Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Physiol Mol Biol Plants ; 30(2): 317-336, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38623170

ABSTRACT

Seaweed extracts have enormous potential as bio-stimulants and demonstrated increased growth and yield in different crops. The presence of physiologically active component stimulate plant stress signaling pathways, enhances growth and productivity, as well as serve as plant defense agents. The seaweed extracts can reduce the use of chemicals that harm the environment for disease management. In the present study, the Sargassum tenerrimum extract treatment was applied, alone and in combination with Sclerotium rolfsii, to Arachis hypogea, to study the differential metabolite expression. The majority of metabolites showed maximum accumulation with Sargassum extract-treated plants compared to fungus-treated plants. The different classes of metabolite compounds like sugars, carboxylic acids, polyols, showed integrated peaks in different treatments of plants. The sugars were higher in Sargassum extract and Sargassum extract + fungus treatments compared to control and fungus treatment, respectively. Interestingly, Sargassum extract + fungus treatment showed maximum accumulation of carboxylic acids. Pathway enrichment analysis showed regulation of different metabolites, highest impact with galactose metabolism pathway, identifying sucrose, myo-inositol, glycerol and fructose. The differential metabolite profiling and pathway analysis of groundnut in response to Sargassum extract and S. rolfsii help in understanding the groundnut- S. rolfsii interactions and the potential role of the Sargassum extract towards these interactions. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01418-9.

2.
Sci Prog ; 106(2): 368504231176165, 2023.
Article in English | MEDLINE | ID: mdl-37226455

ABSTRACT

The present study conducted an experimental investigation to impede the degradation of peanut (Arachis hypogaea L.) seeds and enhance their quality while being stored. The efficacy of eco-friendly chemicals such as ascorbic acid, salicylic acid, acetic acid, and propionic acid in seed preservation was evaluated over a period of six months. After a period of six months of storage in a greenhouse, an examination was conducted on peanut seeds that had undergone treatment. Rhizoctonia was observed after Cephalothorax, whereas Aspergillus, Fusarium, and Penicillium were the prevailing fungi throughout the storage period. The optimal outcomes were obtained from the conversion of acetic acid to propionic acid. The study observed a decline in seed oil, protein, carbohydrates, germination percentage, energy, index, length, vigour index, dead and rotten seeds, rotted seedlings, and surviving healthy seedlings, with an increase in storage duration ranging from zero to six months. The application of 100% propionic acid to peanut seeds throughout the storage duration resulted in decreased occurrences of deceased seeds, decaying seeds, and deteriorated seedlings. Peanut seeds that underwent treatment with green chemical agents of moderate and high intensity were found to be free of aflatoxin B1. The highest levels of chlorophylls a and b, carotenoids, and total phenols were observed in seeds stored in greenhouses and treated with 100% propionic acid and acetic acid extract. The application of propionic acid 100%, acetic acid 100%, salicylic acid 4 g/l and ascorbic acid 4 g/l proved to be the most effective treatments for peanut seeds, exhibiting the lowest total aflatoxin level of 0.40. The correlation coefficient between shoot fresh weight and shoot dry weight was found to be 0.99, whereas the correlation coefficient between root dry weight and shoot length was 0.67. The seed chemical analysis, seedling characteristics, and germination characteristics were subjected to clustering analysis, resulting in the formation of two distinct groups. The first group consisted of germination percentage and energy levels across all time points (0-6 months), while the second group consisted of the remaining characteristics. The findings of this research propose the utilisation of 100% propionic acid as a viable method for preserving peanut seeds and preventing their deterioration during storage. The application of 100% acetic acid has been found to be effective in enhancing the quality of seeds and minimising losses.


Subject(s)
Aflatoxins , Antioxidants , Antioxidants/pharmacology , Arachis , Peanut Oil , Ascorbic Acid , Acetic Acid
3.
Heliyon ; 9(4): e15145, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37095976

ABSTRACT

Enzymatic hydrolysis of lignocellulose feedstocks has been observed as the rate-limiting stage during anaerobic digestion. This necessitated the need for pretreatment before anaerobic digestion for an effective and efficient process. Therefore, this study investigated the impact of acidic pretreatment on Arachis hypogea shells, and different conditions of H2SO4 concentration, exposure time, and autoclave temperature were considered. The substrates were digested for 35 days at a mesophilic temperature to assess the impact of pretreatment on the microstructural organization of the substrate. For the purpose of examining the interactive correlations between the input parameters, response surface methodology (RSM) was used. The result reveals that acidic pretreatment has the strength to disrupt the recalcitrance features of Arachis hypogea shells and make them accessible for microorganisms' activities during anaerobic digestion. In this context, H2SO4 with 0.5% v. v-1 for 15 min at an autoclave temperature of 90 °C increases the cumulative biogas and methane released by 13 and 178%, respectively. The model's coefficient of determination (R2) demonstrated that RSM could model the process. Therefore, acidic pretreatment poses a novel means of total energy recovery from lignocellulose feedstock and can be investigated at the industrial scale.

4.
Toxins (Basel) ; 15(2)2023 01 28.
Article in English | MEDLINE | ID: mdl-36828425

ABSTRACT

Diseases contribute to attainment of less than 50% of the local groundnut potential yield in Kenya. This study aimed to evaluate the agronomic characteristics (flowering and germination), disease incidence, yield performance (biomass, harvest index, 100-pod, 100-seed, and total pod weight), and aflatoxin accumulation in six peanut varieties. A field experiment was conducted using four newly improved peanut varieties: CG9, CG7, CG12, and ICGV-SM 90704 (Nsinjiro), and two locally used varieties: Homabay local (control) and 12991, and in a randomized complete block design with three replications. The disease identification followed the International Crop Research Institute for the Semi-Arid Tropics (ICRISAT) rating scale and further isolation of fungal contaminants was conducted by a direct plating technique using potato dextrose agar. The aflatoxin levels in the peanuts were determined after harvesting using the ultrahigh performance liquid chromatography and fluorescence detection (UHPLC-FLD) technique. ICGV-SM 90704 showed the least average disease incidence of 1.31 ± 1.75%, (P < 0.05); the lowest total aflatoxin levels (1.82 ± 1.41 µg kg-1) with a range 0.00-0.85 µg kg-1 for total aflatoxins and a range 0.00-1.24 µg kg-1 for Aflatoxin B1. The locally used varieties (12991 and the control) revealed the highest disease incidence (5.41 ± 8.31% and 7.41 ± 1.88%), respectively. ICGV-SM 90704 was the best performing among all the six varieties with an average total pod weight (9.22 ± 1.19 kg), 100-pod weight (262.93 ± 10.8 g), and biomass of (27.21 ± 5.05 kg) per row. The 12991 variety and the control showed the least total pod weight (1.60 ± 0.28 and 1.50 ± 1.11 kg, respectively) (P = 0.0001). The newly improved varieties showed lower disease rates, low levels of aflatoxins, and higher yields than the locally used varieties.


Subject(s)
Aflatoxins , Arachis , Plant Diseases , Aflatoxin B1/analysis , Aflatoxins/analysis , Arachis/microbiology , Incidence , Kenya , Plant Diseases/microbiology
5.
Glycoconj J ; 40(1): 1-17, 2023 02.
Article in English | MEDLINE | ID: mdl-36595117

ABSTRACT

Arachis hypogea L. protein fraction-2 (AHP-F2) from the Peanut shell was extracted and characterized and its potent immunomodulatory and anti-leishmanial role was determined in this present study. AHP-F2 was found to be a glycoprotein as the presence of carbohydrates were confirmed by the analysis of high-performance liquid chromatography (HPLC) yielded glucose, galactose, mannose, and xylose. AHP-F2 molecular mass was found to be ∼28 kDa as indicated in MALDI-TOF and peptide mass fingerprinting analysis followed by Mascot search. The peptide matches revealed the similarity of the mannose/glucose binding lectin with 71.07% in the BLAST analysis. After that, the 3D structure of the AHP-F2 model was designed and validated by the Ramachandran plot. The immunomodulatory role of AHP-F2 was established in murine peritoneal macrophages as induction of nitric oxide (NO), and stimulation of proinflammatory cytokines (IL-12 and IFN-γ) in a dose-dependent manner was observed. Interestingly, it was also found that AHP-F2 has interacted with the innate immune receptor, toll-like receptors (TLRs) as established in molecular docking as well as mRNA expression. The anti-leishmanial potential of AHP-F2 was revealed with a prominent inhibition of amastigote growth within the murine macrophages with prompt induction of nitrite release. Altogether, the isolated AHP-F2 from Arachis hypogea L. has strong immunomodulatory and anti-leishmanial potential which may disclose a new path to treat leishmaniasis.


Subject(s)
Arachis , Leishmania donovani , Animals , Mice , Mannose , Macrophage Activation , Molecular Docking Simulation , Glycoproteins , Glucose , Leishmania donovani/metabolism , Nitric Oxide/metabolism , Mice, Inbred BALB C
6.
Arch Microbiol ; 204(12): 721, 2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36411355

ABSTRACT

The most effective agricultural practice to prevent iron deficiency in calcareous soils is fertilizing with synthetic chelates. These compounds are non-biodegradable, and persistent in the environment; hence, there is a risk of leaching metals into the soil horizon. To tackle iron deficiency-induced chlorosis (IDC) in crops grown on calcareous soils, environmentally friendly solutions are needed rather than chemical application as it affects the soil health further. Hence, the present work focused on isolating and screening calcareous soil-specific bacteria capable of producing iron-chelating siderophores. Siderophore-producing bacteria (SPB) was isolated from the groundnut (Arachis hypogea L.) rhizosphere region, collected from Coimbatore district, Tamil Nadu, of which 17 bacterial isolates were positive for siderophore production assayed by chrome azurol sulphonate. The performance of SPB isolates was compared for siderophore kinetics, level of siderophore production, type of siderophore produced and iron-chelating capacity under 15 mM KHCO3. Four best performing isolates were screened, with average siderophores yield ranging ∼60-80% under pH 8, with sucrose as carbon source and NH2SO4 as nitrogen source at 37 °C. The four efficient SPB were molecularly identified as B. licheniformis, B. subtilis, B. licheniformis, and O. grignonense based on 16S rDNA sequencing. The simultaneous inhibition method showed T.viride has the highest antagonistic effect against S.rolfsii, and M.phaseolina with a reduction of mycelial growth by 69.3 and 65.1%, respectively, compared to control. Our results indicate that the optimized conditions enhanced siderophores chelation by suppressing the stem and root rot fungi, which could help in a cost-effective and environmentally friendly manner.


Subject(s)
Siderophores , Soil , India , Bacteria/genetics , Iron Chelating Agents
7.
J Texture Stud ; 53(6): 908-922, 2022 10.
Article in English | MEDLINE | ID: mdl-36053754

ABSTRACT

The present study was conducted to evaluate the influence of ozonation, roasting and their combination on the moisture content, color, functional, structural, textural components, and aflatoxins in groundnut kernels. Samples were subjected to three treatments namely, dry roasting (R): 166°C for 7 min; gaseous ozone treatment (O): 6 mg/L for 30 min; combined ozonation-roasting (OR): gaseous ozonation at 6 mg/L for 30 min followed by dry roasting at 166°C for 7 min. The ozonated-roasted samples had the lowest moisture content (3.45%), the highest total phenolic content (4.18 mg gallic acid equivalents/100 g), and antioxidants capacity (69.59%). The treatments did not induce significant changes in color of kernels (p < .05). Scanning electron microscopy indicated cracking of granules in roasted and swelling in ozonated kernels whereas more uniform orientation of granules was observed in ozonated-roasted kernels. Roasted and ozonated kernels indicated a significant reduction of fracturability force to 54.60 and 14.11%, respectively, whereas ozonated-roasted samples demonstrated a nonsignificant increase (4.37%). An increase in wave number of ozonated samples to 3,289.37 cm-1 in Fourier transform infrared (FTIR) spectrum (FTIR) indicated stretching in OH groups. FTIR spectrum of ozonated-roasted kernels suggested the formation of a new compound with CC and CC groups. The major aflatoxin B1 was reduced to maximum, that is, 100% in ozonated-roasted kernels followed by ozonated (80.95%) and roasted (57.14%) samples. The findings indicate that the ozonation-roasting treatment had a prominent role in the enhancement of functional compounds, structural and textural attributes along with the considerable reduction in aflatoxin content.


Subject(s)
Aflatoxins
8.
Front Allergy ; 3: 872714, 2022.
Article in English | MEDLINE | ID: mdl-35769555

ABSTRACT

The recently published reference genome of peanuts enables a detailed molecular description of the allergenic proteins of the seed. We used LC-MS/MS to investigate peanuts of different genotypes to assess variability and to better describe naturally occurring allergens and isoforms. Using relative quantification by mass spectrometry, minor variation of some allergenic proteins was observed, but total levels of Ara h 1, 2, 3, and 6 were relatively consistent among 20 genotypes. Previously published RP-HPLC methodology was used for comparison. The abundance of three Ara h 3 isoforms were variable among the genotypes and contributed to a large proportion of total Ara h 3 where present. Previously unpublished hydroxyproline sites were identified in Ara h 1 and 3. Hydroxylation did not vary significantly where sites were present. Peanut allergen composition was largely stable, with only some isoforms displaying differences between genotypes. The resulting differences in allergenicity are of unknown clinical significance but are likely to be minor. The data presented herein allow for the design of targeted MS methodology to allow the quantitation and therefore control of peanut allergens of clinical relevance and observed variability.

9.
BMC Genomics ; 20(1): 222, 2019 Mar 18.
Article in English | MEDLINE | ID: mdl-30885116

ABSTRACT

BACKGROUND: Aquaporins (AQPs) facilitate transport of water and small solutes across cell membranes and play an important role in different physiological processes in plants. Despite their importance, limited data is available about AQP distribution and function in the economically important oilseed crop peanut, Arachis hypogea (AABB). The present study reports the identification and structural and expression analysis of the AQPs found in the diploid progenitor genomes of A. hypogea i.e. Arachis duranensis (AA) and Arachis ipaensis (BB). RESULTS: Genome-wide analysis revealed the presence of 32 and 36 AQPs in A. duranensis and A. ipaensis, respectively. Phylogenetic analysis showed similar numbers of AQPs clustered in five distinct subfamilies including the plasma membrane intrinsic proteins (PIPs), the tonoplast intrinsic proteins (TIPs), the nodulin 26-like intrinsic proteins (NIPs), the small basic intrinsic proteins (SIPs), and the uncharacterized intrinsic proteins (XIPs). A notable exception was the XIP subfamily where XIP1 group was observed only in A. ipaensis genome. Protein structure evaluation showed a hydrophilic aromatic/arginine (ar/R) selectivity filter (SF) in PIPs whereas other subfamilies mostly contained a hydrophobic ar/R SF. Both genomes contained one NIP2 with a GSGR SF indicating a conserved ability within the genus to uptake silicon. Analysis of RNA-seq data from A. hypogea revealed a similar expression pattern for the different AQP paralogs of AA and BB genomes. The TIP3s showed seed-specific expression while the NIP1s' expression was confined to roots and root nodules. CONCLUSIONS: The identification and the phylogenetic analysis of AQPs in both Arachis species revealed the presence of all five sub-families of AQPs. Within the NIP subfamily, the presence of a NIP2 in both genomes supports a conserved ability to absorb Si within plants of the genus. The global expression profile of AQPs in A. hypogea revealed a similar pattern of AQP expression regardless of the subfamilies or the genomes. The tissue-specific expression of AQPs suggests an important role in the development and function of the respective organs. The AQPs identified in the present study will serve as a resource for further characterization and possible exploitation of AQPs to understand their physiological role in A. hypogea.


Subject(s)
Aquaporins/genetics , Arachis/classification , Arachis/genetics , Gene Expression Regulation, Plant , Genome, Plant , Plant Proteins/genetics , Aquaporins/metabolism , Arachis/metabolism , Diploidy , Evolution, Molecular , Gene Expression Profiling , Multigene Family , Phylogeny , Plant Proteins/metabolism
10.
Front Plant Sci ; 7: 1349, 2016.
Article in English | MEDLINE | ID: mdl-27656190

ABSTRACT

Thrips-transmitted tospoviruses are economically important viruses affecting a wide range of field and horticultural crops worldwide. Tomato spotted wilt virus (TSWV) is the type member of the Tospovirus genus with a broad host range of more than 900 plant species. Interactions between these viruses and their plant hosts and insect vectors via RNAi pathways are likely a key determinant of pathogenicity. The current investigation, for the first time, compares biogenesis of small RNAs between the plant host and insect vector in the presence or absence of TSWV. Unique viral small interfering RNA (vsiRNA) profiles are evident for Arachis hypogaea (peanut) and Frankliniella fusca (thrips vector) following infection with TSWV. Differences between vsiRNA profiles for these plant and insect species, such as the relative abundance of 21 and 22 nt vsiRNAs and locations of alignment hotspots, reflect the diverse siRNA biosynthesis pathways of their respective kingdoms. The presence of unique vsiRNAs in F. fusca samples indicates that vsiRNA generation takes place within the thrips, and not solely through uptake via feeding on vsiRNAs produced in infected A. hypogaea. The study also shows key vsiRNA profile differences for TSWV among plant families, which are evident in the case of A. hypogaea, a legume, and members of Solanaceae (S. lycopersicum and Nicotiana benthamiana). Distinctively, overall small RNA (sRNA) biogenesis in A. hypogaea is markedly affected with an absence of the 24 nt sRNAs in TSWV-infected plants, possibly leading to wide-spread molecular and phenotypic perturbations specific to this species. These findings add significant information on the host-virus-vector interaction in terms of RNAi pathways and may lead to better crop and vector specific control strategies.

11.
BMC Genet ; 17(1): 128, 2016 09 06.
Article in English | MEDLINE | ID: mdl-27600750

ABSTRACT

BACKGROUND: Spotted wilt caused by tomato spotted wilt virus (TSWV) is one of the major peanut (Arachis hypogaea L.) diseases in the southeastern United States. Occurrence, severity, and symptoms of spotted wilt disease are highly variable from season to season, making it difficult to efficiently evaluate breeding populations for resistance. Molecular markers linked to spotted wilt resistance could overcome this problem and allow selection of resistant lines regardless of environmental conditions. Florida-EP(TM) '113' is a spotted wilt resistant cultivar with a significantly lower infection frequency. However, the genetic basis is still unknown. The objective of this study is to map the major quantitative trait loci (QTLs) linked to spotted wilt resistance in Florida-EP(TM) '113'. RESULTS: Among 2,431 SSR markers located across the whole peanut genome screened between the two parental lines, 329 were polymorphic. Those polymorphic markers were used to further genotype a representative set of individuals in a segregating population. Only polymorphic markers on chromosome A01 showed co-segregation between genotype and phenotype. Genotyping by sequencing (GBS) of the representative set of individuals in the segregating population also depicted a strong association between several SNPs on chromosome A01 and the trait, indicating a major QTL on chromosome A01. Therefore marker density was enriched on the A01 chromosome. A linkage map with 23 makers on chromosome A01 was constructed, showing collinearity with the physical map. Combined with phenotypic data, a major QTL flanked by marker AHGS4584 and GM672 was identified on chromosome A01, with up to 22.7 % PVE and 9.0 LOD value. CONCLUSION: A major QTL controlling the spotted wilt resistance in Florida-EP(TM) '113' was identified. The resistance is most likely contributed by PI 576638, a hirsuta botanical-type line, introduced from Mexico with spotted wilt resistance. The flanking markers of this QTL can be used for further fine mapping and marker assisted selection in peanut breeding programs.


Subject(s)
Arachis/genetics , Arachis/virology , Host-Pathogen Interactions/genetics , Plant Diseases/genetics , Plant Diseases/virology , Quantitative Trait Loci , Tospovirus , Chromosome Mapping , Genetic Linkage , Genotype , High-Throughput Nucleotide Sequencing , Microsatellite Repeats , Phenotype , Polymorphism, Single Nucleotide
12.
Biol. Res ; 46(3): 257-263, 2013. ilus, graf, tab
Article in English | LILACS | ID: lil-692192

ABSTRACT

Fatty acid composition of peanut seed oil in four varieties cultivated in Tunisia showed that linoleic (C18:2), oleic (C18:1) and palmitic (C16) acids account for more than 84% for Chounfakhi and Massriya and for more than 85% of the total fatty acids of Trabilsia and Sinya seed oil respectively. Seed oil contents were significantly different (P ≤ 0.05) and did not exceed 48%. The study of total phenolics revealed that Chounfakhi contained more total phenolics (2.1 mg GAE/g DW), followed by the Massriya and Sinya cultivars (1.35 mg GAE/g DW for each); Trabilsia presented the lowest total phenolic content with 1 mg GAE/g DW. Considerable antiradical ability was found, especially in the Trabilsia peanut seed cultivar (IC50 = 1550 μg/ml), the Massriya and Sinya cultivars had, respectively, 720 and 820 mg/ml IC50. In the Massriya variety the sterol fraction showed antibacterial activity against Listeria ivanovii, Listeria inocua, Pseudomonas aeruginosa, Staphylococus aureus, Enterococcus hirae and Bacillus cereus.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Fatty Acids/analysis , Phenols/analysis , Plant Oils/pharmacology , Anti-Bacterial Agents/isolation & purification , Antioxidants/isolation & purification , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Linoleic Acids/analysis , Microbial Sensitivity Tests , Oleic Acid/analysis , Palmitic Acid/analysis , Plant Oils/chemistry , Seeds/chemistry , Tunisia
13.
Neotrop. entomol ; 39(2): 260-265, mar.-abr. 2010. ilus, tab, graf
Article in Portuguese | LILACS | ID: lil-547690

ABSTRACT

The velvetbean caterpillar Anticarsia gemmatalis Hübner attacks peanut leaves, and the use of resistant varieties has directly contributed to ecological and economic aspects of pest control. The aim of this work was to select resistant peanut genotypes to A. gemmatalis using cluster analyses (dendogram obtained by Ward's methods and K-means) and Principal Components analysis for data interpretation. The evaluated genotypes were: IAC 5, IAC 8112, IAC 22 and IAC Tatu ST with upright growth habit, and IAC 147, IAC 125, IAC Caiapó and IAC Runner 886 with runner growth habit, and soybean genotype BR 16 as a susceptible control. The biological parameters: leaf consumption, larval (4º instar) and pupal (24h old) weight, larval and pupal development time and adult longevity were evaluated at laboratory conditions. The genotypes IAC 147 and IAC Runner 886 were resistant to A. gemmatalis in both cluster tests, grouping apart from most of the other genotypes. Both dendrogram and K-means methods provided satisfactory biological explanation, and they can be complementary used together with Principal Component and vice-versa. These results suggest that cluster analyses may be an important statistical tool in the selection of host plant resistance.


Subject(s)
Animals , Arachis/genetics , Arachis/parasitology , Immunity, Innate/genetics , Lepidoptera , Genotype , Multivariate Analysis
14.
Trop Life Sci Res ; 21(1): 55-70, 2010 Aug.
Article in English | MEDLINE | ID: mdl-24575190

ABSTRACT

Mycorrhiza, a mutualistic association between fungi and higher plants, has been documented extensively, but much less is known about the development of arbuscular mycorrhizal (AM) fungi and their effects on the growth of peanuts (Arachis hypogea L.). Therefore, the mycorrhizal status of Glomus spp. was investigated in the following diverse substrate soil conditions: non-autoclaved soil, autoclaved soil and autoclaved soil plus soil microbiota. The results indicated that both the arbuscular mycorrhizae, Glomus mosseae (Nicol. & Gerd.) Gerd. & Trappe, and Glomus fasciculatum (Thaxter) Gerd. & Trappe emend. Walker & Koske were infective to peanut, but displayed a differential impact on peanut growth depending on the microbial biomass content of the substrate soils. G. mosseae proved to be the most effective at improving peanut growth.

15.
J Nematol ; 14(4): 576-81, 1982 Oct.
Article in English | MEDLINE | ID: mdl-19295755

ABSTRACT

The relative susceptibility of four field crops to Criconemella ornata differed greatly in microplot tests. As few as 178 freshly-introduced C. ornata/500 cm(3) of soil stunted peanut. In contrast, this nematode had no effect on the growth of corn or soybean. Large populations remaining after culture of peanut or corn enhanced the growth of tobacco. A problem of comparing the effects of a freshly introduced population of this nematode with large residual populations was encountered. Freshly extracted, greenhouse-grown inoculum caused the typical "yellows disease" on peanut, whereas much greater residual population densities following a poor host (tobacco) had little effect on the growth of peanut. It is suggested that many of the nematodes in the field following a poor host are dead. Peanut supported greater reproduction (up to 970-fold) than did other crops tested. Corn was intermediate, with a population increase as great as 264-fold; soybean and tobacco failed to maintain initial population densities.

16.
J Nematol ; 13(3): 321-7, 1981 Jul.
Article in English | MEDLINE | ID: mdl-19300770

ABSTRACT

Two populations of Meloidogyne arenaria (race 2, incompatible on peanut) enhanced development of Cylindrocladium black rot (CBR) on CBR-resistant peanut cv. NC 3033 in greenhouse factorial experiments. Nematode populations 256 and 486 (0, 10(3), 10 eggs per 15-cm pot) were tested in all combinations with Cylindrocladium crotalariae (0, 0.5, 5, 50 microsclerotia per cm(3) of soil). Root-rot index increased in the presence of either population. Positions but not slope values of inoculum density-disease curves were changed by both populations, indicating increased efficiency of microsclerotia when peanuts were grown in the presence of these nematodes. Although little or no reproduction occurred with either nematode population on NC 3033, larvae of 256 and 486 penetrated roots. Meloidogyne arenaria 486 did not induce root galls and was not snccessful in establishing feeding sites. Meloidogyne arenaria 256 produced a few very small eliptical galls and had a range of success in establishing a feeding site, varying from no giant cell development to large giant cell with production of a few eggs.

SELECTION OF CITATIONS
SEARCH DETAIL
...