Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 753
Filter
1.
Virus Res ; : 199436, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38996815

ABSTRACT

RNA silencing is a prominent antiviral defense mechanism in plants. When infected with a virus, RNA silencing-deficient plants tend to show exacerbated symptoms along with increased virus accumulation. However, how symptoms are exacerbated is little understood. Here, we investigated the role of the copper chaperon for superoxide dismutase (CCS) 1, in systemic necrosis observed in Argonaute (AGO)2-silenced tomato plants infected with potato virus X (PVX). While infection with the UK3 strain of PVX induced mosaic symptoms in tomato plants, systemic necrosis occurred when AGO2 was silenced. The CCS1 mRNA level was reduced and micro RNA398 (miR398), which potentially target CCS1, was increased in AGO2-knockdown tomato plants infected with PVX-UK3. Ectopic expression of CCS1 using recombinant PVX attenuated necrosis, suggesting that CCS1 alleviates systemic necrosis by activating superoxide dismutases to scavenge reactive oxygen species. Previous reports have indicated a decrease in the levels of CCS1 and superoxide dismutases along with an increased level of miR398 in plants infected with other viruses and viroids, and thus might represent shared regulatory mechanisms that exacerbate symptoms in these plants.

2.
Plant Sci ; 347: 112176, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38971466

ABSTRACT

RNA silencing, a conserved gene regulatory mechanism, is critical for host resistance to viruses. Liquid-liquid phase separation (LLPS) is an important mechanism in regulating various biological processes. Emerging studies suggest RNA helicases play important roles in microRNA (miRNA) production through LLPS. In this study, we investigated the functional role of RNA helicase 20 (RH20), a DDX5 homolog in Arabidopsis thaliana, in RNA silencing and plant resistance to viruses. Our findings reveal that RH20 localizes in both the cytoplasm and nucleus, with puncta formation in the cytoplasm exhibiting liquid-liquid phase separation behavior. We demonstrate that RH20 plays positive roles in plant immunity against viruses. Further study showed that RH20 interacts with Argonaute 2 (AGO2), a key component of the RNA silencing pathway. Moreover, RH20 promotes the accumulation of both endogenous and exogenous small RNAs (sRNAs). Overall, our study identifies RH20 as a novel phase separation protein that interacting with AGO2, influencing sRNAs accumulation, and enhancing plant resistance to viruses.

3.
Plant Cell Physiol ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38988198

ABSTRACT

As a model plant for bryophytes, Marchantia polymorpha offers insights into the role of RNA silencing in aiding early land plants navigate the challenges posed by high-temperature environments. Genomic analysis revealed unique ARGONAUTE1 ortholog gene (MpAGO1) in M. polymorpha that is regulated by two species-specific microRNAs (miRNAs), miR11707.1 and miR11707.2. Comparative studies of small RNA profiles from M. polymorpha cellular and MpAGO1 immunoprecipitation (MpAGO1-IP) profiles at various temperatures, along with analyses of Arabidopsis AGO1 (AtAGO1), revealed that MpAGO1 has a low-selectivity for a diverse range of small RNA species than AtAGO1. Protein structural comparisons revealed no discernible differences in the MID domains of MpAGO1 and AtAGO1, suggesting the complexity of miRNA species specificity and necessitating further exploration. Small RNA profiling and size exclusion chromatography have pinpointed a subset of M. polymorpha miRNAs, notably miR11707, that remain in free form within the cell at 22°C but are loaded into MpAGO1 at 28°C to engage in RNA silencing. Investigations into the mir11707 gene editing (mir11707ge) mutants provided evidence of the regulation of miR11707 in MpAGO1. Notably, while MpAGO1 mRNA expression decreases at 28°C, the stability of the MpAGO1 protein and its associated miRNAs is essential for enhancing the RISC activity, revealing the importance of RNA silencing in enabling M. polymorpha to survive thermal stress. This study advances our understanding of RNA silencing in bryophytes and provides groundbreaking insights into the evolutionary resilience of land plants to climatic adversities.

4.
Investig Clin Urol ; 65(4): 400-410, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38978220

ABSTRACT

PURPOSE: To determine whether the overexpression of the Argonaute RNA-induced silencing complex catalytic component 2 (Ago2) improves erectile function in mice after cavernous nerve injury (CNI). MATERIALS AND METHODS: Lentiviruses containing Ago2 open reading frame (ORF) mouse clone (Ago2 O/E) were used to overexpress Ago2, and lentiviruses ORF negative control particles (NC) were used as a negative control. Three days before preparing the CNI model, we injected lentiviruses into the penises of 8-week-old male C57BL/6 mice. Animals were then divided into four groups: the sham operation control group and the CNI+phosphate-buffered saline, CNI+NC, and CNI+Ago2 O/E groups. One week later, erectile function was assessed by electrically stimulating cavernous nerves bilaterally and obtaining intracavernous pressure parameters. Penile tissue was also collected for molecular mechanism studies. RESULTS: Ago2 overexpression improved erectile function in mice after CNI-induced erectile dysfunction (ED). Immunofluorescence staining and Western blot analysis showed that under Ago2 overexpressing conditions, the contents of endothelial cells, pericytes, and neuronal cells increased in the penile tissues of CNI mice, and this was attributed to reduced apoptosis and ROS production. In addition, we also found that Ago2 overexpression could restore penile mitochondrial function, thereby improving erectile function in CNI-induced ED mice. CONCLUSIONS: Our findings demonstrate that Ago2 overexpression can reduce penile cell apoptosis, restore penile mitochondrial function, and improve erectile function in CNI-induced ED mice.


Subject(s)
Apoptosis , Argonaute Proteins , Disease Models, Animal , Erectile Dysfunction , Mice, Inbred C57BL , Mitochondria , Penile Erection , Penis , Animals , Male , Penis/innervation , Erectile Dysfunction/etiology , Mice , Argonaute Proteins/genetics , Argonaute Proteins/metabolism , Mitochondria/metabolism , Penile Erection/physiology , Peripheral Nerve Injuries/complications
5.
J Integr Plant Biol ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38860597

ABSTRACT

The development of flowers in soybean (Glycine max) is essential for determining the yield potential of the plant. Gene silencing pathways are involved in modulating flower development, but their full elucidation is still incomplete. Here, we conducted a forward genetic screen and identified an abnormal flower mutant, deformed floral bud1-1 (Gmdfb1-1), in soybean. We mapped and identified the causal gene, which encodes a member of the armadillo (ARM)-repeat superfamily. Using small RNA sequencing (sRNA-seq), we found an abnormal accumulation of small interfering RNAs (siRNAs) and microRNA (miRNAs) in the Gmdfb1 mutants. We further demonstrated that GmDFB1 interacts with the RNA exosome cofactor SUPER KILLER7 (GmSKI7). Additionally, GmDFB1 interacts with the PIWI domain of ARGONAUTE 1 (GmAGO1) to inhibit the cleavage efficiency on the target genes of sRNAs. The enhanced gene silencing mediated by siRNA and miRNA in the Gmdfb1 mutants leads to the downregulation of their target genes associated with flower development. This study revealed the crucial role of GmDFB1 in regulating floral organ identity in soybean probably by participating in two distinct gene silencing pathways.

6.
Cell Rep ; 43(7): 114391, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38923459

ABSTRACT

Inhibition of nucleic acid targets is mediated by Argonaute (Ago) proteins guided by RNA or DNA. Although the mechanisms underpinning the functions of eukaryotic and "long" prokaryotic Ago proteins (pAgos) are well understood, those for short pAgos remain enigmatic. Here, we determine two cryoelectron microscopy structures of short pAgos in association with the NADase-domain-containing protein Sir2-APAZ from Geobacter sulfurreducens (GsSir2/Ago): the guide RNA-target DNA-loaded GsSir2/Ago quaternary complex (2.58 Å) and the dimer of the quaternary complex (2.93Å). These structures show that the nucleic acid binding causes profound conformational changes that result in disorder or partial dissociation of the Sir2 domain, suggesting that it adopts a NADase-active conformation. Subsequently, two RNA-/DNA-loaded GsSir2/Ago complexes form a dimer through their MID domains, further enhancing NADase activity through synergistic effects. The findings provide a structural basis for short-pAgo-mediated defense against invading nucleic acids.

7.
Fish Shellfish Immunol ; 151: 109693, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38878913

ABSTRACT

Argonaute proteins are key constituents of small RNA-guided regulatory pathways. In crustaceans, members of the AGO subfamily of Argonaute proteins that play vital roles in immune defense are well studied, while proteins of the PIWI subfamily are less established. PmAgo4 of the black tiger shrimp, Penaeus monodon, though phylogenetically clustered with the AGO subfamily, has distinctive roles of the PIWI subfamily in safeguarding the genome from transposon invasion and controlling germ cell development. This study explored a molecular mechanism by which PmAgo4 regulates transposon expression in the shrimp germline. PmAgo4-associated small RNAs were co-immunoprecipitated from shrimp testis lysate using a PmAgo4-specific polyclonal antibody. RNA-seq revealed a majority of 26-27 nt long small RNAs in the PmAgo4-IP fraction suggesting that PmAgo4 is predominantly associated with piRNAs. Mapping of these piRNAs on nucleotide sequences of two gypsy and a mariner-like transposons of P. monodon suggested that most piRNAs were originated from the antisense strand of transposons. Suppression of PmAgo4 expression by a specific dsRNA elevated the expression levels of the three transposons while decreasing the levels of transposon-related piRNAs. Taken together, these results imply that PmAgo4 exerts its suppressive function on transposons by controlling the biogenesis of transposon-related piRNAs and thus, provides a defense mechanism against transposon invasion in shrimp germline cells.

8.
Front Immunol ; 15: 1366531, 2024.
Article in English | MEDLINE | ID: mdl-38887290

ABSTRACT

Aquaporin-4 antibodies (AQP4-Abs) are a diagnostic marker for patients with a demyelinating disease called neuromyelitis optica spectrum disorder (NMOSD). Anti-Argonaute antibodies (AGO-Abs) present as potential biomarkers of the overlap syndrome between NMOSD and other autoimmune diseases. In this paper, we present the case of an adult woman with numbness, tingling, and burning sensations in her arms and subsequent bilateral internuclear ophthalmoplegia. Brain-cervical-thoracic magnetic resonance imaging (MRI) showed T2 hyperintensities in the dorsal brainstem and around the midbrain aqueduct and longitudinally transverse myelitis with homogeneous enhancement on gadolinium-enhanced MRI. The contemporaneous detection of AQP4- and AGO-Abs led to a definite diagnosis of overlap syndrome of NMOSD with AGO-Abs. The patient was treated with immunosuppressive agents, including corticosteroids and immunoglobulins, and achieved remission. This case highlights a novel phenotype of NMOSD with AGO-Abs overlap syndrome, which presents with relapsing brainstem syndrome and longitudinally extensive myelitis with acute severe neurological involvement. The promising prognosis of the disease could serve as a distinct clinical profile. Broad screening for antibodies against central nervous system autoimmune antigens is recommended in suspected patients with limited or atypical clinical manifestations.


Subject(s)
Autoantibodies , Neuromyelitis Optica , Humans , Neuromyelitis Optica/immunology , Neuromyelitis Optica/diagnosis , Neuromyelitis Optica/drug therapy , Female , Autoantibodies/immunology , Autoantibodies/blood , Aquaporin 4/immunology , Adult , Biomarkers , Magnetic Resonance Imaging , Middle Aged , Immunosuppressive Agents/therapeutic use
9.
Proc Natl Acad Sci U S A ; 121(25): e2322765121, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38865263

ABSTRACT

Antiviral RNA interference (RNAi) is conserved from yeasts to mammals. Dicer recognizes and cleaves virus-derived double-stranded RNA (dsRNA) and/or structured single-stranded RNA (ssRNA) into small-interfering RNAs, which guide effector Argonaute to homologous viral RNAs for digestion and inhibit virus replication. Thus, Argonaute is believed to be essential for antiviral RNAi. Here, we show Argonaute-independent, Dicer-dependent antiviral defense against dsRNA viruses using Cryphonectria parasitica (chestnut blight fungus), which is a model filamentous ascomycetous fungus and hosts a variety of viruses. The fungus has two dicer-like genes (dcl1 and dcl2) and four argonaute-like genes (agl1 to agl4). We prepared a suite of single to quadruple agl knockout mutants with or without dcl disruption. We tested these mutants for antiviral activities against diverse dsRNA viruses and ssRNA viruses. Although both DCL2 and AGL2 worked as antiviral players against some RNA viruses, DCL2 without argonaute was sufficient to block the replication of other RNA viruses. Overall, these results indicate the existence of a Dicer-alone defense and different degrees of susceptibility to it among RNA viruses. We discuss what determines the great difference in susceptibility to the Dicer-only defense.


Subject(s)
RNA Viruses , Ribonuclease III , Ribonuclease III/metabolism , Ribonuclease III/genetics , RNA Viruses/immunology , RNA Viruses/genetics , Argonaute Proteins/metabolism , Argonaute Proteins/genetics , Ascomycota/virology , RNA Interference , Virus Replication/genetics , RNA, Viral/metabolism , RNA, Viral/genetics , Fungal Proteins/metabolism , Fungal Proteins/genetics , RNA, Double-Stranded/metabolism
10.
Gene ; 922: 148544, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38734187

ABSTRACT

This study introduces an efficient RPA-PfAgo detection system for the MTHFR C677T polymorphism, proposing a potential strategy to simplify the genotyping process. By optimizing recombinase polymerase amplification (RPA) with Pyrococcus furiosus Argonaute (PfAgo) nucleases, we achieved DNA amplification at a constant temperature. The assay was fine-tuned through meticulous primer and guide DNA selection, with optimal conditions established at 2.0 µL of MgAc, a reaction temperature of 42 °C, and a 10-minute reaction time for RPA. Further optimization of the PfAgo cleavage assay revealed the ideal concentrations of MnCl2, guide DNA, molecular beacon probes, the PfAgo enzyme, and the RPA product to maximize sensitivity and specificity. Clinical validation of 20 samples showed 100% concordance with Sanger sequencing, confirming the method's precision. The RPA-PfAgo system is a promising tool for on-site genotyping, with broad applications in personalized medicine and disease prevention.


Subject(s)
Genotyping Techniques , Methylenetetrahydrofolate Reductase (NADPH2) , Humans , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Genotyping Techniques/methods , Polymorphism, Single Nucleotide , Pyrococcus furiosus/genetics , Pyrococcus furiosus/enzymology , Genotype , Nucleic Acid Amplification Techniques/methods , Argonaute Proteins/genetics , Recombinases/metabolism , Recombinases/genetics
11.
Plant Sci ; 345: 112114, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38735397

ABSTRACT

Argonaute (AGO) proteins are the core components of the RNA-induced silencing complexes (RISC) in the cytoplasm and nucleus, and are necessary for the development of plant shoot meristem, which gives rise to the above-ground plant body. In this study, we identified 23 Phyllostachys edulis AGO genes (PhAGOs) that were distributed unequally on the 14 unmapped scaffolds. Gene collinearity and phylogeny analysis showed that the innovation of PhAGO genes was mainly due to dispersed duplication and whole-genome duplication, which resulted in the enlarged PhAGO family. PhAGO genes were expressed in a temporal-spatial expression pattern, and they encoded proteins differently localized in the cytoplasm and/or nucleus. Overexpression of the PhAGO2 and PhAGO4 genes increased the number of tillers or leaves in Oryza sativa and affected the shoot architecture of Arabidopsis thaliana. These results provided insight into the fact that PhAGO genes play important roles in plant development.


Subject(s)
Argonaute Proteins , Phylogeny , Plant Shoots , Plant Shoots/genetics , Plant Shoots/growth & development , Plant Shoots/metabolism , Argonaute Proteins/genetics , Argonaute Proteins/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Oryza/genetics , Oryza/growth & development , Oryza/metabolism , Gene Expression Regulation, Plant , Genes, Plant , Arabidopsis/genetics , Arabidopsis/growth & development
12.
Parasitology ; : 1-7, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767317

ABSTRACT

Small nucleolar RNAs (snoRNAs) are short non-coding RNAs that are abundant in the nucleoli of eukaryotic cells and play a crucial role in various aspects of ribosomal RNA (rRNA) maturation, including modifications such as 2'-O-methylation or pseudouridylation. On the other hand, Giardia duodenalis is a microaerophilic, flagellated, binucleate protozoan responsible for causing giardiasis. Although numerous snoRNAs have been detected in Giardia, their investigation remains limited. Nevertheless, they have been found to play a crucial role in the rRNA precursor processing pathway and influence other cellular functions. In addition, it has been proposed that some microRNAs are generated from these snoRNAs through excision by the Giardia endoribonuclease Dicer. These microRNAs are believed to contribute to the regulation of antigenic variation, which allows the parasite to evade the host immune response. Specifically, they play a role in modulating variant-specific surface proteins (VSPs) and other cysteine-rich surface antigens (CSAs). The main objective of this study was to bring together the available data on snoRNAs in Giardia, uncovering their functions in various processes and their importance on a global scale. In addition, the research delved into potential microRNAs speculated to originate from snoRNAs, exploring their impact on cellular processes.

13.
Genome Biol Evol ; 16(5)2024 05 02.
Article in English | MEDLINE | ID: mdl-38713108

ABSTRACT

In animals, three main RNA interference mechanisms have been described so far, which respectively maturate three types of small noncoding RNAs (sncRNAs): miRNAs, piRNAs, and endo-siRNAs. The diversification of these mechanisms is deeply linked with the evolution of the Argonaute gene superfamily since each type of sncRNA is typically loaded by a specific Argonaute homolog. Moreover, other protein families play pivotal roles in the maturation of sncRNAs, like the DICER ribonuclease family, whose DICER1 and DICER2 paralogs maturate respectively miRNAs and endo-siRNAs. Within Metazoa, the distribution of these families has been only studied in major groups, and there are very few data for clades like Lophotrochozoa. Thus, we here inferred the evolutionary history of the animal Argonaute and DICER families including 43 lophotrochozoan species. Phylogenetic analyses along with newly sequenced sncRNA libraries suggested that in all Trochozoa, the proteins related to the endo-siRNA pathway have been lost, a part of them in some phyla (i.e. Nemertea, Bryozoa, Entoprocta), while all of them in all the others. On the contrary, early diverging phyla, Platyhelminthes and Syndermata, showed a complete endo-siRNA pathway. On the other hand, miRNAs were revealed the most conserved and ubiquitous mechanism of the metazoan RNA interference machinery, confirming their pivotal role in animal cell regulation.


Subject(s)
Evolution, Molecular , MicroRNAs , Phylogeny , RNA Interference , Ribonuclease III , Animals , Ribonuclease III/genetics , MicroRNAs/genetics , RNA, Small Interfering/genetics , Argonaute Proteins/genetics , Invertebrates/genetics
14.
bioRxiv ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38766062

ABSTRACT

The RNA-induced silencing complex (RISC), which powers RNA interference (RNAi), consists of a guide RNA and an Argonaute protein that slices target RNAs complementary to the guide. We find that for different guide-RNA sequences, slicing rates of perfectly complementary, bound targets can be surprisingly different (>250-fold range), and that faster slicing confers better knockdown in cells. Nucleotide sequence identities at guide-RNA positions 7, 10, and 17 underlie much of this variation in slicing rates. Analysis of one of these determinants implicates a structural distortion at guide nucleotides 6-7 in promoting slicing. Moreover, slicing directed by different guide sequences has an unanticipated, 600-fold range in 3'-mismatch tolerance, attributable to guides with weak (AU-rich) central pairing requiring extensive 3' complementarity (pairing beyond position 16) to more fully populate the slicing-competent conformation. Together, our analyses identify sequence determinants of RISC activity and provide biochemical and conformational rationale for their action.

15.
Viruses ; 16(4)2024 03 30.
Article in English | MEDLINE | ID: mdl-38675882

ABSTRACT

As a mosquito-borne flavivirus, Zika virus (ZIKV) has been identified as a global health threat. The virus has been linked to severe congenital disabilities, including microcephaly and other congenital malformations, resulting in fatal intrauterine death. Therefore, developing sensitive and specific methods for the early detection and accurate diagnosis of the ZIKV is essential for controlling its spread and mitigating its impact on public health. Herein, we set up a novel nucleic acid detection system based on Pyrococcus furiosus Argonaute (PfAgo)-mediated nucleic acid detection, targeting the non-structural protein 5 (NS5) region of the ZIKV genome (abbreviated ZIKV-PAND). Without preamplification with the polymerase chain reaction (PCR), the minimum detection concentration (MDC) of ZIKV-PAND was about 10 nM. When introducing an amplification step, the MDC can be dramatically decreased to the aM level (8.3 aM), which is comparable to qRT-PCR assay (1.6 aM). In addition, the diagnostic findings from the analysis of simulated clinical samples or Zika virus samples using ZIKV-PAND show a complete agreement of 100% with qRT-PCR assays. This correlation can aid in the implementation of molecular testing for clinical diagnoses and the investigation of ZIKV infection on an epidemiological scale.


Subject(s)
Pyrococcus furiosus , Viral Nonstructural Proteins , Zika Virus Infection , Zika Virus , Zika Virus/genetics , Zika Virus/isolation & purification , Zika Virus Infection/diagnosis , Zika Virus Infection/virology , Humans , Viral Nonstructural Proteins/genetics , Pyrococcus furiosus/genetics , Argonaute Proteins/genetics , Sensitivity and Specificity , RNA, Viral/genetics , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , Genome, Viral
16.
MedComm (2020) ; 5(4): e543, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38585233

ABSTRACT

High metastatic propensity of osteosarcoma leads to its therapeutic failure and poor prognosis. Although nuclear activation miRNAs (NamiRNAs) are reported to activate gene transcription via targeting enhancer and further promote tumor metastasis, it remains uncertain whether NamiRNAs regulate osteosarcoma metastasis and their exact mechanism. Here, we found that extracellular vesicles of the malignant osteosarcoma cells (143B) remarkably increased the migratory abilities of MNNG cells representing the benign osteosarcoma cells by two folds, which attributed to their high miR-1246 levels. Specially, miR-1246 located in nucleus could activate the migration gene expression (such as MMP1) to accelerate MNNG cell migration through elevating the enhancer activities via increasing H3K27ac enrichment. Instead, MMP1 expression was dramatically inhibited after Argonaute 2 (AGO2) knockdown. Notably, in vitro assays demonstrated that AGO2 recognized the hybrids of miR-1246 and its enhancer DNA via PAZ domains to prevent their degradation from RNase H and these protective roles of AGO2 may favor the gene activation by miR-1246 in vivo. Collectively, our findings suggest that miR-1246 could facilitate osteosarcoma metastasis through interacting with enhancer to activate gene expression dependent on AGO2, highlighting the nuclear AGO2 as a guardian for NamiRNA-targeted gene activation and the potential of miR-1246 for osteosarcoma metastasis therapy.

17.
Poult Sci ; 103(7): 103729, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38676965

ABSTRACT

Since 2015, an outbreak of an infectious disease in broilers caused by fowl adenovirus serotype 4 (FAdV-4) has occurred in China, resulting in substantial economic losses. Rapid, accurate, and specific detection are significant in the prevention and control of FAdV-4. In this study, an FAdV-4 detection method combining loop-mediated isothermal amplification (LAMP) and Pyrococcus furiosus Argonaute (PfAgo) was established. Specific primers, guide DNAs (gDNAs), and molecular beacons were designed to target a conserved region of the FAdV-4 hexon gene. After optimizing the reaction conditions, the minimum detection of this assay could reach 5 copies. It only amplified FAdV-4, and there was no cross-reactivity with other pathogens. The assay took about only 50 min, and the results could be visualized with the naked eye under ultraviolet or blue light, getting rid of specialized instruments. This novel LAMP-PfAgo assay was validated by using 20 clinical samples and the results were identical to gold-standard real-time polymerase chain reaction method. In summary, the LAMP-PfAgo assay established in the paper provides a rapid, reliable, convenient, ultra-sensitive and highly specific tool for the on-site detection and clinical diagnosis of FAdV-4.


Subject(s)
Adenoviridae Infections , Aviadenovirus , Chickens , Nucleic Acid Amplification Techniques , Poultry Diseases , Pyrococcus furiosus , Nucleic Acid Amplification Techniques/veterinary , Nucleic Acid Amplification Techniques/methods , Adenoviridae Infections/veterinary , Adenoviridae Infections/virology , Adenoviridae Infections/diagnosis , Animals , Poultry Diseases/virology , Poultry Diseases/diagnosis , Pyrococcus furiosus/genetics , Aviadenovirus/genetics , Aviadenovirus/isolation & purification , Aviadenovirus/classification , Sensitivity and Specificity , Serogroup , Argonaute Proteins/genetics , Molecular Diagnostic Techniques/veterinary , Molecular Diagnostic Techniques/methods
18.
EMBO Rep ; 25(5): 2441-2478, 2024 May.
Article in English | MEDLINE | ID: mdl-38649663

ABSTRACT

Ago2 differentially regulates oncogenic and tumor-suppressive miRNAs in cancer cells. This discrepancy suggests a secondary event regulating Ago2/miRNA action in a context-dependent manner. We show here that a positive charge of Ago2 K212, that is preserved by SIR2-mediated Ago2 deacetylation in cancer cells, is responsible for the direct interaction between Ago2 and Caveolin-1 (CAV1). Through this interaction, CAV1 sequesters Ago2 on the plasma membranes and regulates miRNA-mediated translational repression in a compartment-dependent manner. Ago2/CAV1 interaction plays a role in miRNA-mediated mRNA suppression and in miRNA release via extracellular vesicles (EVs) from tumors into the circulation, which can be used as a biomarker of tumor progression. Increased Ago2/CAV1 interaction with tumor progression promotes aggressive cancer behaviors, including metastasis. Ago2/CAV1 interaction acts as a secondary event in miRNA-mediated suppression and increases the complexity of miRNA actions in cancer.


Subject(s)
Argonaute Proteins , Caveolin 1 , MicroRNAs , Neoplasm Metastasis , Animals , Humans , Mice , Argonaute Proteins/metabolism , Argonaute Proteins/genetics , Caveolin 1/metabolism , Caveolin 1/genetics , Cell Line, Tumor , Extracellular Vesicles/metabolism , Gene Expression Regulation, Neoplastic , MicroRNAs/metabolism , MicroRNAs/genetics , Neoplasms/metabolism , Neoplasms/genetics , Neoplasms/pathology , Protein Binding , Sirtuin 2/metabolism , Sirtuin 2/genetics
19.
Food Microbiol ; 120: 104475, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38431321

ABSTRACT

Alicyclobacillus acidoterrestris is the major threat to fruit juice for its off-odor producing characteristic. In this study, Pyrococcus furiosus Argonaute (PfAgo), a novel endonuclease with precise DNA cleavage activity, was used for A. acidoterrestrisdetection, termed as PAD. The partially amplified 16 S rRNA gene of A. acidoterrestris can be cleaved by PfAgo activated by a short 5'-phosphorylated single strand DNA, producing a new guide DNA (gDNA). Then, PfAgo was activated by the new gDNA to cut a molecular beacon (MB) with fluorophore-quencher reporter, resulting in the recovery of fluorescence. The fluorescent intensity is positively related with the concentration of A. acidoterrestris. The PAD assay showed excellent specificity and sensitivity as low as 101 CFU/mL, which can be a powerful tool for on-site detection of A. acidoterrestris in fruit juice industry in the future, reducing the economic loss.


Subject(s)
Alicyclobacillus , Pyrococcus furiosus , Fruit and Vegetable Juices , Pyrococcus furiosus/genetics , Alicyclobacillus/genetics , DNA , Fruit
20.
Plant Cell Rep ; 43(4): 96, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38480545

ABSTRACT

KEY MESSAGE: Barley AGO4 proteins complement expressional changes of epigenetically regulated genes in Arabidopsis ago4-3 mutant and show a distinct affinity for the 5' terminal nucleotide of small RNAs, demonstrating functional conservation and divergence. The function of Argonaute 4 (AGO4) in Arabidopsis thaliana has been extensively characterized; however, its role in monocots, which have large genomes abundantly supplemented with transposable elements (TEs), remains elusive. The study of barley AGO4 proteins can provide insights into the conserved aspects of RNA-directed DNA methylation (RdDM) and could also have further applications in the field of epigenetics or crop improvement. Bioinformatic analysis of RNA sequencing data identified two active AGO4 genes in barley, HvAGO4a and HvAGO4b. These genes function similar to AtAGO4 in an Arabidopsis heterologous complementation system, primarily binding to 24-nucleotide long small RNAs (sRNAs) and triggering methylation at specific target loci. Like AtAGO4, HvAGO4B exhibits a preference for binding sRNAs with 5' adenine residue, while also accepting 5' guanine, uracil, and cytosine residues. In contrast, HvAGO4A selectively binds only sRNAs with a 5' adenine residue. The diverse binding capacity of barley AGO4 proteins is reflected in TE-derived sRNAs and in their varying abundance. Both barley AGO4 proteins effectively restore the levels of extrachromosomal DNA and transcript abundancy of the heat-activated ONSEN retrotransposon to those observed in wild-type Arabidopsis plants. Our study provides insight into the distinct binding specificities and involvement in TE regulation of barley AGO4 proteins in Arabidopsis by heterologous complementation.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Hordeum , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Hordeum/genetics , Hordeum/metabolism , RNA, Small Interfering/genetics , Nucleotides/metabolism , Adenine/metabolism , DNA Methylation/genetics , RNA, Plant/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...