Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 964
Filter
1.
Water Res ; 261: 122003, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38986283

ABSTRACT

Droughts are classified as the most expensive climate disasters as they leave long-term and chronic impacts on the ecosystem, agriculture, and human society. The intensity, frequency, and duration of drought events have increased in the past and are expected to continue rising at global, continental, and regional scales. Nature-based solutions (NBS) are highlighted as effective solutions to cope with the future impacts of these events. Despite this, there has been limited comprehensive research on the effectiveness of NBS for drought mitigation, and existing suitability mapping frameworks often overlook drought-specific criteria. To address this gap, a new framework is proposed to identify areas suitable for two drought-coping NBS types at a regional scale: detention basins and managed aquifer recharge. Two multi-criteria decision-making techniques (MCDM), i.e. Boolean logic and Analytic- Hierarchy Process (AHP), were used to map suitable large-scale NBS. The new framework accounts for unique criteria to specifically address drought conditions. By incorporating climate change scenarios for both surface and groundwater, recharge, and different groundwater characteristics, it identifies suitable and sustainable locations capable of managing extreme drought events. Executed through Boolean logic at a regional scale in Flanders (Belgium), the framework's strict approach yields significant potential areas for detention basins (298.7 km²) and managed aquifer recharge (867.5 km²). Incorporating AHP with the same criteria introduces a higher degree of flexibility for decision-makers. This approach shows a notable expansion across Flanders, varying with the level of suitability. The results underscore the highly suitable potential for detention basins (2552.2 km²) and managed aquifer recharge (2538.7 km²), emphasizing the adaptability and scalability of the framework for addressing drought in the region. The comparison between potential recharge volume due to detention basin and groundwater use in the region indicated that the detention basins could partially compensate for the high water demand. Therefore, creating a framework targeting drought is vital for the sustainable management of water scarcity scenarios.

2.
Environ Monit Assess ; 196(8): 723, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987411

ABSTRACT

A comprehensive seasonal assessment of groundwater vulnerability was conducted in the weathered hard rock aquifer of the upper Swarnrekha watershed in Ranchi district, India. Lineament density (Ld) and land use/land cover (LULC) were integrated into the conventional DRASTIC and Pesticide DRASTIC (P-DRASTIC) models and were extensively compared with six modified models, viz. DRASTIC-Ld, DRASTIC-Lu, DRASTIC-LdLu, P-DRASTIC-Ld, P-DRASTIC-Lu, and P-DRASTIC-LdLu, to identify the most optimal model for vulnerability mapping in hard rock terrain of the region. Findings were geochemically validated using NO3- concentrations of 68 wells during pre-monsoon (Pre-M) and post-monsoon (Post-M) 2022. Irrespective of the applied model, groundwater vulnerability shows significant seasonal variation, with > 45% of the region classified as high to very high vulnerability in the pre-M, increasing to Ì´67% in post-M season, highlighting the importance of seasonal vulnerability assessments. Agriculture and industries' dominant southern region showed higher vulnerability, followed by regions with high Ld and thin weathered zone. Incorporating Ld and LULC parameters into DRASTIC-LdLu and P-DRASTIC-LdLu models increases the 'Very High' vulnerability zones to 17.4% and 17.6% for pre-M and 29.4% and 27.9% for post-M, respectively. Similarly, 'High' vulnerable zones increase from 32.5% and 25% in pre-M to 33.8% and 35.3% in post-M for respective models. Model output comparisons suggest that modified DRASTIC-LdLu and P-DRASTIC-LdLu perform better, with accurate estimations of 83.8% and 89.7% for pre-M and post-M, respectively. However, results of geochemical validation suggest that among all the applied modified models, DRASTIC-LdLu performs best, with accurate estimations of 34.4% and 20.6% for pre-M and post-M, respectively.


Subject(s)
Environmental Monitoring , Groundwater , Water Pollutants, Chemical , Groundwater/chemistry , Environmental Monitoring/methods , India , Water Pollutants, Chemical/analysis , Agriculture , Seasons , Water Pollution, Chemical/statistics & numerical data
3.
J Environ Manage ; 365: 121589, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38963969

ABSTRACT

Subsurface dams have been recognized as one of the most effective measures for preventing saltwater intrusion. However, it may result in large amounts of residual saltwater being trapped upstream of the dam and take years to decades to remove, which may limit the utilization of fresh groundwater in coastal areas. In this study, field-scale numerical simulations were used to investigate the mechanisms of residual saltwater removal from a typical stratified aquifer, where an intermediate low-permeability layer (LPL) exists between two high-permeability layers, under the effect of seasonal sea level fluctuations. The study quantifies and compares the time of residual saltwater removal (Tre) for constant sea level (CSL) and seasonally varying sea level (FSL) scenarios. The modelling results indicate that, in most cases, seasonal fluctuations in sea level facilitate the dilution of residual saltwater and thus accelerate residual saltwater removal compared to a static sea level scenario. However, accounting for seasonal sea level variations may increase the required critical dam height (the minimum dam height required to achieve complete residual saltwater removal). Sensitivity analyses show that Tre decreases with increasing height of subsurface dam (Hd) under CSL or weaker sea level fluctuation scenarios; however, when the magnitude of sea level fluctuation is large, Tre changes non-monotonically with Hd. Tre decreases with increasing distance between subsurface dam and ocean for both CSL and FSL scenarios. We also found that stratification model had a significant effect on Tre. The increase in LPL thickness for both CSL and FSL scenarios leads to a decrease in Tre and critical dam height. Tre generally shows a non-monotonically decreasing trend as LPL elevation increases. These quantitative analyses provide valuable insights into the design of subsurface dams in complex situations.


Subject(s)
Groundwater , Seasons , Groundwater/chemistry
4.
Sci Total Environ ; 946: 174375, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960175

ABSTRACT

Groundwater contamination by nitrate and sulfate in mining areas is a significant challenge. Consequently, the inputs sources of these contaminants and their evolution have received considerable attention, with the knowledge gained critical for improved management of water quality. This study integrated data on multiple stable isotopes and water chemistry data and a Bayesian isotope mixing model to investigate the relative contributions of inputs sources of sulfate and nitrate sources to bodies of water in a karst mining area in southwest China. The outcomes indicated that hydrochemical component in the water bodies of the study area is mainly derived from the dissolution of silicate rocks, carbonate rocks and sulfate minerals as well as the oxidation of sulfides. The human and agricultural wastewater, soil nitrogen, and fertilizers were the predominant inputs sources of nitrate to the mine water environment; the predominant inputs sources of sulfide were mineral oxidation, evaporite dissolution, atmospheric deposition, and sewage. Groundwater is mainly recharged from atmospheric precipitation, and surface water is closely hydraulically connected to groundwater. Nitrogen and oxygen isotope composition and water chemistry indicative of nitrification dominate the nitrogen cycle in the study area. The oxidation of pyrite and bacterial sulfate reduction (SRB) had no significant impact on the stable isotopes of groundwater. The results of this study demonstrate the inputs of different sources to nitrate and sulfate in karst mines and associated transformation processes. The results of this study can assist in the conservation of groundwater quality in mining areas and can act as a reference for future related studies.

5.
Environ Sci Pollut Res Int ; 31(32): 45074-45104, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38958857

ABSTRACT

Water plays a pivotal role in socio-economic development in Algeria. However, the overexploitations of groundwater resources, water scarcity, and the proliferation of pollution sources (including industrial and urban effluents, untreated landfills, and chemical fertilizers, etc.) have resulted in substantial groundwater contamination. Preserving water irrigation quality has thus become a primary priority, capturing the attention of both scientists and local authorities. The current study introduces an innovative method to mapping contamination risks, integrating vulnerability assessments, land use patterns (as a sources of pollution), and groundwater overexploitation (represented by the waterhole density) through the implementation of a decision tree model. The resulting risk map illustrates the probability of contamination occurrence in the substantial aquifer on the plateau of Mostaganem. An agricultural region characterized by the intensive nutrients and pesticides use, the significant presence of septic tanks, widespread illegal dumping, and a technical landfill not compliant with environmental standards. The critical situation in the region is exacerbated by excessive groundwater pumping surpassing the aquifer's natural replenishment capacity (with 115 boreholes and 6345 operational wells), especially in a semi-arid climate featuring limited water resources and frequent drought. Vulnerability was evaluated using the DRFTID method, a derivative of the DRASTIC model, considering parameters such as depth to groundwater, recharge, fracture density, slope, nature of the unsaturated zone, and the drainage density. All these parameters are combined with analyses of inter-parameter relationship effects. The results show a spatial distribution into three risk levels (low, medium, and high), with 31.5% designated as high risk, and 56% as medium risk. The validation of this mapping relies on the assessment of physicochemical analyses in samples collected between 2010 and 2020. The results indicate elevated groundwater contamination levels in samples. Chloride exceeded acceptable levels by 100%, nitrate by 71%, calcium by 50%, and sodium by 42%. These elevated concentrations impact electrical conductivity, resulting in highly mineralized water attributed to anthropogenic agricultural pollution and septic tank discharges. High-risk zones align with areas exhibiting elevated nitrate and chloride concentrations. This model, deemed satisfactory, significantly enhances the sustainable management of water resources and irrigated land across various areas. In the long term, it would be beneficial to refine "vulnerability and risk" models by integrating detailed data on land use, groundwater exploitation, and hydrogeological and hydrochemical characteristics. This approach could improve vulnerability accuracy and pollution risk maps, particularly through detailed local data availability. It is also crucial that public authorities support these initiatives by adapting them to local geographical and climatic specificities on a regional and national scale. Finally, these studies have the potential to foster sustainable development at different geographical levels.


Subject(s)
Decision Trees , Environmental Monitoring , Groundwater , Groundwater/chemistry , Algeria , Water Pollution/analysis , Water Pollutants, Chemical/analysis , Risk Assessment
6.
ACS ES T Water ; 4(7): 2944-2956, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39005241

ABSTRACT

A multitude of geochemical processes control the aqueous concentration and transport properties of trace metal contaminants such as arsenic (As) in groundwater environments. Effective As remediation, especially under reducing conditions, has remained a significant challenge. Fe(II) nitrate treatments are a promising option for As immobilization but require optimization to be most effective. Here, we develop a process-based numerical modeling framework to provide an in-depth understanding of the geochemical mechanisms controlling the response of As-contaminated sediments to Fe(II) nitrate treatment. The analyzed data sets included time series from two batch experiments (control vs treatment) and effluent concentrations from a flow-through column experiment. The reaction network incorporates a mixture of homogeneous and heterogeneous reactions affecting Fe redox chemistry. Modeling revealed that the precipitation of the Fe treatment caused a rapid pH decline, which then triggered multiple heterogeneous buffering processes. The model quantifies key processes for effective remediation, including the transfer of aqueous As to adsorbed As and the transformation of Fe minerals, which act as sorption hosts, from amorphous to more stable phases. The developed model provides the basis for predictions of the remedial benefits of Fe(II) nitrate treatments under varying geochemical and hydrogeological conditions, particularly in high-As coastal environments.

7.
Water Res ; 260: 121955, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38909424

ABSTRACT

Redox conditions play a decisive role in regulating contaminant and nutrient transformation in groundwater. Here we quantitatively described and interpreted the temporal and spatial variations of aquifer reduction capacity formation in lens-embedded heterogeneous aquifers in 1-D columns. Experimental results indicated that the aquifer reduction capacity exported from the low-permeability lens permeated into the downstream sandy zones, where it subsequently accumulated and extended. Reactive transport modeling suggested that reduction capacity within the lens preferentially diffused to the transmissive zones around the lens-sand interface, and was then transported via convection to downstream transmissive zones. A low-permeability lens of the same volume, but more elongated in the flow direction, led to less concentrated reduction capacity but extended further downgradient from the lens. The increased flow velocity attenuated the maintenance of aquifer reduction capacity by enhancing mixing and diluting processes in the transmissive zones. The reduction zones formed downstream from the low-permeability lens were hotpots for resisting the oxidative perturbation by O2. This study highlights the important role of low-permeability lenses as large and long-term electron pools for the transmissive zones, and thus providing aquifer reduction capacity for contaminant transformation and remediation in heterogeneous aquifers.

8.
Microlife ; 5: uqae011, 2024.
Article in English | MEDLINE | ID: mdl-38855384

ABSTRACT

Ecosystems subject to mantle degassing are of particular interest for understanding global biogeochemistry, as their microbiomes are shaped by prolonged exposure to high CO2 and have recently been suggested to be highly active. While the genetic diversity of bacteria and archaea in these deep biosphere systems have been studied extensively, little is known about how viruses impact these microbial communities. Here, we show that the viral community in a high-CO2 cold-water geyser (Wallender Born, Germany) undergoes substantial fluctuations over a period of 12 days, although the corresponding prokaryotic community remains stable, indicating a newly observed "infect to keep in check" strategy that maintains prokaryotic community structure. We characterized the viral community using metagenomics and metaproteomics, revealing 8 654 viral operational taxonomic units (vOTUs). CRISPR spacer-to-protospacer matching linked 278 vOTUs to 32 hosts, with many vOTUs sharing hosts from different families. High levels of viral structural proteins present in the metaproteome (several structurally annotated based on AlphaFold models) indicate active virion production at the time of sampling. Viral genomes expressed many proteins involved in DNA metabolism and manipulation, and encoded for auxiliary metabolic genes, which likely bolster phosphate and sulfur metabolism of their hosts. The active viral community encodes genes to facilitate acquisition and transformation of host nutrients, and appears to consist of many nutrient-demanding members, based on abundant virion proteins. These findings indicate viruses are inextricably linked to the biogeochemical cycling in this high-CO2 environment and substantially contribute to prokaryotic community stability in the deep biosphere hotspots.

9.
J Environ Manage ; 362: 121233, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38833922

ABSTRACT

Managed aquifer recharge (MAR) has emerged as a potential solution to resolve water insecurity, globally. However, integrated studies quantifying the surplus source water, suitable recharge sites and safe recharge capacity is limited. In this study, a novel methodology is presented to quantify transient injection rates in unconfined aquifers and generate MAR suitability maps based on estimated surplus water and permissible aquifer recharge capacity (PARC). Subbasin scale monthly surplus surface runoff was estimated at 75% dependability using a SWAT model. A linear regression model based on numerical solution was used to capture the aquifer response to injection and to calculate PARC values at subbasin level. The available surplus runoff and PARC values was then used to determine the suitable site and recharge rate during MAR operation. The developed methodology was applied in the semi-arid region of Lower Betwa River Basin (LBRB), India. The estimated surplus runoff was generally confined to the monsoon months of June to September and exhibited spatial heterogeneity with an average runoff rate of 5000 m3/d in 85% of the LBRB. Analysis of the PARC results revealed that thick alluvial aquifers had large permissible storage capacity and about 50% of the LBRB was capable of storing over 3500 m3/d of water. This study revealed that sufficient surplus runoff was generated in the LBRB, but it lacked the adequate safe aquifer storage capacity to conserve it. A total 65 subbasins was identified as the best suited sites for MAR which had enough surplus water and storage capacity to suffice 20% of the total water demand in the LBRB. The developed methodology was computationally efficient, could augment the field problem of determining scheduled recharge rates and could be used as a decision-making tool in artificial recharge projects.


Subject(s)
Groundwater , Water Supply , Models, Theoretical , India , Rivers
10.
Environ Sci Pollut Res Int ; 31(27): 39794-39822, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38833051

ABSTRACT

Groundwater resources worldwide face significant challenges that require urgent implementation of sustainable measures for effective long-term management. Managed aquifer recharge (MAR) is regarded as one of the most promising management technologies to address the degradation of groundwater resources. However, in urban aquifers, locating suitable areas that are least vulnerable to contamination for MAR implementation is complex and challenging. Hence, the present study proposes a framework encapsulating the combined assessment of groundwater vulnerability and MAR site suitability analysis to pinpoint the most featured areas for installing drywells in Kayseri, Turkey. To extrapolate the vulnerable zones, not only the original DRASTIC but also its multi-criteria decision-making (MCDA)-based modified variants were evaluated with regard to different hydrochemical parameters using the area under the receiver operating characteristic (ROC) curve (AUC). Besides, the fuzzy analytical hierarchy process (FAHP) rationale was adopted to signify the importance level of criteria and the robustness of the framework was highlighted with sensitivity analysis. In addition, the decision layers and the attained vulnerability layer were combined using the weighted overlay (WOA). The findings indicate that the DRASTIC-SWARA correlates well with the arsenic (AUC = 0.856) and chloride (AUC = 0.648) and was adopted as the vulnerability model. Groundwater quality parameters such as chloride and sodium adsorption ratio, as well as the vadose zone thickness, were found to be the most significant decision parameters with importance levels of 16.75%, 14.51%, and 15.73%, respectively. Overall, 28.24% of the study area was unsuitable for recharge activities with high to very high vulnerability, while the remaining part was further prioritized into low to high suitability classes for MAR application. The proposed framework offers valuable tool to decision-makers for the delineation of favorable MAR sites with minimized susceptibility to contamination.


Subject(s)
Decision Making , Geographic Information Systems , Groundwater , Groundwater/chemistry , Turkey , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis
11.
J Hazard Mater ; 475: 134804, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38880042

ABSTRACT

Microplastics (MPs), omnipresent contaminants in the ocean, could be carried by seawater intrusion into coastal aquifers, which might affect the fate of heavy metals existing in aquifers. Herein, we investigated the release behavior of arsenic (As) in coastal aquifers during MPs-containing seawater intrusion by applying laboratory experiment and numerical simulation. We found that seawater with marine MPs enhanced the release of As in aquifers, especially for dissolved As(V) and colloidal As. Negatively charged MPs competed with As(V) for the adsorption sites on iron (hydr)oxides in aquifers, resulting in the desorption of As(V). In addition, MPs could promote the release of Fe-rich colloids by imparting negative charge to its surface and providing it with sufficient repulsive force to detach from the matrix, thereby leading to the release of As associated with Fe-rich colloid. We also developed a modeling approach that well described the transport of As in coastal aquifer under the impact of MPs, which coupled variable density flow and kinetically controlled colloids transport with multicomponent reactive transport model. Our findings elucidated the enhancement of MPs on the release of As in aquifers during seawater intrusion, which provides new insights into the risk assessment of MPs in coastal zones.

12.
Sci Total Environ ; 944: 173653, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-38851344

ABSTRACT

Managed aquifer recharge (MAR) is a promising technique for enhancing groundwater resources and addressing water scarcity. Particularly, this research highlights the novelty and urgent need for MAR facilities in the Chungcheongnam-do region of South Korea as a solution to augment groundwater resources and combat water scarcity. This research encompasses a comprehensive assessment, ranging from laboratory-scale column experiments to pilot-scale tests, focusing on dissolved organic matter (DOM) characterization, natural organic matter (NOM) removal, and water quality improvement, including biological stability. In the laboratory, DOM characteristics of source water and recharged groundwater were analyzed using advanced dissolved organic characteristic tools, and their potential impacts on water quality, as well as per- and polyfluoroalkyl substances (PFASs) were assessed. DOM, total cell counts, and several PFASs with molecular weights >450 Da (particularly long-chain PFASs showing >99.9 % reduction) were effectively reduced in a laboratory-scale experiment. A laboratory-scale column study revealed that most selected PFASs were not effectively removed. Moving to the pilot-scale, a series of experiments were conducted to assess NOM removal during soil passage. Similar to the results of the laboratory-scale experiment, MAR demonstrated significant potential for reducing NOM concentrations, thus improving water quality. Regarding biological stability, assimilable organic carbon in production well (i.e., final produced water by MAR process) was lower than both two sources of surface water (e.g., SW1 and SW2). This suggests that water derived from PW (i.e., production well) exhibited biological stability, undergoing effective biodegradation by aerobic bacteria during soil passage. The findings from this study highlight the critical importance of implementing MAR techniques in regions facing water scarcity, emphasizing its potential to significantly enhance future water security initiatives.


Subject(s)
Groundwater , Water Pollutants, Chemical , Groundwater/chemistry , Water Pollutants, Chemical/analysis , Republic of Korea , Pilot Projects , Fluorocarbons/analysis , Water Quality , Water Purification/methods
13.
Sensors (Basel) ; 24(12)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38931807

ABSTRACT

Aquifer karstic structures, due to their complex nature, present significant challenges in accurately mapping their intricate features. Traditional methods often rely on invasive techniques or sophisticated equipment, limiting accessibility and feasibility. In this paper, a new approach is proposed for a non-invasive, low-cost 3D reconstruction using a camera that observes the light projection of a simple diving lamp. The method capitalizes on the principles of structured light, leveraging the projection of light contours onto the karstic surfaces. By capturing the resultant light patterns with a camera, three-dimensional representations of the structures are reconstructed. The simplicity and portability of the equipment required make this method highly versatile, enabling deployment in diverse underwater environments. This approach is validated through extensive field experiments conducted in various aquifer karstic settings. The results demonstrate the efficacy of this method in accurately delineating intricate karstic features with remarkable detail and resolution. Furthermore, the non-destructive nature of this technique minimizes disturbance to delicate aquatic ecosystems while providing valuable insights into the subterranean landscape. This innovative methodology not only offers a cost-effective and non-invasive means of mapping aquifer karstic structures but also opens avenues for comprehensive environmental monitoring and resource management. Its potential applications span hydrogeological studies, environmental conservation efforts, and sustainable water resource management practices in karstic terrains worldwide.

14.
J Contam Hydrol ; 265: 104386, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38908281

ABSTRACT

The groundwater hydrodynamic and hydrochemical process of the multi-aquifer system will experience complicated and serious influence under deep coal mining disturbance. There is relatively little research that has integrated hydrodynamic and hydrochemical properties of groundwater to investigate the spatiotemporal distribution characteristics and evolution patterns of hydrogeochemistry and hydrodynamic information in deep multi-aquifer systems. The study of the groundwater hydrodynamic and hydrochemical spatiotemporal coupling response of multi-aquifer systems under the deep and special thick coal seam mining-motivated effect in ecologically fragile western mining areas is of great significance for the safe mining of coal resources and ecological environment protection. In this research, the hydrochemical analysis data composed of 218 groundwater samples from Tangjiahui coalfield, Northwest China with 1526 measurements and a 6-year (2016-2021) sampling period were collected for studying the hydrogeochemical spatiotemporal evolution process and governing mechanism of the multi-aquifer system using hierarchical cluster analysis, ion-ratio method, saturation index and multidimensional statistical analysis. Additionally, wavelet analysis and cross-wavelet coherence analysis were implemented to quantitatively recognize the spatiotemporal variation characteristics of hydrodynamic information and analyze the coherence relationships between time series. The results demonstrate that the hydrochemical characteristics exhibit significant spatial differences, while the temporal variation of hydrochemical characteristics in the Permian Shanxi Formation fractured sandstone aquifer (PSFFA), mine water (MW), and Ordovician karst limestone aquifer (OKA) is not significant. The water-rock interaction is the predominant control mechanism for the spatial evolution of hydrogeochemistry in the research area. Moreover, the large-scale mining of deep coal seams controls the type and degree of water-rock interactions by damaging the structure of aquifers and altering the hydrodynamic conditions of groundwater. The period from 2016 to 2021 exhibits multi-time scale characteristics in time series of precipitation, mine water discharge, and the water level of PSFFA and OKA. The mine water discharge has a positive correlation with the water level of PSFFA and OKA, whereas the significant period of precipitation and the water level of PSFFA coherence is not obvious. The research findings not only provide in-depth insights to protect the groundwater resources in water-shortage mining areas but also promote the secure mining of deep coal resources.

15.
Article in English | MEDLINE | ID: mdl-38702485

ABSTRACT

Groundwater in the Yucatan State is the only source of water. The karst aquifer in Yucatan is vulnerable to pollution. Anthropic activities in Yucatan, such as pig farming, are usually related to high wastewater discharges and water pollution. Administrative and logistical issues in developing on-site sampling to evaluate water quality are common in Mexico. The RENAMECA database provides official data related to groundwater quality. However, no analysis based on this database has been reported. A groundwater quality evaluation based on five reference pig farms and the effect of spatial and temporal anthropic activities in the study area was developed. Eighteen wells based on their location concerning the selected pig farms were studied. On-site sampling and laboratory analysis of the supply water and wastewater in the study case farm were done. Fecal coliforms (FC) values (maximum 2850 MPN [100 mL] -1) in most cases for supply water wells exceeded the allowed limit by NOM-127-SAA1-2021. The year of monitoring was significant (P < 0.05) on FC concentrations. Population density and the proximity of wells to population centers affect negatively the presence of total dissolved solids (TDS) and total nitrogen (TN). TDS (maximum value 2620 mg L -1) and phosphorus presence could be related to agricultural activities, human settlements, and local aquifer conditions. A local wastewater treatment issue is evident. Groundwater is not quality for consumption without treatment. Regarding the issues in on-site water monitoring, database analysis provides an approximation of the real situation of groundwater quality.

16.
Sci Total Environ ; 931: 172998, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38714254

ABSTRACT

Arsenic (As) in groundwater from natural and anthropogenic sources is one of the most common pollutants worldwide affecting people and ecosystems. A large dataset from >3600 wells is employed to spatially simulate the depth-averaged As concentration in phreatic and confined aquifers of the Padana Plain (Northern Italy). Results of in-depth geostatistical analysis via PCA and simulations within a Monte Carlo framework allow the understanding of the variability of As concentrations within the aquifers. The most probable As contaminated zones are located along the piedmont areas in the confined aquifers and in the lowland territories in the phreatic aquifers. The distribution of the As contaminated zones has been coupled with hydrogeological, geological, and geochemical information to unravel the sources and mechanisms of As release in groundwater. The reductive dissolution of Fe oxyhydroxides and organic matter mineralization under anoxic conditions resulted to be the major drivers of As release in groundwater. This phenomenon is less evident in phreatic aquifers, due to mixed oxic and reducing conditions. This large-scale study provides a probabilistic perspective on As contamination, e.g. quantifying the spatial probability of exceeding national regulatory limits, and to outline As major sources and drivers.

17.
Sci Total Environ ; 932: 172950, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38703842

ABSTRACT

Increasing demands from agriculture and urbanization have decreased groundwater level and increased salinity worldwide. Better aquifer characterization and soil salinity mapping are important for proactive groundwater management. Airborne electromagnetic (AEM) is a powerful tool for aquifer characterization and salinity delineation. However, AEM needs to be interpreted with caution before being used for groundwater quality analysis. This study introduces a framework that utilizes the AEM data for both lithologic modeling and salinity delineation. A resistivity-to-lithology (R2L) model is developed to interpret AEM resistivity to lithology based a depth-dependent multi-resistivity thresholds. Then, a cokriging method is used to integrate AEM data from two different EM systems to predict resistivity at the aquifer. Finally, a resistivity-to-chloride concentration (R2C) model utilizes the resistivity model to estimate chloride concentrations at sand facies. A deep learning artificial neural network (DL-ANN) model is introduced with a successive bootstrapping approach to estimate total dissolved solids first and then use it together with resistivity data to estimate chloride concentration. The methodology was applied to delineating salinity plumes in the Mississippi River Valley alluvial aquifer (MRVA). This study found that the salinity distribution in MRVA is highly correlated with the Jurassic salt basin, salt domes, faulting, seismicity, and river water quality. The result indicates salinity upconing due to excessive pumping.

18.
Sci Total Environ ; 938: 173514, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38802015

ABSTRACT

Groundwater depletion in intensively exploited aquifers of China has been widely recognized, whereas an overall examination of groundwater storage (GWS) changes over major aquifers remains challenging due to limited data and notable uncertainties. Here, we present a study to explore GWS changes over eighteen major aquifers covering an area of 1,680,000 km2 in China using data obtained from the Gravity Recovery and Climate Experiments (GRACE), global models, and in-situ groundwater level observations. The analysis aims to reveal the discrepancy in annual trends, amplitudes, and phases associated with GWS changes among different aquifers. It is found that GWS changes in the studied aquifers represent a spatial pattern of 'Wet-gets-more, Dry-gets-less'. An overall decreasing trend of -4.65 ± 0.34 km3/yr is observed by GRACE from 2005 to 2016, consisting of a significant (p < 0.05) increase of 47.28 ± 3.48 km3 in 7 aquifers and decrease of 103.56 ± 2.4 km3 (∼2.6 times the full storage capacity of the Three Gorges Reservoir) in 10 aquifers summed over the 12 years. The annual GWS normally reaches a peak in late July with an area-weighted average annual amplitude of 19 mm, showing notable discrepancy in phases and amplitudes between the losing aquifers (12 mm in middle August) in northern China and gaining aquifers (28 mm in early July) mostly in southern China. GRACE estimates are generally comparable, but can be notably different, with the results obtained from model simulations and in-situ observations at aquifer scale, with the area-weighted average correlation coefficients of 0.6 and 0.5, respectively. This study highlights different GWS changes of losing and gaining aquifers in response to coupled impacts of hydrogeology, climate and human interventions, and calls for divergent adaptions in regional groundwater management.

19.
ISME Commun ; 4(1): ycae047, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38650708

ABSTRACT

Increasing evidence suggests Nitrospirota are important contributors to aquatic and subsurface nitrogen and sulphur cycles. We determined the phylogenetic and ecological niche associations of Nitrospirota colonizing terrestrial aquifers. Nitrospirota compositions were determined across 59 groundwater wells. Distributions were strongly influenced by oxygen availability in groundwater, marked by a trade-off between aerobic (Nitrospira, Leptospirillum) and anaerobic (Thermodesulfovibrionia, unclassified) lineages. Seven Nitrospirota metagenome-assembled genomes (MAGs), or populations, were recovered from a subset of wells, including three from the recently designated class 9FT-COMBO-42-15. Most were relatively more abundant and transcriptionally active in dysoxic groundwater. These MAGs were analysed with 743 other Nitrospirota genomes. Results illustrate the predominance of certain lineages in aquifers (e.g. non-nitrifying Nitrospiria, classes 9FT-COMBO-42-15 and UBA9217, and Thermodesulfovibrionales family UBA1546). These lineages are characterized by mechanisms for nitrate reduction and sulphur cycling, and, excluding Nitrospiria, the Wood-Ljungdahl pathway, consistent with carbon-limited, low-oxygen, and sulphur-rich aquifer conditions. Class 9FT-COMBO-42-15 is a sister clade of Nitrospiria and comprises two families spanning a transition in carbon fixation approaches: f_HDB-SIOIB13 encodes rTCA (like Nitrospiria) and f_9FT-COMBO-42-15 encodes Wood-Ljungdahl CO dehydrogenase (like Thermodesulfovibrionia and UBA9217). The 9FT-COMBO-42-15 family is further differentiated by its capacity for sulphur oxidation (via DsrABEFH and SoxXAYZB) and dissimilatory nitrate reduction to ammonium, and gene transcription indicated active coupling of nitrogen and sulphur cycles by f_9FT-COMBO-42-15 in dysoxic groundwater. Overall, results indicate that Nitrospirota are widely distributed in groundwater and that oxygen availability drives the spatial differentiation of lineages with ecologically distinct roles related to nitrogen and sulphur metabolism.

20.
J Contam Hydrol ; 263: 104340, 2024 04.
Article in English | MEDLINE | ID: mdl-38608419

ABSTRACT

The increasing amount of plastic litter worldwide is a serious problem for the environment and its biodiversity, ecosystems, animal and human welfare and the economy. The degradation of these plastics leads to microplastics (MPs), which have been reported for the first time in groundwater in the Canary archipelago. This research investigates the presence of MPs at nine different points on La Palma and El Hierro, where samples were collected in galleries, wells and springs during the month of December 2022. Six different polymers were found with Fourier transform infrared spectroscopy (FTIR) - polypropylene (PP), polyethylene (PE), cellulose (CEL), polyethylene terephthalate (PET), polystyrene (PS) and polymethyl methacrylate (PMMA). The particle concentrations found ranged from 1 to 23 n/L, with a maximum particle size of 1900 µm, the smallest being 35 µm. PP and PE were the most common polymers found in the analysis, associated with the use of packaging, disposable products, textiles and water pipes, related to poorly maintained sewerage networks where leaks occur, allowing these MPs to escape into the environment and end up in groundwater. The detection of microplastic pollution in groundwater emphasises environmental hazards, including biodiversity disruption and water source contamination. Additionally, it presents potential risks to human health by transferring contaminants into the food chain and through respiratory exposure.


Subject(s)
Environmental Monitoring , Groundwater , Microplastics , Water Pollutants, Chemical , Microplastics/analysis , Groundwater/chemistry , Groundwater/analysis , Water Pollutants, Chemical/analysis , Islands
SELECTION OF CITATIONS
SEARCH DETAIL
...