Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 635
Filter
1.
Curr Biol ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38959880

ABSTRACT

Eye size affects many aspects of visual function, but eyes are costly to grow and maintain. The allometry of eyes can provide insight into this trade-off, but this has mainly been explored in species that have two eyes of equal size. By contrast, animals possessing larger visual systems can exhibit variable eye sizes within individuals. Spiders have up to four pairs of eyes whose sizes vary dramatically, but their ontogenetic, static, and evolutionary allometry has not yet been studied in a comparative context. We report variable dynamics in eye size across 1,098 individuals in 39 species and 8 families, indicating selective pressures and constraints driving the evolution of different eye pairs and lineages. Supplementing our sampling with a recently published phylogenetically comprehensive dataset, we confirmed these findings across more than 400 species; found that ecological factors such as visual hunting, web building, and circadian activity correlate with eye diameter; and identified significant allometric shifts across spider phylogeny using an unbiased approach, many of which coincide with visual hunting strategies. The modular nature of the spider visual system provides additional degrees of freedom and is apparent in the strong correlations between maximum/minimum investment and interocular variance and three key ecological factors. Our analyses suggest an antagonistic relationship between the anterior and posterior eye pairs. These findings shed light on the relationship between spider visual systems and their diverse ecologies and how spiders exploit their modular visual systems to balance selective pressures and optical and energetic constraints.

2.
Pest Manag Sci ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38855813

ABSTRACT

BACKGROUND: Environmentally-friendly crop protection practices are needed to enhance the sustainability of current agricultural systems. This is crucial in orchards which are extensively treated to impair various pests, at the expense of natural enemies. However, the effect of a shift towards softer pest management on the beneficial arthropod community is poorly documented. Earwigs (Dermaptera: Forficulidae) and spiders (Araneae) are relevant groups to assess such effects because they are highly sensitive to agricultural practices. They were monitored for 6 and 4 years, respectively, in apple orchards under three pest management regimes: Organic, Low-input and Conventional, with pest management being switched during the survey from a broad-spectrum insecticide schedule to mating disruption in the latter one, and more selective compounds in all orchards. RESULTS: The survey displayed that earwig abundance (mainly Forficula auricularia) that was initially very low in the Conventional orchard (annual mean 0.5-1.7 earwigs per shelter in the 2010-2012 period) increased to the same level as that of Low-input and Organic orchards (over 10 earwigs per shelter) in the same year that changes in pest management occurred. The epigeal and arboreal spider communities were not responsive, and no recovering was observed 4 years after change in practices. CONCLUSION: Predatory arthropod communities are differently affected over time by changes in pest management, most probably due to their biology (dispersion, reproduction rate, susceptibility to pesticides etc.). This outlines the importance of documenting the time required to recover after perturbations and build a natural enemy community to enhance pest control in a win-win perspective. © 2024 Society of Chemical Industry.

3.
Insects ; 15(5)2024 May 14.
Article in English | MEDLINE | ID: mdl-38786911

ABSTRACT

Inter-row management in vineyards can influence the abundance of grapevine pests and their natural enemies. In 2013-2015, in a vineyard in northeastern Italy, the influence of two vineyard inter-row management strategies (i.e., alternate mowing, AM, and periodical tillage, PT) on the population dynamics of grapevine leafhoppers Hebata vitis and Zygina rhamni and their natural enemies, the mymarid Anagrus atomus and spiders (Araneae), and other hymenopteran parasitoids, were studied with different survey approaches. The infestations of both leafhoppers were lower in AM than PT due to the reduced leafhopper oviposition and higher nymph mortality in AM. This occurred although leafhopper egg parasitization by A. atomus was greater in PT than AM according to a density-dependent relationship with the leafhopper egg amount. Hymenopteran parasitoids other than A. atomus were the most abundant in AM, probably due to the higher availability of nectar and pollen than in PM. The significantly higher population densities of hunting spiders in AM than PT can be associated with the higher predation of leafhopper nymphs. Therefore, the study demonstrated that the alternate mowing of vineyard inter-rows enhances the abundance of natural enemies, such as spiders and hymenopteran parasitoids, and can contribute to grapevine leafhopper pest control.

4.
Ecol Evol ; 14(5): e11372, 2024 May.
Article in English | MEDLINE | ID: mdl-38742184

ABSTRACT

Large-scale barcoding projects help to aggregate information on genetic variability of multiple species throughout their ranges. Comparing DNA sequences of both non-conspecific and conspecific individuals from distant parts of their ranges helps to compare level of genetic isolation-by-distance patterns in different species and adaptive types. We compared mitochondrial CO1 gene sequences of 223 spiders from Georgia (Caucasus), representing 124 species and eight families, with 3097 homological sequences from spiders mostly from Europe, but also from other parts of the World. In most families, a significant isolation-by distance pattern was observed on family level. On species level, a significant isolation-by-distance was observed in 40 species, although this low proportion is most likely related to a lack of data. Simultaneously, remarkable differences in spatial structure were shown for different species. Although the majority of the studied species have a broad western Palearctic range, web-building spiders from families Araneidae, Theridiidae, and Linyphiidae are less isolated spatially than flower spiders (Thomisidae), jumping spiders (Salticidae), wolf spiders (Lycosidae), sac spiders (Clubionidae), and ground spiders (Gnaphosidae). This pattern is related with more common ballooning in web building than in actively hunting spiders, which commonly remain isolated since preglacial time. Ground spiders build the most isolated populations in the Caucasus.

5.
Mitochondrial DNA B Resour ; 9(4): 475-478, 2024.
Article in English | MEDLINE | ID: mdl-38617814

ABSTRACT

The pond wolf spider Pardosa pseudoannulata Bösenberg & Strand, 1906 (Araneae: Lycosidae) is an important predator of agricultural pests in southern, eastern and southeastern Asia. Here, we report the complete mitogenome of this spider reconstructed from Illumina sequencing data. The circular mitogenome length is 14,533 bp with the nucleotide composition A (33.3%), C (8.2%), G (15.2%), and T (43.3%). The P. pseudoannulata mitogenome comprises 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes, and a control region. Phylogenetic analyses of Lycosidae mitogenomes supported the monophyly of the subfamily Pardosinae and the two genera Pardosa and Alopecosa, and indicated the polyphyly of the subfamily Lycosinae and the paraphyly of its type genus Lycosa. In this study, P. pseudoannulata is the closest relative to P. pusiola. These results provide useful genetic information for future studies on the diversity, phylogeny, and evolution for wolf spiders.

6.
Ecol Evol ; 14(3): e10983, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38435003

ABSTRACT

The recognition and delineation of cryptic species remains a perplexing problem in systematics, evolution, and species delimitation. Once recognized as such, cryptic species complexes provide fertile ground for studying genetic divergence within the context of phenotypic and ecological divergence (or lack thereof). Herein we document the discovery of a new cryptic species of trapdoor spider, Promyrmekiaphila korematsui sp. nov. Using subgenomic data obtained via target enrichment, we document the phylogeography of the California endemic genus Promyrmekiaphila and its constituent species, which also includes P. clathrata and P. winnemem. Based on these data we show a pattern of strong geographic structuring among populations but cannot entirely discount recent gene flow among populations that are parapatric, particularly for deeply diverged lineages within P. clathrata. The genetic data, in addition to revealing a new undescribed species, also allude to a pattern of potential phenotypic differentiation where species likely come into close contact. Alternatively, phenotypic cohesion among genetically divergent P. clathrata lineages suggests that some level of gene flow is ongoing or occurred in the recent past. Despite considerable field collection efforts over many years, additional sampling in potential zones of contact for both species and lineages is needed to completely resolve the dynamics of divergence in Promyrmekiaphila at the population-species interface.

7.
Insects ; 15(3)2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38535350

ABSTRACT

Forest canopies, an essential part of forest ecosystems, are among the most highly threatened terrestrial habitats. Mountains provide ideal conditions for studying the variation in community structure with elevations. Spiders are one of the most abundant predators of arthropods in terrestrial ecosystems and can have extremely important collective effects on forest ecosystems. How the diversity and composition of canopy spider communities respond to elevation changes in temperate forests remains poorly understood. In this study, we collected canopy spiders from four elevation sites (800 m, 1100 m, 1400 m, and 1700 m) on Changbai Mountain using the fogging method in August 2016. With the methods of ANOVA analysis, transformation-based redundancy analysis, and random forest analysis, we explored the responses of canopy spider communities to elevation. In total, 8826 spiders comprising 81 species were identified and the most abundant families were Thomisidae, Clubionidae, Linyphiidae, and Theridiidae (77.29% of total individuals). Species richness decreased whereas evenness increased with increasing elevation, indicating that elevation has an important impact on community structure. The pattern of absolute abundance was hump shaped with increasing elevation. We found that the community compositions at the three taxonomic levels (species, family, and guild) along the elevation gradient were obviously altered and the variation in community composition was higher at low-elevation sites than at high-elevation sites. There were 19 common species (23.46%) among the four elevations. Regression and RDA results showed that vegetation variables contributed to the variation in the diversity and composition of canopy spiders. Furthermore, the influence of factors would be weakened with the taxonomic level increasing. Therefore, our findings greatly highlight the important role of vegetation in the diversity and composition of canopy spiders and the influence is closely related to the taxonomic level.

8.
Ecol Evol ; 14(2): e10892, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38371868

ABSTRACT

Habitat disturbance affects not only the abundance, species richness and species composition of the local fauna, but also the body size of specific individuals and body size patterns in animal assemblages. Particularly large disturbances occur in agroecosystems, where many agricultural treatments are carried out. One of them, which is most commonly applied to grasslands and which significantly damages the habitat structure, is mowing. We examined the effect of mowing on mean, skewness and kurtosis of the body size in epigeic spider assemblages. The research was conducted on mesic meadows in eastern Poland, in an agricultural landscape typical for this region, consisting of a mosaic of meadows, fields and forests. Spiders were collected using pitfall traps in two sampling periods: the first before mowing and the second when part of the meadows had been mown. Mowing had no significant effect on mean body size, skewness and kurtosis of the body size in epigeic spider assemblages. However, after the cut, mown plots showed, on average, significantly smaller spider species than unmown plots. Both the value of skewness and kurtosis significantly increased after mowing but to the same extent on both the control and mown plots. The decrease in mean body size and increase in skewness in spider assemblages were mainly due to an increase in the number of small species from the Linyphiidae family. It is likely that these species began to migrate (via ballooning) during the second sampling session, following the start of haying, and were thus caught in traps more frequently. Our study showed no clear, significant changes in the body size structure of epigeic spiders in mown meadows compared to unmown ones, which may suggest that the mowing, where extensive farming is practised, does not have a long-term significant negative impact on this group of invertebrates.

9.
Zookeys ; 1191: 89-103, 2024.
Article in English | MEDLINE | ID: mdl-38384423

ABSTRACT

We propose a new genus of plexippine jumping spiders from the Western Ghats of India based on the new species Ghatippuspaschimagen. et sp. nov. While it bears a superficial resemblance to Pancorius in body form and Hyllus in membrane-bearing embolus, our UCE phylogenomic data-the first to resolve broad relationships within the Plexippina-as well as morphological features justify its status as a new genus. In addition to the molecular data and morphological descriptions, we provide photographs of living specimens of Ghatippuspaschimagen. et sp. nov. and information on their natural history.

10.
Ecol Evol ; 13(11): e10728, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38020683

ABSTRACT

Economic and ecological consequences of invasive species make biological invasions an influential driver of global change. Monitoring the spread and impacts of non-native species is essential, but often difficult, especially during the initial stages of invasion. The Joro spider, Trichonephila clavata (L. Koch, 1878, Araneae: Nephilidae), is a large-bodied orb weaver native to Asia, likely introduced to northern Georgia, U.S. around 2010. We investigated the nascent invasion of T. clavata by constructing species distribution models (SDMs) from crowd-sourced data to compare the climate T. clavata experiences in its native range to its introduced range. We found evidence that the climate of T. clavata's native range differs significantly from its introduced range. Species distribution models trained with observations from its native range predict that the most suitable habitats in North America occur north of its current introduced range. Consistent with SDM predictions, T. clavata appears to be spreading faster to the north than to the south. Lastly, we conducted surveys to investigate potential ecological impacts of T. clavata on the diversity of native orb weaving spiders. Importantly, Trichonephila clavata was the most common and abundant species observed in the survey, and was numerically dominant at half of the sites it was present in. Our models also suggest that there is lower native orb weaver species richness and diversity closer to where T. clavata was initially found and where it has been established the longest, though human population density complicates this finding. This early study is the first to forecast how widely this spider may spread in its introduced range and explore its potential ecological impacts. Our results add evidence that T. clavata is an invasive species and deserves much more ecological scrutiny.

11.
Insects ; 14(10)2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37887794

ABSTRACT

Natural habitats adjacent to vineyards are presumed to have a positive effect on the diversity of natural enemies within the vineyards. However, these habitats differ in vegetation structure and seasonal phenology and in turn could affect the species composition of natural enemies. Here, we compared the species richness and diversity and the composition of spider assemblages in several locations within three commercial vineyards and the nearby natural habitats in a Mediterranean landscape in northern Israel. We sampled spiders by means of pitfall traps in early and in late summer. Both the time in the season and the habitat (natural versus vineyard) affected spider species richness and diversity. More species were found in early summer (47) than in late summer (33), and more occurred in the natural habitat (34 species) than in the vineyards (27-31 species). Fifteen species were found exclusively in the natural habitat, and only 11 species were shared by the vineyards and natural habitat, four of which were the most abundant and geographically widely distributed species in the samples. In late summer, spider diversity in the natural habitat was higher than within the vineyards: the spider assemblages in the vineyards became dominated by a few species late in the crop season, while those of the natural habitat remained stable. Overall, the natural habitat differed in assemblage composition from all within-vineyard locations, while the three locations within the vineyard did not differ significantly in assemblage composition. Season (early vs. late summer), however, significantly affected the spider assemblage composition. This study documents the large diversity of spiders in a local Mediterranean vineyard agroecosystem. Over 60% of the known spider families in the region occurred in our samples, highlighting the importance of this agroecosystem for spider diversity and the potential for conservation biocontrol, where natural habitats may be a source of natural enemies for nearby vineyards.

12.
Rev. peru. biol. (Impr.) ; 30(4)oct. 2023.
Article in English | LILACS-Express | LILACS | ID: biblio-1530332

ABSTRACT

The monotypic Peruvian genus Anqasha with type species Anqasha picta (Pocock 1903) is revised. A female of A. picta from the type locality of Caraz is herein described for the first time. The recently described females of A. picta coming from Recuay are transferred to the new taxon, which is herein described, diagnosed, and illustrated. Males of A. minaperinensis sp. nov. differ from that of A. picta in the shape of retrolateral branch of subapical apophyses on male tibia I, which is apically flattened and having three short spines. Females of A. minaperinensis sp. nov. differ from A. picta in the shape of seminal receptacles.


Se revisa el género monotípico peruano Anqasha, con la espécie tipo Anqasha picta (Pocock 1903). Se describe por primera vez una hembra de A. picta de la localidad de tipo en Caraz. Las hembras recientemente descritas de A. picta procedentes de Recuay son transferidas al nuevo taxon, el cual se describe, diagnostica e illustra aquí. Los machos de A. minaperinensis sp. nov. se differencían de A. picta en la forma de la rama retrolateral de la apófísis subapical en la tibia I del macho, la cual está aplanada apicalmente y llevando tres espinas cortas. Las hembras de A. minaperinensis sp. nov. se differencían de A. picta en la forma de los receptaculos seminales.

13.
Oecologia ; 203(1-2): 37-51, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37709958

ABSTRACT

Forest canopies maintain a high proportion of arthropod diversity. The drivers that structure these communities, however, are poorly understood. Therefore, integrative research connecting tree species identity and environmental stand properties with taxonomic and functional community composition of canopy arthropods is required. In this study, we investigated how the taxonomic, functional and trophic composition of arboreal spider communities is affected by tree species composition and associated differences in canopy structure and prey availability in temperate forests. We sampled canopy spiders as well as their potential prey using insecticidal fogging in monospecific and mixed stands of native European beech, native Norway spruce and non-native Douglas fir. Trophic metrics were obtained from stable isotope analysis and structural canopy properties were assessed with mobile laser scanning. Monospecific native spruce stands promoted local canopy spider abundance and diversity, but native beech and beech-conifer mixtures had the highest diversity at landscape scale. Spider community composition differed between monospecific stands, with broadleaf-conifer mixtures mitigating these differences. Irrespective of tree species identity, spider abundance, taxonomic diversity, functional richness and isotopic richness increased in structurally heterogeneous canopies with high prey abundances, but functional evenness and trophic divergence decreased. Our study shows that canopy spiders are differentially affected by tree species identity, canopy structure and prey availability. Broadleaf-conifer mixtures mitigated negative effects of (non-native) conifers, but positive mixture effects were only evident at the landscape scale. Structurally heterogeneous canopies promoted the dominance of only specific trait clusters. This indicates that intermediate heterogeneity might result in high stability of ecological communities.


Subject(s)
Picea , Spiders , Animals , Trees , Forests , Norway , Biodiversity
14.
Wellcome Open Res ; 8: 271, 2023.
Article in English | MEDLINE | ID: mdl-37766855

ABSTRACT

We present a genome assembly from an individual female Parasteatoda lunata (spider; Arthropoda; Arachnida; Araneae; Theridiidae). The genome sequence is 1,411.4 megabases in span. Most of the assembly is scaffolded into 12 chromosomal, including the X 1 and X 2 sex chromosomes. The mitochondrial genome has also been assembled and is 14.29 kilobases in length.

15.
Oecologia ; 202(4): 669-684, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37540236

ABSTRACT

Lures and other adaptations for prey attraction are particularly interesting from an evolutionary viewpoint because they are characterized by correlational selection, involve multicomponent signals, and likely reflect a compromise between maximizing conspicuousness to prey while avoiding drawing attention of enemies and predators. Therefore, investigating the evolution of lure and prey-attraction adaptations can help us understand a larger set of traits governing interactions among organisms. We review the literature focusing on spiders (Araneae), which is the most diverse animal group using prey attraction and show that the evolution of prey-attraction strategies must be driven by a trade-off between foraging and predator avoidance. This is because increasing detectability by potential prey often also results in increased detectability by predators higher in the food chain. Thus increasing prey attraction must come at a cost of increased risk of predation. Given this trade-off, we should expect lures and other prey-attraction traits to remain suboptimal despite a potential to reach an optimal level of attractiveness. We argue that the presence of this trade-off and the multivariate nature of prey-attraction traits are two important mechanisms that might maintain the diversity of prey-attraction strategies within and between species. Overall, we aim to stimulate research on this topic and progress in our general understanding of the diversity of predator and prey interactions.


Subject(s)
Spiders , Animals , Spiders/anatomy & histology , Spiders/classification , Spiders/physiology , Predatory Behavior , Behavior, Animal , Adaptation, Physiological , Selection, Genetic
16.
Mol Ecol ; 32(18): 4971-4985, 2023 09.
Article in English | MEDLINE | ID: mdl-37515430

ABSTRACT

The repeated evolution of phenotypes provides clear evidence for the role of natural selection in driving evolutionary change. However, the evolutionary origin of repeated phenotypes can be difficult to disentangle as it can arise from a combination of factors such as gene flow, shared ancestral polymorphisms or mutation. Here, we investigate the presence of these evolutionary processes in the Hawaiian spiny-leg Tetragnatha adaptive radiation, which includes four microhabitat-specialists or ecomorphs, with different body pigmentation and size (Green, Large Brown, Maroon, and Small Brown). We investigated the evolutionary history of this radiation using 76 newly generated low-coverage, whole-genome resequenced samples, along with phylogenetic and population genomic tools. Considering the Green ecomorph as the ancestral state, our results suggest that the Green ecomorph likely re-evolved once, the Large Brown and Maroon ecomorphs evolved twice and the Small Brown evolved three times. We found that the evolution of the Maroon and Small Brown ecomorphs likely involved ancestral hybridization events, while the Green and Large Brown ecomorphs likely evolved through novel mutations, despite a high rate of incomplete lineage sorting in the dataset. Our findings demonstrate that the repeated evolution of ecomorphs in the Hawaiian spiny-leg Tetragnatha is influenced by multiple evolutionary processes.


Subject(s)
Gene Flow , Polymorphism, Genetic , Phylogeny , Hawaii , Phenotype
17.
Oecologia ; 202(2): 261-273, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37261510

ABSTRACT

Both abiotic and biotic conditions may be important for biodiversity. However, their relative importance may vary among different diversity dimensions as well as across spatial scales. Spiders (Araneae) offer an ecologically relevant system for evaluating variation in the relative strength abiotic and biotic biodiversity regulation. We quantified the relative importance of abiotic and biotic conditions for three diversity dimensions of spider communities quantified across two spatial scales. Spiders were surveyed along elevation gradients in northern Sweden. We focused our analysis on geomorphological and climatic conditions as well as vegetation characteristics, and quantified the relative importance of these conditions for the taxonomic, phylogenetic, and functional diversity of spider communities sampled across one intermediate (500 m) and one local (25 m) scale. There were stronger relationships among diversity dimensions at the local than the intermediate scale. There were also variation in the relative influence of abiotic and biotic conditions among diversity dimensions, but this variation was not consistent across spatial scales. Across both spatial scales, vegetation was related to all diversity dimensions whereas climate was important for phylogenetic and functional diversity. Our study does not fully support stronger abiotic regulation at coarser scales, and conversely stronger abiotic regulation at more local scales. Instead, our results indicate that community assembly is shaped by interactions between abiotic constrains in species distributions and biotic conditions, and that such interactions may be both scale and context dependent.


Subject(s)
Biodiversity , Ecosystem , Spiders , Phylogeny , Sweden
18.
R Soc Open Sci ; 10(5): 230263, 2023 May.
Article in English | MEDLINE | ID: mdl-37266042

ABSTRACT

The male genitalia of pholcid spiders, which is one of the most species-rich spider families, are characterized by a procursus, which is a morphologically diverse projection of the copulatory organ. It has been shown that the procursus interacts with the female genitalia during copulation. Here, we investigate the function of the procursus in Gertschiola neuquena, a species belonging to the early branched and understudied subfamily Ninetinae, using behavioural and morphological data. Although many aspects of the copulatory behaviour of G. neuquena follow the general pattern described for the family, males use only one pedipalp during each copulation. Based on our micro-CT analysis of cryofixed mating pairs using virgin females, we can show that the long and filiform procursus is inserted deeply into the unpaired convoluted female spermatheca, and the intromittent sclerite, the embolus, is rather short and stout only reaching the most distal part of the female sperm storage organ. Histological data revealed that sperm are present in the most proximal part of the spermatheca, suggesting that the procursus is used to allocate sperm deeply into the female sperm storage organ. This represents the first case of a replacement of the sperm allocation function of the intromittent sclerite in spiders.

19.
Ecol Evol ; 13(4): e10025, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37122769

ABSTRACT

Species delimitation is an imperative first step toward understanding Earth's biodiversity, yet what constitutes a species and the relative importance of the various processes by which new species arise continue to be debatable. Species delimitation in spiders has traditionally used morphological characters; however, certain mygalomorph spiders exhibit morphological homogeneity despite long periods of population-level isolation, absence of gene flow, and consequent high degrees of molecular divergence. Studies have shown strong geographic structuring and significant genetic divergence among several species complexes within the trapdoor spider genus Aptostichus, most of which are restricted to the California Floristic Province (CAFP) biodiversity hotspot. Specifically, the Aptostichus icenoglei complex, which comprises the three sibling species, A. barackobamai, A. isabella, and A. icenoglei, exhibits evidence of cryptic mitochondrial DNA diversity throughout their ranges in Northern, Central, and Southern California. Our study aimed to explicitly test species hypotheses within this assemblage by implementing a cohesion species-based approach. We used genomic-scale data (ultraconserved elements, UCEs) to first evaluate genetic exchangeability and then assessed ecological interchangeability of genetic lineages. Biogeographical analysis was used to assess the likelihood of dispersal versus vicariance events that may have influenced speciation pattern and process across the CAFP's complex geologic and topographic landscape. Considering the lack of congruence across data types and analyses, we take a more conservative approach by retaining species boundaries within A. icenoglei.

20.
Proc Biol Sci ; 290(1997): 20230089, 2023 04 26.
Article in English | MEDLINE | ID: mdl-37122254

ABSTRACT

In many regions fire regimes are changing due to anthropogenic factors. Understanding the responses of species to fire can help to develop predictive models and inform fire management decisions. Spiders are a diverse and ubiquitous group and can offer important insights into the impacts of fire on invertebrates and whether these depend on environmental factors, phylogenetic history or functional traits. We conducted phylogenetic comparative analyses of data from studies investigating the impacts of fire on spiders. We investigated whether fire affects spider abundance or presence and whether ecologically relevant traits or site-specific factors influence species' responses to fire. Although difficult to make broad generalizations about the impacts of fire due to variation in site- and fire-specific factors, we find evidence that short fire intervals may be a threat to some spiders, and that fire affects abundance and species compositions in forests relative to other vegetation types. Orb and sheet web weavers were also more likely to be absent after fire than ambush hunters, ground hunters and other hunters suggesting functional traits may affect responses. Finally, we show that analyses of published data can be used to detect broad-scale patterns and provide an alternative to traditional meta-analytical approaches.


Subject(s)
Fires , Spiders , Animals , Spiders/physiology , Ecosystem , Phylogeny , Forests
SELECTION OF CITATIONS
SEARCH DETAIL
...