Association Study , Mendelian Randomization Analysis , Atherosclerosis/diagnosis , Atherosclerosis/epidemiology , Atherosclerosis/genetics
16.
Clin Proteomics ; 21(1): 19, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38429638

ABSTRACT

In persons with dyslipidemia, a high residual risk of cardiovascular disease remains despite lipid lowering therapy. Current cardiovascular risk prediction mainly focuses on low-density lipoprotein cholesterol (LDL-c) levels, neglecting other contributing risk factors. Moreover, the efficacy of LDL-c lowering by statins resulting in reduced cardiovascular risk is only partially effective. Secondly, from a metrological viewpoint LDL-c falls short as a reliable measurand. Both direct and calculated LDL-c tests produce inaccurate test results at the low end under aggressive lipid lowering therapy. As LDL-c tests underperform both clinically and metrologically, there is an urging need for molecularly defined biomarkers. Over the years, apolipoproteins have emerged as promising biomarkers in the context of cardiovascular disease as they are the functional workhorses in lipid metabolism. Among these, apolipoprotein B (ApoB), present on all atherogenic lipoprotein particles, has demonstrated to clinically outperform LDL-c. Other apolipoproteins, such as Apo(a) - the characteristic apolipoprotein of the emerging risk factor lipoprotein(a) -, and ApoC-III - an inhibitor of triglyceride-rich lipoprotein clearance -, have attracted attention as well. To support personalized medicine, we need to move to molecularly defined risk markers, like the apolipoproteins. Molecularly defined diagnosis and molecularly targeted therapy require molecularly measured biomarkers. This review provides a summary of the scientific validity and (patho)physiological role of nine serum apolipoproteins, Apo(a), ApoB, ApoC-I, ApoC-II, ApoC-III, ApoE and its phenotypes, ApoA-I, ApoA-II, and ApoA-IV, in lipid metabolism, their association with cardiovascular disease, and their potential as cardiovascular risk markers when measured in a multiplex apolipoprotein panel.

17.
Nutr Metab (Lond) ; 21(1): 9, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38302995

ABSTRACT

BACKGROUND: Apolipoproteins have been recently proposed as novel markers of cardiovascular disease (CVD) risk. However, evidence regarding effects of diet on apolipoproteins is limited. AIM: To compare the effects of Mediterranean diet (MD) and lacto-ovo vegetarian diet (VD) on apolipoproteins and traditional CVD risk factors in participants with low-to-moderate CVD risk. METHODS: Fifty-two participants (39 women; 49.1 ± 12.4 years), followed MD and VD for 3 months each. Medical and dietary information was collected at the baseline. Anthropometric parameters and blood samples were obtained at the beginning and the end of interventions. RESULTS: MD and VD resulted in significant improvement in anthropometric and lipid profiles. Both diets led to a reduction in most of the inflammatory parameters. As for apolipoproteins, a significant change was observed for ApoC-I after VD (+ 24.4%; p = 0.020). MD led to a negative correlation between ApoC-III and carbohydrates (R = - 0.29; p = 0.039) whereas VD between ApoD and saturated fats (R = - 0.38; p = 0.006). A positive correlation emerged after VD between HDL and ApoD (R = 0.33; p = 0.017) and after MD between plasma triglycerides and ApoC-I (R = 0.32; p = 0.020) and ApoD (R = 0.30; p = 0.031). IL-17 resulted to be positively correlated with ApoB after MD (R = 0.31; p = 0.028) and with ApoC-III after VD (R = 0.32; p = 0.019). Subgroup analysis revealed positive effects on apolipoproteins from both diets, especially in women, individuals older than 50 years-old or with < 3 CVD risk factors. CONCLUSIONS: Both diets seem to improve CVD risk, however, MD showed a greater positive effect on apolipoproteins in some subgroups, thus suggesting how diet may influence new potential markers of CVD risk. TRIAL REGISTRATION: registered at clinicaltrials.gov (identifier: NCT02641834) on December 2015.

18.
Eur J Prev Cardiol ; 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38417834

ABSTRACT

AIMS: Research has shown that apolipoproteins (Apos) are potential indicators of heart health and death. We investigated the associations of apolipoprotein levels with all-cause and cardiovascular mortality. METHODS: We systematically searched the Cochrane Library, PubMed and Web of Science for English-language studies up to November 28, 2022. We used Stata 17.0 to summarize the estimated effects with 95% confidence intervals (CIs). We also conducted subgroup analyses according to study location, year of publication, individual age, follow-up years, and sample size. Moreover, we performed a sensitivity analysis to evaluate bias in our study. RESULTS: This study included 23 studies with 152854 individuals in total. The level of ApoA was negatively related to cardiovascular mortality (OR = 0.69, 95% CI = 0.52-0.93). An increased ratio of ApoB/A1 was a risk factor for cardiovascular mortality (OR = 2.13, 95% CI = 1.48-3.07) and all-cause mortality (OR = 2.05, 95% CI = 1.52-2.77). The level of ApoB was positively related to cardiovascular mortality (OR = 1.12, 95% CI = 0.85-1.47), but the difference was not statistically significant. However, the associations between ApoB or ApoA1 and all-cause mortality were not obvious. Our subgroup analysis showed that the location, year of publication, individual age, and follow-up years of the studies affected the heterogeneity of our study to varying degrees. The sensitivity analysis showed that our results were almost robust, apart from excluding the article by Nomikos (OR = 0.77, 95% CI = 0.65-0.92) and Zeng (OR = 0.77, 95% CI = 0.65-0.91), when investigating the relationship between ApoA1 and all-cause mortality. CONCLUSION: In this study, we found that apolipoprotein levels were linked to cardiovascular and all-cause mortality. Our study strengthens the evidence on the association between the level of apolipoproteins and cardiac health and may provide ideas for regulating the level of apolipoproteins to promote public health.


This study supports the association between apolipoproteins and cardiac health by conducting an analysis of the impact of ApoA1, ApoB2 and the ratio of ApoB/A1 on cardiovascular mortality and all-cause mortality. These findings may provide some ideas for promoting public health.

19.
Can J Physiol Pharmacol ; 102(5): 305-317, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38334084

ABSTRACT

Mostly, cardiovascular diseases are blamed for casualties in rheumatoid arthritis (RA) patients. Customarily, dyslipidemia is probably the most prevalent underlying cause of untimely demise in people suffering from RA as it hastens the expansion of atherosclerosis. The engagement of inflammatory cytokines like tumor necrosis factor-α (TNF-α), interleukin-1 (IL-1), interleukin-6 (IL-6), etc., is crucial in the progression and proliferation of both RA and abnormal lipid parameters. Thus, lipid abnormalities should be monitored frequently in patients with both primary and advanced RA stages. An advanced lipid profile examination, i.e., direct role of apolipoproteins associated with various lipid molecules is a more dependable approach for better understanding of the disease and selecting suitable therapeutic targets. Therefore, studying their apolipoproteins is more relevant than assessing RA patients' altered lipid profile levels. Among the various apolipoprotein classes, Apo A1 and Apo B are primarily being focused. In addition, it also addresses how calculating Apo B:Apo A1 ratio can aid in analyzing the disease's risk. The marketed therapies available to control lipid abnormalities are associated with many other risk factors. Hence, directly targeting Apo A1 and Apo B would provide a better and safer option.


Subject(s)
Apolipoproteins , Arthritis, Rheumatoid , Cardiovascular Diseases , Heart Disease Risk Factors , Humans , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/blood , Cardiovascular Diseases/prevention & control , Cardiovascular Diseases/etiology , Apolipoproteins/blood , Animals , Apolipoprotein A-I , Apolipoproteins B/blood , Apolipoproteins B/metabolism , Dyslipidemias/drug therapy , Dyslipidemias/blood , Dyslipidemias/metabolism
20.
Clin Neurol Neurosurg ; 238: 108185, 2024 03.
Article in English | MEDLINE | ID: mdl-38422746

ABSTRACT

OBJECTIVE: The purpose of this study is to the relationship between peripheral apolipoproteins and cerebral small vessel disease (CSVD) imaging markers. METHODS: We reviewed the data of a population that above 40 years old with CSVD, while free of known dementia or acute stroke. We evaluated CSVD imaging markers, including white matter hyperintensities (WMHs), enlarged perivascular spaces (EPVS), lacunas, microbleeds by MRI scans, and measured peripheral apolipoproteins. RESULTS: After adjusting for age, sex and vascular risk factors,1) apoB and apoB/apoA-1 were related to grade of EPVS in basal ganglia(apoB:r=0.196,p<0.001;apoB/apoA-1:r=0.208,p<0.001), apoE was related to grade of EPVS in centrum semiovale (r=0.125,p=0.040); 2) apoB(OR=1.739, 95%CI=1.357-2.061, p<0.001), apoB/apoA-1(OR=1.116, 95%CI=1.037-1.761, p=0.005) and apoE(OR=1.287, 95%CI=1.036-1.599, p=0.023) were independent factors of presence of severer EPVS in basal ganglia, apoE was an independent factor of presence of severer EPVS in centrum semiovale (OR=1.235, 95%CI=1.021-1.494, p=0.029). CONCLUSION: Our findings demonstrated peripheral apolipoproteins, including apoB, apoB/apoA-1, and apoE, were independent factor for EPVS in CSVD.


Subject(s)
Cerebral Small Vessel Diseases , Stroke , Adult , Humans , Apolipoprotein A-I , Apolipoproteins B , Apolipoproteins E , Cerebral Small Vessel Diseases/diagnostic imaging , Magnetic Resonance Imaging , Male , Female
SELECTION OF CITATIONS
SEARCH DETAIL
...