Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters










Publication year range
1.
Invest New Drugs ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38935191

ABSTRACT

HCC is the most common fatal malignancy. Although surgical resection is the primary treatment strategy, most patients are not eligible for resection due to tumor heterogeneity, underlying liver disease, or comorbidities. Therefore, this study explores the possibility of multi-molecular targeted drug delivery in treating HCC. In this study, we constructed the recombinant adenovirus co-expressing apoptin and melittin (MEL) genes. The inhibitory effect of the recombinant adenovirus on hepatocellular carcinoma cells was detected through experiments on cell apoptosis, migration, invasion, and other factors. The tumor inhibitory effect in vivo was assessed using subcutaneous HCC mice. Results showed that recombinant adenovirus co-expressing anti-tumor genes TAT and apoptin, RGD and MEL can significantly inhibit the proliferation, migration, and invasion of HCC cells by inducing an increase in reactive oxygen species (ROS) levels, upregulation of apoptotic proteins such as Bax, cleaved caspase-3, and cleaved caspase-9, and downregulation of the anti-apoptotic protein Bcl-2. In subcutaneous HCC mice, recombinant adenovirus induced significant apoptosis in tumor, and inhibited tumor growth. In conclusion, recombinant adenovirus co-expressing apoptin and MEL can inhibit the growth and proliferation of tumor cells both in vivo and in vitro.

2.
Amino Acids ; 55(10): 1405-1416, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37725185

ABSTRACT

The emergence of antibiotic resistance prompts exploration of viable antimicrobial peptides (AMPs) designs. The present study explores the antimicrobial prospects of Apoptin nuclear localization sequence (NLS2)-derived peptide ANLP (PRPRTAKRRIRL). Further, we examined the utility of the NLS dimerization strategy for improvement in antimicrobial activity and sustained bio-stability of AMPs. Initially, the antimicrobial potential of ANLP using antimicrobial peptide databases was analyzed. Then, ANLP along with its two homodimer variants namely ANLP-K1 and ANLP-K2 were synthesized and evaluated for antimicrobial activity against Escherichia coli and Salmonella. Among three AMPs, ANLP-K2 showed efficient antibacterial activity with 12 µM minimum inhibitory concentration (MIC). Slow degradation of ANLP-K1 (26.48%) and ANLP-K2 (13.21%) compared with linear ANLP (52.33%) at 480 min in serum stability assay indicates improved bio-stability of dimeric peptides. The AMPs presented no cytotoxicity in Vero cells. Dye penetration assays confirmed the membrane interacting nature of AMPs. The zeta potential analysis reveals effective charge neutralization of both lipopolysaccharide (LPS) and bacterial cells by dimeric AMPs. The dimeric AMPs on scanning electron microscopy studies showed multiple pore formations on the bacterial surface. Collectively, proposed Lysine scaffold dimerization of Apoptin NLS2 strategy resulted in enhancing antibacterial activity, bio-stability, and could be effective in neutralizing the off-target effect of LPS. In conclusion, these results suggest that nuclear localization sequence with a modified dimeric approach could represent a rich source of template for designing future antimicrobial peptides.


Subject(s)
Anti-Infective Agents , Lipopolysaccharides , Animals , Chlorocebus aethiops , Lipopolysaccharides/metabolism , Antimicrobial Cationic Peptides/pharmacology , Dimerization , Vero Cells , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Antimicrobial Peptides , Microbial Sensitivity Tests
3.
Cancer Med ; 12(7): 8306-8318, 2023 04.
Article in English | MEDLINE | ID: mdl-36515089

ABSTRACT

BACKGROUND: Apoptin is derived from the chicken anemia virus and exhibits specific cytotoxic effects against tumor cells. Herein, we found that Apoptin induced a strong and lasting endoplasmic reticulum (ER) stress response, Ca2+ imbalance, and triggered the mitochondrial apoptotic pathway. The aim of this study was to explore the mechanisms by which Apoptin exhibited anti-tumor effects in HepG-2 cells. METHODS: The intracellular levels of calcium (Ca2+ ) were induced by ER stress and determined by electron microscopy, flow cytometry, and fluorescence staining. The mitochondrial injury was determined by mitochondrial membrane potential and electron microscopy. Western blotting was used to investigate the levels of key proteins in ER stress and the apoptotic pathway in mitochondria. The relationship between Ca2+ levels and apoptosis in Apoptin-treated cells was analyzed using a Ca2+ chelator (BAPTA-AM), flow cytometry, and fluorescence staining. We also investigated the in vivo effects of Ca2+ imbalance on the mitochondrial apoptotic pathway using tumor tissues xenografted on nude mice. RESULTS: This study showed that Apoptin induced a strong and long- lasting ER stress and injury, which subsequently led to an imbalance of cellular Ca2+ levels, a reduction in the mitochondrial membrane potential, a significant extent image in the mitochondrial structure, and an increase in the expression levels of Smac/Diablo and Cyto-C. CONCLUSIONS: In summary, Apoptin induced apoptosis in HepG-2 cells via Ca2+ imbalance and activation of the mitochondrial apoptotic pathway. This study provided a new direction for antitumor research in Apoptin.


Subject(s)
Apoptosis , Mitochondria , Mice , Animals , Mice, Nude , Endoplasmic Reticulum Stress , Apoptosis Regulatory Proteins/metabolism , Calcium/metabolism
4.
Article in English | MEDLINE | ID: mdl-36284386

ABSTRACT

Pyruvate kinase M2 (PKM2) is a key enzyme in aerobic glycolysis, and which plays an important role in tumor energy metabolism and tumor growth. Ad-apoptin, a recombinant oncolytic adenovirus, that can stably express apoptin in tumor cells and selectively causes cell death in tumor cells. The relationship between the anti-tumor function of apoptin, including apoptosis and autophagy activation, and energy metabolism of tumor cells has not been clarified. In this study, we used the A549 lung cancer cell line to analyze the mechanism of PKM2 involvement apoptin-mediated cell death in tumor cells. PKM2 expression in lung cancer cells was detected by Western blot and qRT-PCR. In the PKM2 knockdown and over-expression experiments, A549 lung cancer cells were treated with Ad-apoptin, and cell viability was determined by the CCK-8 assay and crystal violet staining. Glycolysis was investigated using glucose consumption and lactate production experiments. Moreover, the effects of Ad-apoptin on autophagy and apoptosis were analyzed by immunofluorescence using the Annexin v-mCherry staining and by western blot for c-PARP, p62 and LC3-II proteins. Immunoprecipitation analysis was used to investigate the interaction between apoptin and PKM2. In addition, following PKM2 knockdown and overexpression, the expression levels of p-AMPK, p-mTOR, p-ULK1, and p-4E-BP1 proteins in Ad-apoptin treated tumor cells, were analyzed by western blot to investigate the mechanism of apoptin effect on the energy metabolism of tumor cells. The in vivo antitumor mechanism of apoptin was analyzed by xenograft tumor inhibition experiment in nude mice and immunohistochemistry of tumors' tissue. As a result, apoptin could target PKM2, inhibit glycolysis and cell proliferation in A549 cells, and promote autophagy and apoptosis in A549 cells by regulating the PKM2/AMPK/mTOR pathway. This study confirmed the necessary role of Ad-apoptin in energy metabolism of A549 cells.

5.
Cell Commun Signal ; 20(1): 134, 2022 09 01.
Article in English | MEDLINE | ID: mdl-36050738

ABSTRACT

BACKGROUND: Apoptin, as a tumor-specific pro-apoptotic protein, plays an important anti-tumoral role, but its mechanism of autophagy activation and the interaction between autophagy and apoptosis have not been accurately elucidated. Here, we studied the mechanism of apoptin-induced apoptosis and autophagy and the interaction between two processes. METHODS: Using crystal violet staining and the CCK-8 assay, we analyzed the effect of apoptin in the inhibition of liver cancer cells in vitro and analyzed the effect of inhibiting liver cancer in vivo by establishing a nude mouse tumor model. Flow cytometry and fluorescence staining were used to analyze the main types of apoptin-induced apoptosis and autophagy. Subsequently, the relationship between the two events was also analyzed. Flow cytometry was used to analyze the effect of ROS on apoptin-mediated apoptosis and autophagy mediated by apoptin. The effect of ROS on two phenomena was analyzed. Finally, the role of key genes involved in autophagy was analyzed using gene silencing. RESULTS: The results showed that apoptin can significantly increase the apoptosis and autophagy of liver cancer cells, and that apoptin can cause mitophagy through the increase in the expression of NIX protein. Apoptin can also significantly increase the level of cellular ROS, involved in apoptin-mediated autophagy and apoptosis of liver cancer cells. The change of ROS may be a key factor causing apoptosis and autophagy. CONCLUSION: The above results indicate that the increase in ROS levels after apoptin treatment of liver cancer cells leads to the loss of mitochondrial transmembrane potential, resulting in endogenous apoptosis and mitophagy through the recruitment of NIX. Therefore, ROS may be a key factor connecting endogenous apoptosis and autophagy induced by apoptin in liver cancer cells. Video abstract.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Apoptosis , Capsid Proteins , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Mice , Mice, Nude , Mitophagy , Reactive Oxygen Species
6.
Adv Pharm Bull ; 12(3): 613-622, 2022 May.
Article in English | MEDLINE | ID: mdl-35935057

ABSTRACT

Purpose: Although the complex structure of acute lymphoblastic leukemia (ALL) and involvement of diverse pathways in its pathogenesis have put an obstacle in the way of efficient treatments, identification of strategies to manipulate the genome of neoplastic cells has made the treatment prospective more optimistic. Methods: To evaluate whether the transduction of apoptin __a gene encoding a protein that participates in the induction of apoptosis__ could reduce the survival of leukemic cells, we generated recombinant lentivirus expressing apoptin, and then, MTT assay, flow cytometric analysis of DNA content, western blotting, and quantitative reverse transcription polymerase chain reaction (qRT-PCR) were applied. Results: Transduction of apoptin into different leukemic cells was coupled with the reduction in the viability and proliferative capacity of the cells. Among all tested cell lines, Nalm-6 and C8166 were more sensitive to the anti-leukemic property of apoptin. Moreover, we found that the transduction of apoptin in the indicated cell lines not only induced G2/M cell cycle arrest but also induced apoptotic cell death by altering the balance between pro- and anti-apoptotic target genes. The efficacy of apoptin transduction was not limited to these findings, as we reported for the first time that the overexpression of this gene could potentiate the anti-leukemic property of pan PI3K inhibitor BKM120. Conclusion: The results of this study showed that the transduction of apoptin into lymphoblastic leukemia cell lines induced cytotoxic effects and enhanced therapeutic value of PI3K inhibition; however, further investigations are demanded to ascertain the safety and the efficacy of apoptin transduction in patients with ALL.

7.
Proteins ; 90(4): 936-946, 2022 04.
Article in English | MEDLINE | ID: mdl-34812523

ABSTRACT

In our previous study, we reported the design and recombinant production of the p28-apoptin as a novel chimeric protein for breast cancer (BC) treatment. This study aimed to evaluate the inhibitory activity of the chimeric protein against BC cells in vitro and in vivo. We developed a novel multifunctional protein, consisting of p28, as a tumor-homing killer peptide fused to apoptin as a tumor-selective killer. The chimeric protein showed significantly higher toxicity in BC cell lines dose-dependently than in non-cancerous control cell lines. IC50 values were 1.41, 1.38, 6.13, and 264.49 µM for 4T1, MDA-MB-468, Vero, and HEK293 cells, respectively. The protein showed significantly enhanced uptake in 4T1 cancer cells compared with non-cancerous Vero cells. We also showed that the p28-apoptin chimeric protein binds significantly higher to human breast cancer tumor sections than the normal human breast tissue section. Also, significant apoptosis induction and tumor growth inhibition were observed in established tumor-bearing mice accompanied by a decreased frequency of metastases. Our results support that the chimeric protein has inhibitory activity in vitro and in vivo, making it a promising choice in targeted cancer therapy.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Animals , Antineoplastic Agents/pharmacology , Apoptosis , Breast Neoplasms/drug therapy , Cell Line, Tumor , Chlorocebus aethiops , Female , HEK293 Cells , Humans , Mice , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/pharmacology , Vero Cells
8.
Exp Cell Res ; 409(2): 112926, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34793774

ABSTRACT

Ad-apoptin is a recombinant oncolytic adenovirus constructed by our laboratory that can express apoptin. It can selectively kill tumor cells without damaging normal cells. This study investigated the effects of Ad-apoptin on glycolysis, migration and invasion of non-small cell lung cancer. Cell viability and apoptosis were detected by CCK-8 and flow cytometry, respectively. Glycolysis was investigated by glucose consumption, lactic acid production and glycolytic key enzyme protein levels. Migration and invasion were evaluated via wound healing, transwell assays and epithelial-mesenchymal transition (EMT) protein levels. The interaction between apoptin and AMPK was detected by Co-IP. A nude mice tumor model was established to investigate the anti-cancer role of Ad-apoptin in vivo. The results showed that Ad-apoptin inhibits cell viability and induces apoptosis of A549 and NCI-H23 cells. Ad-apoptin can reduce the glucose uptake and lactic production in lung cancer cells, and reduce the expression of related glycolysis-limiting enzymes. At the same time, Ad-apoptin inhibited the migration and invasion of lung cancer. Immunoprecipitation showed that apoptin and AMPK could interact directly. Moreover, knockdown of AMPK significantly attenuated the inhibitory effect of Ad-apoptin on glycolysis, migration and invasion of A549 and NCI-H23 cells. Ad-apoptin can inhibit the growth of tumors in nude mice. Compared with the control group, Ad-apoptin had a significant inhibitory effect on AMPK knockdown tumors. The immunohistochemical results of tumor tissues were consistent with those in vitro. Collectively, Ad-apoptin targets AMPK and inhibits glycolysis, migration and invasion of lung cancer cells through the AMPK/mTOR signaling pathway. This suggests that Ad-apoptin may have therapeutic potential for lung cancer by targeting AMPK activation.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Adenoviridae/genetics , Capsid Proteins/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Glycolysis , Oncolytic Virotherapy/methods , TOR Serine-Threonine Kinases/metabolism , AMP-Activated Protein Kinases/genetics , Animals , Apoptosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/therapy , Cell Cycle , Cell Movement , Cell Proliferation , Female , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/therapy , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasm Invasiveness , TOR Serine-Threonine Kinases/genetics , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
9.
J Colloid Interface Sci ; 603: 191-198, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34192626

ABSTRACT

In this work, small self-assembled messenger RNA nanospheres (mRNA-NSs) were successfully prepared by rolling circle transcription on a constructed apoptin plasmid. The self-assembled mRNA-NSs have a uniform diameter of approximately 65 nm, good dispersity in solution, and efficient therapeutic apoptin expression ability. In addition, the mRNA-NSs have a high loading capacity of 8.2% for the antitumor drug doxorubicin (Dox), which can effectively deliver the loaded Dox into 4 T1 cells. Cellular experiments show that Dox-loaded self-assembled messenger RNA nanospheres (mRNA-NSs@Dox) can reduce the viability of 4 T1 breast cancer cells by significantly upregulating Bax protein, thereby inducing the activation of Caspase 3 in 4 T1 cells. In vivo experiments show that mRNA-NSs@Dox can effectively increase the necrosis of tumor tissue, reduce the expression of Ki67, and exhibit a synergistic gene-chemotherapy effect in breast cancer-bearing mice. Taken together, this study successfully prepared self-assembled apoptin messenger RNA nanospheres (mRNA-NSs), which can improve the expression of the therapeutic protein apoptin and exhibit excellent synergistic antitumor effects after loading Dox, providing new ideas for the gene treatment and chemotherapy of breast cancer.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Nanospheres , Animals , Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Cell Line, Tumor , Doxorubicin/pharmacology , Female , Humans , Mice , RNA, Messenger/genetics
10.
Front Oncol ; 11: 614082, 2021.
Article in English | MEDLINE | ID: mdl-33718168

ABSTRACT

In this study, we investigated the effects of Apoptin-induced endoplasmic reticulum (ER) stress on lipid metabolism, migration and invasion of HepG-2 cells, and preliminarily explored the relationship between endoplasmic reticulum stress, lipid metabolism, migration, and invasion. The effects of Apoptin on ER function and structure in HepG-2 cells were determined by flow cytometry, fluorescence staining and western blotting by assessing the expression levels of ER stress related proteins. The effects of Apoptin on HepG-2 cells' lipid metabolism were determined by western blot analysis of the expression levels of triglyceride, cholesterol, and lipid metabolism related enzymes. The effects of Apoptin on HepG-2 cells' migration and invasion were studied using migration and invasion assays and by Western-blot analysis of the expression of proteins involved in migration and invasion. The in vivo effects of endoplasmic reticulum stress on lipid metabolism, migration and invasion of HepG-2 cells were also investigated by immunohistochemistry analysis of tumor tissues from HepG2 cells xenografted nude mice models. Both in vitro and in vivo experiments showed that Apoptin can cause a strong and lasting ER stress response, damage ER functional structure, significantly change the expression levels of lipid metabolism related enzymes and reduce the migration and invasion abilities of HepG-2 cells. Apoptin can also affect HepG-2 cells' lipid metabolism through endoplasmic reticulum stress and the abnormal expression of enzymes closely related to tumor migration and invasion. These results also showed that lipid metabolism may be one of the main inducements that reduce HepG-2 cells' migration and invasion abilities.

11.
J Cell Mol Med ; 25(2): 666-676, 2021 01.
Article in English | MEDLINE | ID: mdl-33305893

ABSTRACT

Apoptin can specifically kill cancer cells but has no toxicity to normal cells. Human telomerase reverse transcriptase (hTERT) can act as a tumour-specific promoter by triggering the expression of certain genes in tumour cells. This study aims to investigate the inhibitory effects and to explore the inhibitory pathway of a dual cancer-specific recombinant adenovirus (Ad-apoptin-hTERTp-E1a, Ad-VT) on breast cancer stem cells. Breast cancer cell spheres were obtained from MCF-7 cells through serum-free suspension culture. The cell spheres were detected by flow cytometry for CD44+ CD24- cell subsets. The stemness of MCF-7-CSC cells was confirmed by in vivo tumorigenesis experiments. The inhibitory effect of the recombinant adenoviruses on MCF-7-CSC cells was evaluated by CCK-8 assay. In addition, the stemness of adenovirus-infected MCF-7-CSC cells was analysed by testing the presence of CD44+ CD24- cell subsets. The ability of the recombinant adenovirus to induce MCF-7-CSC cell apoptosis was detected by staining JC-1, TMRM and Annexin V. Our results showed that a significantly higher proportion of the CD44+ CD24- cell subsets was present in MCF-7-CSC cells with a significantly increased expression of stem cell marker proteins. The MCF-7-CSC cells, whlist exhibited a strong tumorigenic ability with a certain degree of stemness in mice, were shown to be strongly inhibited by recombinant adenovirus Ad-VT through cell apoptosis. In addition, Ad-VT was shown to exert a killing effect on BCSCs. These results provide a new theoretical basis for the future treatment of breast cancer.


Subject(s)
CD24 Antigen/metabolism , Hyaluronan Receptors/metabolism , Neoplastic Stem Cells/metabolism , Apoptosis/genetics , Apoptosis/physiology , Blotting, Western , CD24 Antigen/genetics , Flow Cytometry , Humans , Hyaluronan Receptors/genetics , MCF-7 Cells , Membrane Potential, Mitochondrial/genetics , Membrane Potential, Mitochondrial/physiology
12.
Arch Iran Med ; 23(9): 593-599, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32979905

ABSTRACT

BACKGROUND: Selective therapy has always been the main challenge in cancer treatments. Various non-replicative oncolytic viral systems have revealed the safety and efficacy of using viruses and these products. The aim of this paper is to examine the impact of recombinant apoptin on the proliferation of lung cancer and breast cancer cell lines. METHODS: The present study consisted of two steps of expression of recombinant apoptin and its anti-proliferative effects on normal and cancer cells. In the first step, following bioinformatics and optimizing apoptin gene sequencing and synthesis, it was expressed using vector PET28a and E. coli BL21 (DE3). The expressed recombinant apoptin was confirmed by analytical SDSPAGE and then purified using Ni affinity chromatography. In the second step, the antiproliferative effects of recombinant apoptin on lung cancer, breast cancer and primary cell lines were determined using MTT assay. RESULTS: According to the results of SDS-PAGE gel assay, recombinant apoptin was visible in the 14 kDa band. Also, the MTT assay results indicated that the antiproliferative effects of recombinant apoptin in cancer cell lines was different compared with the primary cell line, and followed a dose-dependent manner in both cell lines. The highest cytotoxicity (lowest cell viability) groups were 0.2 mg/mL in lung cancer (0.32 ± 0.015) (P<0.001), and in breast cancer (0.33 ± 0.031) (P<0.001) and 0.032 mg/mL in primary cells (0.17 ± 0.004) (P<0.01), as compared to the control groups. CONCLUSION: Our results confirmed that recombinant apoptin can induce antiproliferative effects in lung cancer and breast cancer cell lines, but not in normal monkey kidney cell line Vero; thus, it can be introduced as a promising novel specific antitumor agent after further evaluation in clinical trials.


Subject(s)
Breast Neoplasms/drug therapy , Capsid Proteins/therapeutic use , Chicken anemia virus/genetics , Lung Neoplasms/drug therapy , Animals , Apoptosis/drug effects , Capsid Proteins/genetics , Capsid Proteins/isolation & purification , Cell Line, Tumor , Cell Survival/drug effects , Chicken anemia virus/metabolism , Chlorocebus aethiops , Escherichia coli/genetics , Escherichia coli/metabolism , Humans , Oncolytic Virotherapy , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/therapeutic use , Vero Cells
13.
Exp Cell Res ; 396(1): 112185, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32828827

ABSTRACT

BACKGROUND: Apoptin can specifically kill cancer cells but has no toxicity to normal cells. Human telomerase reverse transcriptase (hTERT) acts as a tumor-specific promoter, triggering certain genes to replicate or express only in tumor cells, conferring specific replication and killing abilities. This study aimed at investigating the anticancer potential of the recombinant adenovirus Ad-apoptin-hTERTp-E1a (Ad-VT) in ovarian cancer treatment. METHODS: Crystal Violet staining and WST-1 assays were used to analyze the inhibitory effect of Ad-VT on ovarian cancer SKOV3 and OVCAR-3 cells. Ad-VT-induced apoptosis of ovarian cancer cells, was detected using Hoechst, Annexin V-FITC/PI, JC-1 staining. Cell migration and invasion of ovarian cancer cells were detected using cell-scratch and Transwell assays. The pGL4.51 plasmid was used to transfect and to generate SKOV3-LUC cells, that stably express luciferase. The in vivo tumor inhibition effect of Ad-VT was subsequently confirmed using a tumor-bearing nude mouse model. RESULTS: Ad-VT had a strong apoptosis-inducing effect on SKOV3 and OVCAR-3 cells, that was mainly mediated through the mitochondrial apoptotic pathway. The Ad-VT could significantly increase the inhibition of ovarian cancer cell migration and invasion. The Ad-VT also can inhibit tumor growth and reduce toxicity in vivo. CONCLUSIONS: The recombinant adenovirus, comprising the apoptin protein and the hTERTp promoter, was able to inhibit the growth of ovarian cancer cells and promote their apoptosis.


Subject(s)
Adenoviridae/genetics , Carcinoma, Ovarian Epithelial/genetics , Chicken anemia virus/genetics , Oncolytic Virotherapy/methods , Ovarian Neoplasms/genetics , Viral Proteins/genetics , Adenoviridae/metabolism , Animals , Apoptosis/genetics , Carcinoma, Ovarian Epithelial/metabolism , Carcinoma, Ovarian Epithelial/mortality , Carcinoma, Ovarian Epithelial/virology , Cell Line, Tumor , Cell Movement , Cell Proliferation , Chicken anemia virus/metabolism , Female , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Mitochondria/genetics , Mitochondria/metabolism , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/mortality , Ovarian Neoplasms/virology , Survival Analysis , Transgenes , Tumor Burden , Viral Proteins/metabolism , Xenograft Model Antitumor Assays
14.
Front Cell Dev Biol ; 8: 524, 2020.
Article in English | MEDLINE | ID: mdl-32671070

ABSTRACT

Cancer remains one of the leading causes of death worldwide in humans and animals. Conventional treatment regimens often fail to produce the desired outcome due to disturbances in cell physiology that arise during the process of transformation. Additionally, development of treatment regimens with no or minimum side-effects is one of the thrust areas of modern cancer research. Oncolytic viral gene therapy employs certain viral genes which on ectopic expression find and selectively destroy malignant cells, thereby achieving tumor cell death without harming the normal cells in the neighborhood. Apoptin, encoded by Chicken Infectious Anemia Virus' VP3 gene, is a proline-rich protein capable of inducing apoptosis in cancer cells in a selective manner. In normal cells, the filamentous Apoptin becomes aggregated toward the cell margins, but is eventually degraded by proteasomes without harming the cells. In malignant cells, after activation by phosphorylation by a cancer cell-specific kinase whose identity is disputed, Apoptin accumulates in the nucleus, undergoes aggregation to form multimers, and prevents the dividing cancer cells from repairing their DNA lesions, thereby forcing them to undergo apoptosis. In this review, we discuss the present knowledge about the structure of Apoptin protein, elaborate on its mechanism of action, and summarize various strategies that have been used to deliver it as an anticancer drug in various cancer models.

15.
Front Oncol ; 10: 1026, 2020.
Article in English | MEDLINE | ID: mdl-32714864

ABSTRACT

Apoptin is a protein that specifically induces apoptosis in tumor cells. The anti-tumorigenic functions of Apoptin, including autophagy activation and its interaction with apoptosis, have not been precisely elucidated. Here we investigate the main pathways of apoptin-mediated killing of human liver cancer cells, as well as its putative role in autophagy and apoptosis. The anti-proliferative effect of apoptin in liver cancer cells was analyzed in vitro by crystal violet staining and MTS detection, and also in vivo using a tumor-based model. The main pathway related to apoptin-induced growth inhibition in vitro was evaluated by flow cytometry and fluorescence staining. The relationship between apoptosis and autophagy on apoptin-treating cells was analyzed using apoptosis and autophagy inhibitors, mitochondrial staining, Annexin V-FITC/PI flow detection, LC3 staining, and western blotting. The effect of ROS toward the apoptosis and autophagy of apoptin-treating cells was also evaluated by ROS detection, Annexin V-FITC/PI flow detection, LC3 staining, and western blotting. Inhibition of apoptosis in apoptin-treating liver cancer cells significantly reduced the autophagy levels in vitro. The overall inhibition increased from 12 h and the effect was most obvious at 48 h. Inhibition of autophagy could increase apoptin-induced apoptosis of cells in a time-dependent manner, reaching its peak at 24 h. Apoptin significantly alters ROS levels in liver cancer cells, and this effect is directly related to apoptosis and autophagy. ROS appears to be the key factor linking apoptin-induced autophagy and apoptosis through the mitochondria in liver cancer cells. Therefore, evaluating the interaction between apoptin-induced apoptosis and autophagy is a promising step for the development of alternate tumor therapies.

16.
Protein Expr Purif ; 175: 105687, 2020 11.
Article in English | MEDLINE | ID: mdl-32681952

ABSTRACT

A promising candidate for tumor targeted toxins is the chicken anemia-derived protein apoptin that induces tumor-specific apoptosis. It was aimed to design a novel apoptin-based targeted toxin by genetic fusion of apoptin with the tumor-directed ligand epidermal growth factor (EGF) using Escherichia coli as expression host. However, apoptin is highly hydrophobic and tends to form insoluble aggregates. Therefore, three different apoptin-EGF variants were generated. The fusion protein hexa-histidine (His)-apoptin-EGF (HAE) was expressed in E. coli and purified under denaturing conditions due to inclusion bodies. The protein solubility was improved by maltose-binding protein (MBP) or glutathione S-transferase. The protein MBP-apoptin-EGFHis (MAEH) was found favorable as a targeted toxin regarding final yield (4-6 mg/L) and stability. MBP was enzymatically removed using clotting factor Xa, which resulted in low yield and poor separation. MAEH was tested on target and non-target cell lines. The targeted tumor cell line A431 showed significant toxicity with an IC50 of 69.55 nM upon incubation with MAEH while fibroblasts and target receptor-free cells remained unaffected. Here we designed a novel EGF receptor targeting drug with high yield, purity and stability.


Subject(s)
Antineoplastic Agents , Capsid Proteins , Epidermal Growth Factor , Neoplasms/drug therapy , Recombinant Fusion Proteins , Animals , Antineoplastic Agents/isolation & purification , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Capsid Proteins/biosynthesis , Capsid Proteins/genetics , Capsid Proteins/isolation & purification , Capsid Proteins/pharmacology , Cell Line, Tumor , Epidermal Growth Factor/biosynthesis , Epidermal Growth Factor/genetics , Epidermal Growth Factor/isolation & purification , Epidermal Growth Factor/pharmacology , Humans , Mice , NIH 3T3 Cells , Neoplasms/metabolism , Neoplasms/pathology , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/pharmacology
17.
Virology ; 546: 51-66, 2020 07.
Article in English | MEDLINE | ID: mdl-32452417

ABSTRACT

Overlapping genes originate by a mechanism of overprinting, in which nucleotide substitutions in a pre-existing frame induce the expression of a de novo protein from an alternative frame. In this study, I assembled a dataset of 319 viral overlapping genes, which included 82 overlaps whose expression is experimentally known and the respective 237 homologs. Principal component analysis revealed that overlapping genes have a common pattern of nucleotide and amino acid composition. Discriminant analysis separated overlapping from non-overlapping genes with an accuracy of 97%. When applied to overlapping genes with known genealogy, it separated ancestral from de novo frames with an accuracy close to 100%. This high discriminant power was crucial to computationally design variants of de novo viral proteins known to possess selective anticancer toxicity (apoptin) or protection against neurodegeneration (X protein), as well as to detect two new potential overlapping genes in the genome of the new coronavirus SARS-CoV-2.


Subject(s)
Betacoronavirus/genetics , Evolution, Molecular , Genes, Overlapping , Genes, Viral , Algorithms , Amino Acid Sequence , Base Sequence , Computational Biology , Computer Simulation , Discriminant Analysis , Least-Squares Analysis , Principal Component Analysis , SARS-CoV-2
18.
Pathogens ; 9(4)2020 Apr 16.
Article in English | MEDLINE | ID: mdl-32316372

ABSTRACT

Apoptin is the Vp3 protein of chicken anemia virus (CAV), which infects the thymocytes and erythroblasts in young chickens, causing chicken infectious anemia and immunosuppression. Apoptin is highly studied for its ability to selectively induce apoptosis in human tumor cells and, thus, is a protein of interest in anti-tumor therapy. CAV apoptin is known to localize to different subcellular compartments in transformed and non-transformed cells, depending on the DNA damage response, and the phosphorylation of several identified threonine residues. In addition, apoptin interacts with molecular machinery such as the anaphase promoting complex/cyclosome (APC/C) to inhibit the cell cycle and induce arrest in G2/M phase. While these functions of apoptin contribute to the tumor-selective effect of the protein, they also provide an important fundamental framework to apoptin's role in viral infection, pathogenesis, and propagation. Here, we reviewed how the regulation, localization, and functions of apoptin contribute to the viral life cycle and postulated its importance in efficient replication of CAV. A model of the molecular biology of infection is critical to informing our understanding of CAV and other related animal viruses that threaten the agricultural industry.

19.
Front Oncol ; 10: 229, 2020.
Article in English | MEDLINE | ID: mdl-32158698

ABSTRACT

Oncolytic virotherapy is emerging as an important agent in cancer treatment. In a previous study, we designed and constructed Ad-Apoptin-hTERTp-E1a (Ad-VT), a dual cancer-selective anti-tumor recombinant adenovirus. In this study, crystal violet staining and WST-1 assays showed that Ad-VT has a significant tumor killing effect in a time and dose dependent manner. The combination of Ad-VT (10 MOI) and gemcitabine (10 nM) significantly inhibited NCI-H226 cells, but did not increase the killing effect of gemcitabine on human normal bronchial epithelial cells BEAS-2B. Hoechst, JC-1 and Annexin V experiments demonstrated that the combination of Ad-VT and gemcitabine mainly inhibited NCI-H226 cell proliferation by inducing apoptosis (mitochondrial pathway). The combination also significantly inhibited the migration and invasion abilities of NCI-H226 cells. In vivo, Ad-VT in combination with low-dose gemcitabine could effectively inhibit tumor growth and prolong survival of mice. Ad-VT has the characteristics of tumor-selective replication and killing, in vitro and in vivo. The combined application of Ad-VT and gemcitabine has a synergistic effect, which can increase the anti-tumor effect and reduce the toxicity of chemotherapy drugs, indicating that Ad-VT has a potential clinical value in the treatment of lung squamous cell carcinoma.

20.
Cancers (Basel) ; 11(12)2019 Dec 07.
Article in English | MEDLINE | ID: mdl-31817939

ABSTRACT

Cell death is a tightly regulated process which can be exploited in cancer treatment to drive the killing of the tumour. Several conventional cancer therapies including chemotherapeutic agents target pathways involved in cell death, yet they often fail due to the lack of selectivity they have for tumour cells over healthy cells. Over the past decade, research has demonstrated the existence of numerous proteins which have an intrinsic tumour-specific toxicity, several of which originate from viruses. These tumour-selective viral proteins, although from distinct backgrounds, have several similar and interesting properties. Though the mechanism(s) of action of these proteins are not fully understood, it is possible that they can manipulate several cell death modes in cancer exemplifying the intricate interplay between these pathways. This review will discuss our current knowledge on the topic and outstanding questions, as well as deliberate the potential for viral proteins to progress into the clinic as successful cancer therapeutics.

SELECTION OF CITATIONS
SEARCH DETAIL
...