Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters











Publication year range
1.
Bioresour Technol ; 344(Pt A): 126202, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34710598

ABSTRACT

Rapid growth of aquatic weeds in treatment pond poses undesirable challenge to shellfish aquaculture, requiring the farmers to dispose these weeds on a regular basis. This article reviews the potential and application of various aquatic weeds for generation of biofuels using recent thermochemical technologies (torrefaction, hydrothermal carbonization/liquefaction, pyrolysis, gasification). The influence of key operational parameters for optimising the aquatic weed conversion efficiency was discussed, including the advantages, drawbacks and techno-economic aspects of the thermochemical technologies, and their viability for large-scale application. Via extensive study in small and large scale operation, and the economic benefits derived, pyrolysis is identified as a promising thermochemical technology for aquatic weed conversion. The perspectives, challenges and future directions in thermochemical conversion of aquatic weeds to biofuels were also reviewed. This review provides useful information to promote circular economy by integrating shellfish aquaculture with thermochemical biorefinery of aquatic weeds rather than disposing them in landfills.


Subject(s)
Biofuels , Waste Disposal Facilities , Aquaculture , Biomass , Shellfish
2.
J Hazard Mater ; 424(Pt A): 127329, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34601414

ABSTRACT

Aquatic weeds pose hazards to aquatic ecosystems and particularly the aquatic environment in shellfish aquaculture due to its excessive growth covering entire freshwater bodies, leading to environmental pollution particularly eutrophication intensification, water quality depletion and aquatic organism fatality. In this study, pyrolysis of six aquatic weed types (wild and cultured species of Salvinia sp., Lemna sp. and Spirodella sp.) were investigated to evaluate its potential to reduce and convert the weeds into value-added chemicals. The aquatic weeds demonstrated high fixed carbon (8.7-47.3 wt%), volatile matter content (39.0-76.9 wt%), H/C ratio (1.5-2.0) and higher heating value (6.6-18.8 MJ/kg), representing desirable physicochemical properties for conversion into biofuels. Kinetic analysis via Coats-Redfern integral method obtained different orders for chemical reaction mechanisms (n = 1, 1.5, 2, 3), activation energy (55.94-209.41 kJ/mol) and pre-exponential factor (4.08 × 104-4.20 × 1017 s-1) at different reaction zones (zone 1: 150-268 °C, zone 2: 268-409 °C, zone 3: 409-600 °C). The results provide useful information for design and optimization of the pyrolysis reactor and establishment of the process condition to dispose this environmentally harmful species.


Subject(s)
Ecosystem , Pyrolysis , Aquaculture , Kinetics , Shellfish , Thermogravimetry
3.
Bioresour Technol ; 341: 125825, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34481299

ABSTRACT

The traditional anoxic/aerobic process (A/O) process is widely used for treating digested piggery wastewater, but the lack of carbon sources leads to poor efficiency. Therefore, the process needs optimization to achieve high-efficiency and low-cost operation mode. In this study, an improved A/O system with bionic aquatic weed and Myriophyllum sp. was established to decontaminate digested piggery wastewater. The average removal efficiencies of chemical oxygen demand (COD), NH4+-N, and total nitrogen (TN) by the improved A/O system was satisfactory. The average removal efficiencies of COD, NH4+-N, and TN were 62.1%, 87.5%, and 61.9%, respectively. High-throughput sequencing identified a number of dominant microorganisms. The relative abundance of Nitrosomonas (ammonia-oxidizing bacteria) and Nitrospira (nitrite-oxidizing bacteria) was 0.07%-3.52% and 0.32%-1.30%, respectively. Combining bionic aquatic weed and Myriophyllum sp. altered the microbial community structure and metabolic pathways. The results demonstrate a cost-effective method for treating digested piggery wastewater.


Subject(s)
Waste Disposal, Fluid , Wastewater , Biological Oxygen Demand Analysis , Bionics , Bioreactors , Nitrogen/analysis
4.
Article in English | MEDLINE | ID: mdl-32252378

ABSTRACT

Imazapyr is a herbicide that can be used in irrigation canals to control a range of aquatic weed species, however, its residual nature, combined with its phytotoxicity to crops at low concentrations, means that the water in canals must be carefully managed following imazapyr application. Residues of the herbicide imazapyr (isopropylamine salt) in irrigation water were analysed and modelled after application to irrigation canals in south-eastern Australia. A treatment program to control delta arrowhead (sagittaria; Sagittaria platyphylla (Engelm.) J.G. Sm.) in over 400 km of irrigation canals was enacted by applying imazapyr to dewatered canals during winter. Following imazapyr application, canals were left dewatered for a period (up to eight weeks) and then refilled. After refilling, canals were ponded for a period (up to 28 days) to allow degradation of imazapyr in the water via photolysis. Upon refilling canals, ~650 water samples containing imazapyr were collected across the treatment area and data modelled to measure the extent of water contamination and to guide efforts to reduce the subsequent irrigation hazard to crops. Modelled data demonstrates that imazapyr behaviour in irrigation water following canal refilling was predictable when 1) amount of imazapyr applied, 2) the dewatered period following herbicide application, 3) the water ponding period, and 4) solar exposure during water ponding were taken into account. Minimising the amount applied (g imazapyr per km of canal) and maximising the time between spraying and refilling (dewatered period) reduced the initial concentration in the water following canal refilling. The amount of imazapyr in the canal water following refilling was reduced by half for every 16 days (confidence interval = 10-38 days) that the canal remained dewatered after imazapyr application. Imazapyr dissipation during the ponding period following canal refilling occurred at a rate that depended on solar exposure. Dissipation did not occur when solar exposure was <8.5 MJ m-2. However, when solar exposure was >10 MJ m-2, imazapyr concentration in the water reduced by half for every 4.4 days of ponding period (confidence interval = 2.9-9.5 days). Our two models, combined with local climate data on solar exposure, can be used by canal managers to determine the optimal time to refill canals so that imazapyr dissipation is maximised, and thus risk of damaging irrigated crops is minimised.


Subject(s)
Herbicides , Imidazoles , Niacin/analogs & derivatives , Water Pollutants, Chemical , Agricultural Irrigation , Imidazoles/analysis , Niacin/analysis , South Australia , Water Pollutants, Chemical/analysis
5.
J Environ Manage ; 232: 97-109, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30468962

ABSTRACT

A new biosorbent - alginate encapsulated with Myriophyllum spicatum - MsA was investigated for lead ions removal. This biosorbent was characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), zeta potential, X ray Diffraction (XRD) and size distribution analysis. FT-IR analysis demonstrated that the lead ions sequestration mechanism included ion exchange and lead complexation with the carboxyl, carbonyl and hydroxyl groups in MsA. In order to better understand the mechanisms of the binding of Pb(II) on immobilized M. spicatum beads, 3 reaction and one diffusion based kinetic models were applied on kinetic data removal lead ions on three materials: M. spicatum, Ca-alginate and MsA. Myriophyllum spicatum encapsulated with alginate - MsA have higher adsorption capacity than M. spicatum. Among examined six isotherms Redlich-Peterson and the Langmuir isotherm model exhibited the best fit to the experimental data, with capacities ranging from 230 to 268.7 mg/g. Among the various tested desorption agents, nitric acid has proven to be the best. The obtained results suggest that the immobilized M. spicatum biosorbent holds great potential for lead wastewater treatment applications.


Subject(s)
Alginates , Lead , Adsorption , Hydrogen-Ion Concentration , Kinetics , Spectroscopy, Fourier Transform Infrared , Wastewater
6.
J Vector Ecol ; 43(2): 252-260, 2018 12.
Article in English | MEDLINE | ID: mdl-30408300

ABSTRACT

Mosquitoes use many cues to assess whether a habitat is conducive for reproduction, possibly including the presence of stimuli from aquatic macrophytes. The effect of water infusions of water hyacinth (Eichhornia crassipes), water lettuce (Pista stratioles), parrotfeather (Myriophyllum aquaticum), and water pennywort (Hydrocotyle umbellata) on mosquito oviposition and attraction was investigated. Gravid Culex quinquefasciatus deposited significantly more egg rafts in water hyacinth, water lettuce, or Bermuda hay (positive control) infusions compared to water, while water pennywort and parrotfeather infusions did not differ from water. In-flight attraction responses of Cx. quinquefasciatus, Aedes aegypti, and Anopheles quadrimaculatus were evaluated. The strongest attraction of gravid Cx. quinquefasciatus and Ae. aegypti occurred in the presence of volatiles from infusions of water hyacinth and water lettuce, which were equal in attractiveness to hay infusion. Water pennywort and parrotfeather infusions were not attractive. Gravid An. quadrimaculatus were not attracted to aquatic plant volatiles. The results suggest that water hyacinth and water lettuce emit volatile chemicals that attract two of three mosquito species tested and stimulate oviposition by Cx. quinquefasciatus, demonstrating that the level of attraction of aquatic plant volatiles varies among species in ways that may have relevance to bait-based detection and control methods.


Subject(s)
Aedes/physiology , Anopheles/physiology , Behavior, Animal , Culex/physiology , Oviposition , Volatile Organic Compounds/metabolism , Animals , Aquatic Organisms , Araceae/chemistry , Centella/chemistry , Eichhornia/chemistry , Female , Florida , Ovum , Saxifragales/chemistry
7.
Article in English | MEDLINE | ID: mdl-30326645

ABSTRACT

Endothall dipotassium salt and monoamine salt are herbicide formulations used for controlling submerged aquatic macrophytes and algae in aquatic ecosystems. Microbial activity is the primary degradation pathway for endothall. To better understand what influences endothall degradation, we conducted a mesocosm experiment to (1) evaluate the effects of different water and sediment sources on degradation, and (2) determine if degradation was faster in the presence of a microbial community previously exposed to endothall. Endothall residues were determined with LC-MS at intervals to 21 days after endothall application. Two endothall isomers were detected. Isomer-1 was abundant in both endothall formulations, while isomer-2 was only abundant in the monoamine endothall formulation and was more persistent. Degradation did not occur in the absence of sediment. In the presence of sediment, degradation of isomer-1 began after a lag phase of 5⁻11 days and was almost complete by 14 days. Onset of degradation occurred 2⁻4 days sooner when the microbial population was previously exposed to endothall. We provide direct evidence that the presence and characteristics of sediment are of key importance in the degradation of endothall in an aquatic environment, and that monoamine endothall has two separate isomers that have different degradation characteristics.


Subject(s)
Amines/metabolism , Dicarboxylic Acids/metabolism , Geologic Sediments , Herbicides/metabolism , Water Pollutants, Chemical/metabolism , Biodegradation, Environmental , Ecosystem , Plants
8.
Water Res ; 141: 163-171, 2018 Sep 15.
Article in English | MEDLINE | ID: mdl-29783169

ABSTRACT

The preliminary assessment of the properties of alginate immobilized aquatic weed Myriophyllum spicatum beads-MsAlg in a multi-element system of nine Serbian lakes water samples was done. Herein, the results obtained in the biosorption experiment with MsAlg contents of twenty-two elements analysed by inductively coupled plasma-optical emission spectrometry, biosorption capacity, element removal efficiency, total hardness (TH) and quality index of water (WQI) are presented. Scanning electron microscopy with energy dispersive X-ray spectroscopy was used for the characterization of M. spicatum and its beads. The study showed that aluminium, magnesium and strontium were adsorbed by MsAlg in the water samples from all examined lakes; barium and iron in the water samples from six lakes. The overall average efficiency of MsAlg in biosorption of elements was in the following order: Al > Ba > Sr > Fe > Mg (58.6, 51.7, 48.2, 23.9 and 17.7%, respectively). The increase of TH and WQI values after the biosorption was noticed in all studied lake water samples. The most significant correlations for pH were regarding the contents of B, Mg and Ca, whereas WQI was highly correlated to the contents of B and Mg, and pH. The complexity of the obtained data was explained by Cluster Analysis and Principal Component Analysis, which showed good discrimination capabilities between the water samples taken from different locations. Considering that the invasive M. spicatum is natural, widespread and that its immobilization is cheap and eco-friendly, presented findings could be helpful in further assessment of MsAlg beads for its potential use as biofilter.


Subject(s)
Alginates/chemistry , Introduced Species , Metals/chemistry , Tracheophyta/chemistry , Water Pollutants, Chemical/chemistry , Adsorption , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Hydrogen-Ion Concentration , Lakes
9.
Front Plant Sci ; 8: 752, 2017.
Article in English | MEDLINE | ID: mdl-28533795

ABSTRACT

The invasive aquatic plant Eurasian watermilfoil (Myriophyllum spicatum L.) can hybridize with the related North American native species northern watermilfoil (M. sibiricum Kom.). Hybrid watermilfoil (M. spicatum × M. sibiricum) populations have higher fitness and reduced sensitivity to some commonly used aquatic herbicides, making management more difficult. There is growing concern that management practices using herbicides in lakes with mixed populations of watermilfoil species may further select for hybrid individuals due to the difference in herbicide sensitivity. Accurate and cost-effective identification of rare hybrid individuals within populations is therefore critical for herbicide management decisions. Here we describe KASP assays for three SNPs in the ITS region to genotype individuals from both parental watermilfoil species and their hybrid, using synthesized plasmids containing the respective sequences as positive controls. Using KASP we genotyped 16 individuals from one lake and 23 individuals from a second lake, giving a highly accurate picture of Myriophyllum species distribution dynamics. We identified one hybrid individual among 16 samples from one lake, a discovery rate of <10%. Discriminant analysis showed that while a single SNP was generally sufficient for genotyping an individual, using multiple SNPs increased the reliability of genotyping. In the future, the ability to genotype many samples will provide the ability to identify the presence of rare individuals, such as a less common parental species or the inter-specific hybrid. Lakes with complex species distribution dynamics, such as a low proportion of hybrids, are where herbicide application must be carefully chosen so as not to select for the more vigorous and less herbicide-sensitive hybrid individuals.

10.
Chemosphere ; 174: 754-763, 2017 May.
Article in English | MEDLINE | ID: mdl-28237526

ABSTRACT

The duckweeds (DW) are considered as a major problem in tropical aquatic system as they grow very fast and produce enormous rich-biomass, which can be harvested for renewable energy operations. But complex lignocellulosic compounds limit their utility in process like anaerobic digestion. This batch study aimed to analyse characteristics (proximate, ultimate and physico-chemical) and possible utility of DW for anaerobic co-digestion with waste activated sludge (WAS) under mesophilic conditions for 35 d. Two sets of experiment were tested: substrate with and without thermal pre-treatment. Five combinations of DW: WAS (70:20, 60:20, 50:20, 40:20 and 30:20%) were established and biomethanation along with changes in pH, volatile solids (VS), volatile fatty acids (VFAs), and soluble chemical oxygen demand (sCOD) of digestate were recorded. The total CH4 yield (mL CH4 g-1 VS) ranged between 60 and 468 for pre-treated, and 9 and 76 for non-pre-treated. The maximum CH4 yield was 468 mL CH4g-1 VS in DW: WAS (50:20). Thermally treated setups, showed about 13-, 24.1-, 21.1-, 1.4-, and 2.3-fold higher CH4 than non-treated setups. The treated mixtures showed high reduction of SCOD (>41-96) and VS (>59-98%) in co-digesters. The high degree of Gompertz curve fitting (R2 > 0.99) has suggested pre-treatment of substrate for optimal outputs of co-digester. Based on results obtained, it is suggested that DW (50-60% in digester) can be used as renewable energy resource for biomethanation process after thermal pre-treatment.


Subject(s)
Araceae/metabolism , Biofuels , Sewage/chemistry , Temperature , Waste Products , Anaerobiosis , Biological Oxygen Demand Analysis , Bioreactors/microbiology , Methane/biosynthesis , Sewage/microbiology
11.
Pest Manag Sci ; 70(9): 1358-66, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24446422

ABSTRACT

Two major classes of herbicides include inhibitors of protoporphyrinogen oxidase (PPO) and phytoene desaturase (PDS). Plants can evolve resistance to PPO and PDS inhibitors via several mechanisms that include physical changes, resulting in reduced uptake, physiological changes, resulting in compartmentalization or altered translocation, and biochemical changes, resulting in enhanced metabolic degradation or alterations of protein structures, leading to loss of sensitivity to the herbicides. This review discusses the involvement of some of these mechanisms in the various cases of resistance to PDS- and PPO-inhibiting herbicides, and highlights unique aspects of target-site resistance to these herbicides.


Subject(s)
Enzyme Inhibitors/pharmacology , Herbicide Resistance/genetics , Herbicides/pharmacology , Oxidoreductases/antagonists & inhibitors , Plant Weeds/genetics , Protoporphyrinogen Oxidase/antagonists & inhibitors , Plant Weeds/drug effects
12.
Biota neotrop. (Online, Ed. port.) ; 13(4): 368-370, Oct-Dec/2013. graf
Article in English | LILACS | ID: lil-703593

ABSTRACT

Invasive species can cause structural and functional changes in their non-native habitats, such as changes in the trophic chain. We describe ramet herbivory of butterfly ginger, an aggressive aquatic weed in Brazil, by capybaras in a floodplain area of a Cerrado reserve. This is the first record of herbivory of H. coronarium in invaded areas. Capybaras could be using the butterfly ginger as habitat and as a food resource, which could cause changes in apparent competition between these invasive and native macrophytes.


Espécies invasoras podem causar alterações estruturais e funcionais nos ecossistemas invadidos, tais como alterações na cadeia trófica. Neste trabalho, descrevemos o primeiro registro de herbivoria de rametas de lírio-do-brejo, erva daninha aquática agressiva no Brasil, por capivaras em uma área de várzea de uma reserva de Cerrado. Este é o primeiro registro de herbivoria de rametas de H. coronarium em áreas invadidas. As capivaras desta região podem estar se utilizando dos bancos de lírio-do-brejo como habitat e como recurso alimentar, o que poderia ocasionar alterações na competição aparente entre esta invasora e as macrófitas nativas.

SELECTION OF CITATIONS
SEARCH DETAIL