Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Mol Cancer ; 23(1): 48, 2024 03 08.
Article in English | MEDLINE | ID: mdl-38459558

ABSTRACT

BACKGROUND: Pancreatic adenocarcinoma (PC) is an aggressive malignancy with limited treatment options. The poor prognosis primarily stems from late-stage diagnosis and when the disease has become therapeutically challenging. There is an urgent need to identify specific biomarkers for cancer subtyping and early detection to enhance both morbidity and mortality outcomes. The addition of the EGFR tyrosine kinase inhibitor (TKI), erlotinib, to gemcitabine chemotherapy for the first-line treatment of patients with advanced pancreatic cancer slightly improved outcomes. However, restricted clinical benefits may be linked to the absence of well-characterized criteria for stratification and dependable biomarkers for the prediction of treatment effectiveness. METHODS AND RESULTS: We examined the levels of various cancer hallmarks and identified glycolysis as the primary risk factor for overall survival in PC. Subsequently, we developed a glycolysis-related score (GRS) model to accurately distinguish PC patients with high GRS. Through in silico screening of 4398 compounds, we discovered that erlotinib had the strongest therapeutic benefits for high-GRS PC patients. Furthermore, we identified ARNTL2 as a novel prognostic biomarker and a predictive factor for erlotinib treatment responsiveness in patients with PC. Inhibition of ARNTL2 expression reduced the therapeutic efficacy, whereas increased expression of ARNTL2 improved PC cell sensitivity to erlotinib. Validation in vivo using patient-derived xenografts (PDX-PC) with varying ARNTL2 expression levels demonstrated that erlotinib monotherapy effectively halted tumor progression in PDX-PC models with high ARNTL2 expression. In contrast, PDX-PC models lacking ARNTL2 did not respond favorably to erlotinib treatment. Mechanistically, we demonstrated that the ARNTL2/E2F1 axis-mediated cellular glycolysis sensitizes PC cells to erlotinib treatment by activating the PI3K/AKT signaling pathway. CONCLUSIONS: Our investigations have identified ARNTL2 as a novel prognostic biomarker and predictive indicator of sensitivity. These results will help to identify erlotinib-responsive cases of PC and improve treatment outcomes. These findings contribute to the advancement of precision oncology, enabling more accurate and targeted therapeutic interventions.


Subject(s)
Adenocarcinoma , Lung Neoplasms , Pancreatic Neoplasms , Humans , Adenocarcinoma/drug therapy , Adenocarcinoma/genetics , ARNTL Transcription Factors/metabolism , Biomarkers/metabolism , Cell Line, Tumor , ErbB Receptors/metabolism , Erlotinib Hydrochloride/pharmacology , Lung Neoplasms/pathology , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Precision Medicine , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction
2.
Transl Oncol ; 41: 101877, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38262107

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy with an extremely poor prognosis. Cancer stem cells (CSCs) are considered to be responsible for the poor survival, recurrence and therapy resistance of PDAC. Ferroptosis plays a crucial role in the sustain and survival of CSCs. Here, we employed a rigorous evaluation of multiple datasets to identify a novel stemness-based and ferroptosis-related genes (SFRGs) signature to access the potential prognostic application. This work we retrieved RNA-sequencing and clinical annotation data from the TCGA, ICGC, GTEx and GEO database, and acquired 26 stem cell gene sets and 259 ferroptosis genes from StemChecker database and FerrDb database, respectively. Based on consensus clustering and ssGSEA analysis, we identified two expression patterns of CSCs traits (C1 and C2). Then, WGCNA analysis was implemented to screen out hub module genes correlated with stemness. Furthermore, differential expression analysis, Pearson correlation analysis, and the Least absolute shrinkage and selection operator (LASSO) and Cox regression were performed to identify the SFRGs and to construct model. In addition, the differences in prognosis, tumor microenvironment (TME) components and therapy responses were evaluated between two risk groups. Finally, we verified the most influential marker ARNTL2 experimentally by western blot, qRT-PCR, sphere formation assay, mitoscreen assay, intracellular iron concentration determination and MDA determination assays. In conclusion, we developed a stemness-based and ferroptosis-related prognostic model, which could help predict overall survival for PDAC patients. Targeting ferroptosis may be a promising therapeutic strategy to inhibit PDAC progression by suppressing CSCs.

3.
Clin Cosmet Investig Dermatol ; 16: 2919-2930, 2023.
Article in English | MEDLINE | ID: mdl-37873510

ABSTRACT

Background: Atopic dermatitis (AD) is an allergic inflammatory skin disease caused by aberrant and over-reactive immune response. Although circadian rhythm disruption is implicated in multiple immunoinflammatory conditions, including AD, the mechanisms at the molecular level underlying AD and circadian rhythms remain elusive. Methods: Bulk and single-cell RNA-sequencing data of AD patients were acquired from the Gene Expression Omnibus, including GSE121212, GSE120721, and GSE153760 datasets. A single-sample gene set enrichment analysis was performed to estimate circadian rhythm gene expression levels. A differential expression analysis was utilized to identify the key candidate genes in AD. CIBERSORT was used to quantify the proportions of immune cells, and the R package "Seurat" was utilized to investigate single-cell RNA-sequencing data. Results: Circadian rhythm gene expression levels were lower in AD skin samples than in normal skin samples. Dendritic cells were significantly upregulated and negatively correlated with circadian rhythm gene expression levels in AD patients. Compared with circadian rhythm-related genes in the control samples, ARNTL2, NOCT, and RORC were differentially expressed in AD; ARNTL2 and NOCT were significantly upregulated, whereas RORC was significantly downregulated in AD. ARNTL2, NOCT, and RORC also showed robust abilities to diagnose AD. We validated that the abundance of the dendritic cell was positively correlated with the ARNTL2 and NOCT expression levels using bulk RNA-sequencing data of the GSE121212 and single-cell RNA-sequencing data of the GSE153760. Moreover, the functional enrichment analysis showed that the IL-17 and NF-κB signaling pathways, Th1 and Th2 cell differentiations, and primary immunodeficiency, were enriched in AD patients. Conclusion: The findings of this study suggested that the circadian rhythm is involved in the progression of AD, and RNTL2, NOCT, and RORC as well as dendritic cells are differentially expressed in AD. These findings could be used to introduce diagnostic and chronotherapeutic modalities for AD.

4.
J Exp Clin Cancer Res ; 42(1): 229, 2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37667322

ABSTRACT

BACKGROUND: As a subclass of endogenous stable noncoding RNAs, circular RNAs are beginning to be appreciated for their potential as tumor therapeutics. However, the functions and mechanisms by which circRNAs exert protective functions in non-small cell lung cancer (NSCLC) remain largely elusive. METHODS: The prognostic role of circGUCY1A2 was explored in lung adenocarcinoma specimens. The overexpressed and knockdown plasmids were used to evaluate the effect of circGUCY1A2 on NSCLC cell proliferation and apoptosis efficacy. Luciferase reporter system is used to prove that circGUCY1A2 could bind to miRNA. Chip-PCR was used to prove that circGUCY1A2 could be initiated by transcription factors ARNTL. Subcutaneous tumorigenicity grafts models were established to validate findings in vivo. RESULTS: The expression of circGUCY1A2 were significantly reduced (P < 0.001) and negatively correlated with tumor size (P < 0.05) in non-small cell lung cancer (NSCLC). CircGUCY1A2 upregulation promoted apoptosis and inhibits cell proliferation and growth of subcutaneous tumorigenicity grafts in nude mice (P < 0.01). In addition, intra-tumor injection of pLCDH-circGUCY1A2 inhibited tumor growth in patient-derived NSCLC xenograft models (PDX). Mechanism studies showed that circGUCY1A2 could act as a sponge to competitively bind miR-200c-3p, promote PTEN expression, and thereby inhibit PI3K/AKT pathway. In addition, we found that the circadian gene ARNTL, which was reduced in NSCLC and prolonged the overall survival of patients, could bind to the promoter of circGUCY1A2, thereby increasing its expression. CONCLUSIONS: This study is an original demonstration that ARNTL can inhibit the development of lung adenocarcinoma through the circGUCY1A2/miR-200c-3p/PTEN axis, and this finding provides potential targets and therapeutic approaches for the treatment of lung adenocarcinoma.


Subject(s)
ARNTL Transcription Factors , Adenocarcinoma of Lung , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , RNA, Circular , Animals , Humans , Mice , Carcinoma, Non-Small-Cell Lung/genetics , Disease Models, Animal , Lung Neoplasms/genetics , Mice, Nude , Phosphatidylinositol 3-Kinases , PTEN Phosphohydrolase/genetics , RNA, Circular/genetics
5.
Cell Signal ; 111: 110883, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37690659

ABSTRACT

BACKGROUND: The prevalence of ferroptosis in diabetic kidney tubules has been documented, yet the underlying mechanism remains elusive. The aim of this study was to ascertain the pivotal gene linked to ferroptosis and establish a novel target for the prevention and management of diabetic kidney disease (DKD). METHODS: Transcriptomics data (GSE184836) from DKD mice (C57BLKS/J) were retrieved from the GEO database and intersected with ferroptosis-related genes from FerrDb. Then, differentially expressed genes associated with ferroptosis in the glomeruli and tubules were screened. Gene ontology analysis and protein-protein interaction network construction were used to identify key genes. Western blotting and real-time quantitative polymerase chain reaction were employed to validate the expression in the same model. Aryl hydrocarbon receptor nuclear translocator-like protein 1 (ARNTL) expression in patients and mice with DKD was assessed using immunohistochemistry staining. ARNTL knockdown in C57BLKS/J mice was established and plasma malonaldehyde, superoxide dismutase, and renal pathology were analyzed. The efficacy of ARNTL knockdown was evaluated using proteomics analysis. Mitochondrial morphology was observed using transmission electron microscopy. RESULTS: ARNTL was screened by bioinformatics analysis and its overexpression verified in patients and mice with DKD. ARNTL knockdown reduced oxidative stress in plasma. Kidney proteomics revealed that ferroptosis was inhibited. The reduction of the classic alteration in mitochondrial morphology associated with ferroptosis was also observed. Gene set enrichment analysis demonstrated that the downregulation of the TGFß pathway coincided with a decrease in collagen protein and TGFß1 levels. CONCLUSIONS: The ferroptosis-associated gene ARNTL is a potential target for treating DKD.

6.
Cancer Sci ; 114(10): 3914-3923, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37562810

ABSTRACT

Current studies have shown that ARNTL, an important clock gene, plays an anticancer role and is downregulated in certain types of cancer. However, the biological functions and mechanisms of ARNTL in tumors remain largely unknown. This study aimed to elucidate how ARNTL-induced autophagy impacts the biological properties of tongue squamous cell carcinoma (TSCC) cells and the mechanisms by which ARNTL expression activates autophagy. ARNTL was stably overexpressed in TSCC cells to investigate its functions in vitro and in vivo. We found that activation of autophagy induced by ARNTL decreases cell proliferation, enhances cell death, and hinders the migratory ability of TSCC cells. Moreover, ARNTL antagonizes the AKT/mTOR pathway, which potentiates autophagy induction. The manipulation of Akt activation cancels the effects of ARNTL overexpression on the biological behaviors of TSCC cells. Furthermore, after the addition of SC79, the upregulated BAX expression due to ARNTL overexpression and downregulated expressions of BCL-2 and MMP2 were remarkably rescued. In vivo tumorigenicity assays and immunohistochemistry also confirmed that ARNTL overexpression suppresses tumor development. Our study found for the first time that ARNTL inhibits the malignant behaviors of oral cancer cells by regulating autophagy in an AKT/mTOR pathway-dependent manner, which provides a novel theoretical basis for the potential future application of ARNTL to treat patients with oral cancer.

7.
Front Endocrinol (Lausanne) ; 14: 1138386, 2023.
Article in English | MEDLINE | ID: mdl-37334314

ABSTRACT

Background: Non-obstructive azoospermia (NOA) is the most severe type that leads to 1% of male infertility. Wnt signaling governs normal sperm maturation. However, the role of Wnt signaling in spermatogonia in NOA has incompletely been uncovered, and upstream molecules regulating Wnt signaling remain unclear. Methods: Bulk RNA sequencing (RNA-seq) of NOA was used to identify the hub gene module in NOA utilizing weighted gene co-expression network analyses (WGCNAs). Single-cell RNA sequencing (scRNA-seq) of NOA was employed to explore dysfunctional signaling pathways in the specific cell type with gene sets of signaling pathways. Single-cell regulatory network inference and clustering (pySCENIC) for Python analysis was applied to speculate putative transcription factors in spermatogonia. Moreover, single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) determined the regulated genes of these transcription factors. Finally, spatial transcriptomic data were used to analyze cell type and Wnt signaling spatial distribution. Results: The Wnt signaling pathway was demonstrated to be enriched in the hub gene module of NOA by bulk RNA-seq. Then, scRNA-seq data revealed the downregulated activity and dysfunction of Wnt signaling of spermatogonia in NOA samples. Conjoint analyses of the pySCENIC algorithm and scATAC-seq data indicated that three transcription factors (CTCF, AR, and ARNTL) were related to the activities of Wnt signaling in NOA. Eventually, spatial expression localization of Wnt signaling was identified to be in accordance with the distribution patterns of spermatogonia, Sertoli cells, and Leydig cells. Conclusion: In conclusion, we identified that downregulated Wnt signaling of spermatogonia in NOA and three transcription factors (CTCF, AR, and ARNTL) may be involved in this dysfunctional Wnt signaling. These findings provide new mechanisms for NOA and new therapeutic targets for NOA patients.


Subject(s)
Azoospermia , Humans , Male , Azoospermia/genetics , Wnt Signaling Pathway/genetics , ARNTL Transcription Factors/metabolism , Spermatogonia/metabolism , Multiomics , Semen/metabolism
8.
Front Immunol ; 14: 1115809, 2023.
Article in English | MEDLINE | ID: mdl-37275880

ABSTRACT

Background: Aryl hydrocarbon receptor nuclear translocator-like 2 (ARNTL2) belongs to the b HLH- PAS domain transcription factor family and is one of the key clock genes that control the circadian rhythm. ARNTL2 plays an important role in human biological functions. However, its role in various tumors, especially in the tumor immune microenvironment (TIME) and immunotherapy, remains unclear. Methods: We integrated data from cancer patients from multiple databases, including the Cancer Genome Atlas, Cancer Cell Lineage Encyclopedia, Genotype Tissue Expression, Human Protein Atlas, cBioPortal, TIMER, and ImmuCellAI, with data from a large clinical study, three immunotherapy cohorts, and in vitro experiments to investigate the involvement of ARNTL2 expression in cancer prognosis and immune response. Results: ARNTL2 displayed abnormal expression within most malignant tumors, and is significantly associated with poorer survival and pathologic staging. Through gene-set enrichment analysis (GSEA) and gene-set variation analysis (GSVA), we found that ARNTL2 not only regulates cell cycle-related functions to promote cell proliferation but also regulates autoimmunity-related functions of the innate and adaptive immune systems, and other immune-related signaling pathways. In addition, ARNTL2 overexpression contributes to an immunosuppressive tumor microenvironment that plays a key role in immunosuppression-related features, such as the expression of immunosuppression-related genes and pathways and the number of immunosuppressive-infiltrating cells, including regulatory T cells (Tregs), tumor-associated macrophages (TAMs), and cancer-associated fibroblasts (CAFs). The group of patients with low ARNTL2 expression who received immune checkpoint inhibitors (ICI) therapy had better response rates and longer survival when compared to those with high ARNTL2 expression. Conclusion: The findings of this study suggest that ARNTL2 is a potential human oncogene that plays an important role in tumorigenesis and cancer immunity. Elevated ARNTL2 expression indicates an immunosuppressive tumor microenvironment. Targeting ARNTL2 in combination with ICI therapy could bring more significant therapeutic benefits to patients with cancer. Our study sheds light on the remarkable potential of ARNTL2 in tumor immunity and provides a novel perspective for anti-tumor strategies.


Subject(s)
ARNTL Transcription Factors , Biomarkers, Tumor , Neoplasms , Tumor Microenvironment , Humans , Cell Line, Tumor , ARNTL Transcription Factors/genetics , Prognosis , Protein Interaction Maps , Signal Transduction , Immunotherapy , Treatment Outcome , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/therapy , Up-Regulation , Biomarkers , Biomarkers, Tumor/genetics
9.
BMC Mol Cell Biol ; 24(1): 14, 2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37003979

ABSTRACT

BACKGROUND: Recent studies have reported that the circadian transcription factor aryl hydrocarbon receptor nuclear translocator like 2 (ARNTL2) promotes the metastatic progression of lung adenocarcinoma. However, the molecular mechanisms of ARNTL2 in non-small cell lung cancer (NSCLC) cell growth and proliferation remain to be explored. METHODS: The expression of ARNTL2 and acyl-CoA thioesterase 7 (ACOT7) in lung cancer patients was analyzed based on TCGA database. Gain-of-function of ARNTL2 and ACOT7 was conducted by transfecting the cells with plasmids or lentivirus. Knockdown assay was carried out by siRNAs. Western blot and qRT-PCR were performed to check the protein and mRNA expression. Dual luciferase and ChIP-qPCR assay was applied to check the interaction of ARNTL2 on ACOT7's promoter sequence. Triglyceride level, MDA production, the activity of casapase 3 to caspase 7, and lipid ROS were measured by indicated assay kit. Cellular function was detected by CCK8, colony formation and flow cytometry analysis of cell death and cell cycle. RESULTS: We demonstrated that ARNTL2 upregulation of ACOT7 was critical for NSCLC cell growth and proliferation. Firstly, overexpression of ARNTL2 conferred the poor prognosis of LUAD patients and supported the proliferation of NSCLC cells. Based on molecular experiments, we showed that ARNTL2 potentiated the transcription activity of ACOT7 gene via direct binding to ACOT7's promoter sequence. ACOT7 high expression was correlated with the worse prognosis of LUAD patients. Gain-of-function and loss-of-function experiments revealed that AOCT7 contributed to NSCLC cell growth and proliferation. ACOT7 regulated the apoptosis and ferroptosis of NSCLC cells, while exhibited no effect on cell cycle progression. ACOT7 overexpression also potentiated fatty acid synthesis and suppressed lipid peroxidation. Lastly, we showed that ARNTL2 knockdown and overexpression inhibited and promoted the cellular triglyceride production and subsequent cell proliferation, which could be reversed by ACOT7 overexpression and knockdown. CONCLUSION: Our study illustrated the oncogenic function of ARNTL2/ACOT7 axis in the development of NSCLC. Targeting ARNTL2 or ACOT7 might be promising therapeutic strategies for NSCLC patients with highly expressed ARNTL2.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Ferroptosis , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Up-Regulation/genetics , Lung Neoplasms/metabolism , Ferroptosis/genetics , Apoptosis/genetics , Cell Proliferation/genetics , ARNTL Transcription Factors/genetics
10.
Balkan J Med Genet ; 26(2): 41-50, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38482265

ABSTRACT

Hypertension is a multifactorial chronic disease due to the interaction of environmental factors with genetic alteration. KLOTHO and ARNTL genes play an important role in the development of hypertension. Therefore, we analyzed the methylation status of KLOTHO and ARNTL genes by using methylation-sensitive high-resolution melting (MSHRM) in a total of 78 hypertensive and 49 control subjects. In this study, we could not identify a significant association between KLOTHO and ARNTL methylation and the hypertensive phenotype. Moreover, we could not find a direct association between KLOTHO and ARNTL methylation and the fasting blood sugar, triglycerides, total cholesterol, LDL-cholesterol, HDL-cholesterol, sodium (Na), creatinine (Cr), potassium (K), and urea levels in hypertensive patients. However, we found a significant difference between the methylated KLOTHO hypertensive patients and the unmethylated KLOTHO control subjects for potassium (K).

11.
Front Neurol ; 13: 1032038, 2022.
Article in English | MEDLINE | ID: mdl-36561297

ABSTRACT

To screen for common target genes in intracranial aneurysms (IA) and type 2 diabetes mellitus (T2DM), construct a common transcriptional regulatory network to predict clusters of candidate genes involved in the pathogenesis of T2DM and IA, and identify the common neurovascular markers and pathways in T2DM causing IA. Microarray datasets (GSE55650, GSE25462, GSE26969, GSE75436, and GSE13353) from the GEO database were analyzed in this research. Screening of the IA and the T2DM datasets yielded a total of 126 DEGs, among which 78 were upregulated and 138 were downregulated. Functional enrichment analysis revealed that these DEGs were enriched for a total of 68 GO pathways, including extracellular matrix composition, coagulation regulation, hemostasis regulation, and collagen fiber composition pathways. We also constructed transcriptional regulatory networks, and identified key transcription factors involved in both the conditions. Univariate logistic regression analysis showed that ARNTL2 and STAT1 were significantly associated with the development of T2DM and IA, acting as the common neurovascular markers for both the diseases. In cellular experiments, hyperglycemic microenvironments exhibited upregulated STAT1 expression. STAT1 may be involved in the pathogenesis of IA in T2DM patients. Being the common neurovascular markers, STAT1 may acts as novel therapeutic targets for the treatment of IA and T2DM.

12.
Transl Oncol ; 26: 101562, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36228410

ABSTRACT

OBJECTIVES: ARNTL2, as a circadian transcription factor, has been recently proposed to play an important role in a variety of tumors. however, the role of ARNTL2 in lung carcinogenesis and progression remains unclear. The purpose of this study was to investigate the effect of ARNTL2 on the clinical characteristics and prognosis of lung adenocarcinoma and to explore the relationship between ARNTL2 and EMT, ferroptosis in lung adenocarcinoma. METHODS: The Cancer Genome Atlas (TCGA) database's multi-omics data were downloaded using the Xena browser. Based on the expression levels of ARNTL2, patients with lung adenocarcinoma from TCGA were divided into two groups: those with high ARNTL2 expression and those with low ARNTL2 expression. ARNTL2 was studied for its effects on lung adenocarcinoma's clinicopathological, genomic, and immunological characteristics. Furthermore, in vivo and in vitro assays were used to confirm the impact of ARNLT2 knockdown on lung adenocarcinoma cells. RESULTS: We found ARNTL2 is highly expressed in lung adenocarcinoma and was an independent predictor of a poor prognosis in patients with lung adenocarcinoma. In addition, we demonstrated that knockdown of ARNTL2 promoted ferroptosis, inhibited EMT, cell proliferation, migration and invasion in lung adenocarcinoma. In contrast, overexpressing ARNTL2 yielded the opposite results. CONCLUSIONS: ARNTL2 is an independent unfavorable prognostic factor for lung adenocarcinoma. It plays a facilitating role in the development of lung adenocarcinoma, especially in promoting EMT and inhibiting ferroptosis, revealing that ARNTL2 may be a potential biomarker for lung adenocarcinoma.

13.
Med Oncol ; 39(12): 244, 2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36180647

ABSTRACT

The study aimed to explore tumor suppressor mechanism of ARNTL from the perspective of autophagy in oral cancer. Human oral squamous carcinoma HN6 cells stably overexpressing ARNTL were established, cell viability and apoptosis were detected by CCK-8 and TUNEL assays, and intracellular autophagosomes were observed under electron microscopy. Western Blot detected expressions of Beclin1, LC3 II/I, ATG-12, P62, BAX and BCL-2. Bafilomycin A1 was used to detect autophagic flux, and Western Blot was used to detect changes of LC3II and P62 proteins. Autophinib was added to cells with ARNTL overexpression for recovery experiments, and cell proliferation and apoptosis were detected by flow cytometry. In vivo tumorigenesis experiment was used to evaluate the in vivo anti-tumor efficacy of ARNTL, and Western blot simultaneously detected ARNTL, LC3 II/I, Beclin1, P62 and ATG-12 expressions. ARNTL overexpression promoted apoptosis and autophagy and inhibited cell viability. In ARNTL-overexpressing cells, expressions of Beclin1, LC3 II/I, and BAX were significantly up-regulated, while P62 and BCL-2 expressions were decreased, and ATG-12 expression wasn't significantly changed. When the autophagy inhibitor Autophinib was used, expressions of elevated BAX and decreased BCL-2 were reversed effectively, as were decreased cell proliferation index and increased apoptosis index. An in vivo tumorigenesis assay also showed ARNTL overexpression inhibited tumor growth, and autophagy-related protein expressions were consistent with the in vitro data. The research demonstrated for the first time that ARNTL induced apoptosis and inhibited cell proliferation dependent on autophagy in oral cancer, which provides theoretical basis for potential therapeutic targets.


Subject(s)
Circadian Clocks , Mouth Neoplasms , ARNTL Transcription Factors/pharmacology , Apoptosis , Autophagy , Beclin-1/genetics , Beclin-1/metabolism , Beclin-1/pharmacology , Carcinogenesis , Cell Line, Tumor , Humans , Mouth Neoplasms/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Sincalide/pharmacology , bcl-2-Associated X Protein
14.
Aging Cell ; 21(10): e13704, 2022 10.
Article in English | MEDLINE | ID: mdl-36056774

ABSTRACT

With the aging world population, the prevalence of aging-related disorders is on the rise. Diseases such as Alzheimer's, type 2 diabetes mellitus (T2DM), Parkinson's, atherosclerosis, hypertension, and osteoarthritis are age-related, and most of these diseases are comorbidities or risk factors for AD; however, our understandings of molecular events that regulate the occurrence of these diseases are still not fully understood. Brain and muscle Arnt-like protein-1 (Bmal1) is an irreplaceable clock gene that governs multiple important physiological processes. Continuous research of Bmal1 in AD and associated aging-related diseases is ongoing, and this review picks relevant studies on a detailed account of its role and mechanisms in these diseases. Oxidative stress and inflammation turned out to be common mechanisms by which Bmal1 deficiency promotes AD and associated aging-related diseases, and other Bmal1-dependent mechanisms remain to be identified. Promising therapeutic strategies involved in the regulation of Bmal1 are provided, including melatonin, natural compounds, metformin, d-Ser2-oxyntomodulin, and other interventions, such as exercise, time-restricted feeding, and adiponectin. The establishment of the signaling pathway network for Bmal1 in aging-related diseases will lead to advances in the comprehension of the molecular and cellular mechanisms, shedding light on novel treatments for aging-related diseases and promoting aging-associated brain health.


Subject(s)
Alzheimer Disease , Diabetes Mellitus, Type 2 , Melatonin , Metformin , Humans , Adiponectin , Aging/genetics , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Diabetes Mellitus, Type 2/metabolism , ARNTL Transcription Factors/metabolism
15.
Front Mol Biosci ; 9: 959738, 2022.
Article in English | MEDLINE | ID: mdl-36046602

ABSTRACT

Targeted therapy for acute myeloid leukemia (AML) is an effective strategy, but currently, there are very limited therapeutic targets for AML treatment. Ferroptosis is strongly related to drug resistance and carcinogenesis. However, there are few reports about ferroptosis in AML. This article explores the relationship between ferroptosis-related gene (FRG) expression and prognosis in AML patients from the FerrDb and the Cancer Genome Atlas (TCGA) databases. The ferroptosis-related gene ARNTL was observed to have high expression and poor prognosis in AML. Receiver operating characteristic curve (ROC) analysis revealed the predictive accuracy of the signature. The area under the time-dependent ROC curve (AUC) was 0.533 at one year, 0.619 at two years, and 0.622 at three years within the training cohort. Moreover, we found that the ARNTL expression is closely associated with tumor-infiltrating immune cells like the macrophages and NK cells. Inhibiting the ARNTL expression suppressed colony formation and induced ferroptosis in AML cells. Overall, the survival prediction model constructed based on ARNTL accurately predicted the survival in AML patients, which could be a potential candidate for diagnosing and treating AML.

16.
Pol J Pathol ; 73(2): 99-110, 2022.
Article in English | MEDLINE | ID: mdl-35979756

ABSTRACT

Acute promyelocyte leukaemia (APL) is a subgroup of acute myeloid leukaemia. Dysregulation of clock genes has been revealed to be involved in APL progression. Herein, the mechanism of clock gene aryl hydrocarbon receptor nuclear translocator- like (ARNTL) in APL was explored. The expression of ARNTL, period circadian regulator 1 and 2 (PER1 and PER2) in APL tissue samples and normal samples was analysed by bioinformatic analysis. Gene expression in APL cells was detected by reverse transcription quantitative polymerase chain reaction. Acute promyelocyte leukaemia cell viability and cell cycle progression were assessed by cell counting kit 8 (CCK-8) assays and flow cytometry analyses, respectively. The protein levels of ARNTL and cell cycle markers were examined by western blotting. Interaction between ARNTL and miR-320a/b was confirmed by luciferase reporter assays. Aryl hydrocarbon receptor nuclear translocator-like was overexpressed in marrow tissues of patients with acute myeloid leukaemia and predicted poor outcome. Aryl hydrocarbon receptor nuclear translocator-like knockdown inhibited APL cell viability and arrested APL cells in the G1 phase. Mechanically, ARNTL was targeted by miR-320a/b. Moreover, miR-320a/b upregulation promoted cell cycle arrest in the G1 phase and suppressed the viability of APL cells, and the impacts were reversed by ARNTL overexpression. In conclusion, miR-320a/b suppresses cell viability and leads to cell cycle arrest by suppressing ARNTL in APL.


Subject(s)
Leukemia , MicroRNAs , Humans , Cell Survival/genetics , Aryl Hydrocarbon Receptor Nuclear Translocator/genetics , ARNTL Transcription Factors/genetics , Granulocyte Precursor Cells , MicroRNAs/genetics , Cell Cycle/genetics , Cell Proliferation/genetics , Cell Line, Tumor
17.
Toxicol Appl Pharmacol ; 451: 116172, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35863504

ABSTRACT

Methamphetamine (METH) abuse is a significant public health concern globally. Cardiac toxicity is one of the important characteristics of METH, in addition to its effects on the nervous system. However, to date, research on the cardiotoxic injury induced by METH consumption has been insufficient. To systematically analyze the potential molecular mechanism of cardiac toxicity in METH-associated heart failure (HF), a rat model was constructed with a dose of 10 mg/kg of METH consumption. Cardiac function was evaluated by echocardiography, and HE staining was used to clarify the myocardial histopathological changes. Integrated analyses, including mRNA, miRNA and lncRNA, was performed to analyze the RNA expression profile and the potential molecular mechanisms involved in METH-associated HF. The results showed that METH caused decreased myocardial contractility, with a decreased percent ejection fraction (%EF). Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses of the RNAs with expression changes revealed abnormal circadian rhythm regulation in the METH groups, with circadian rhythm-related genes and their downstream effectors expressed differentially, especially the aryl hydrocarbon receptor nuclear translocator-like (Arntl). Competing endogenous RNA (ceRNA) networks associated with circadian rhythm, including Arntl, was also observed. Therefore, this study revealed that long-term METH consumption was associated with the HF in a rat model by decreasing the %EF, and that the abnormal circadian rhythm could provide new directions for investigating the METH-associated HF, and that the differentially expressed genes in this model could provide candidate genes for the identification and assessment of cardiac toxicity in METH-associated HF, which is fundamental for further understanding of the disease.


Subject(s)
Chronobiology Disorders , Heart Failure , Methamphetamine , MicroRNAs , RNA, Long Noncoding , ARNTL Transcription Factors/genetics , Animals , Cardiotoxicity , Gene Regulatory Networks , Heart Failure/chemically induced , Heart Failure/genetics , Methamphetamine/toxicity , MicroRNAs/genetics , RNA, Long Noncoding/genetics , Rats , Transcriptome
19.
World J Biol Psychiatry ; 23(4): 287-294, 2022.
Article in English | MEDLINE | ID: mdl-34468263

ABSTRACT

INTRODUCTION: Circadian rhythms are associated with bipolar disorder (BD). This cross-sectional study aimed at investigating ARNTL and MAOA gene expression differences (1) between individuals with BD and controls, (2) between affective episodes, and (3) the relationship between ARNTL and MAOA expression. METHODS: ARNTL and MAOA gene expression in peripheral mononuclear blood cells were analysed from fasting blood samples (BD n = 81, controls n = 54) with quantitative real-time PCR operating on TaqMan® assays (normalised to 18S RNA expression). ANCOVAs corrected for age, sex, body mass index, and medication was used to evaluate expression differences and correlation analyses for the relation between ARNTL and MAOA expression. RESULTS: ARNTL gene expression differed between affective episodes (F(2,78) = 3.198, p = 0.047, Partial Eta2= 0.083), but not between BD and controls (n.s.). ARNTL and MAOA expression correlated positively in BD (r = 0.704, p < 0.001) and in controls (r = 0.932, p < 0.001). MAOA expression differed neither between BD and controls nor between affective episodes (n.s.). DISCUSSION: Clock gene expression changes were observed in different affective states of BD. More precisely, ARNTL gene expression was significantly higher in euthymia than in depression. ARNTL and MAOA gene expression correlated significantly in BD and in controls, which emphasises the strong concatenation between circadian rhythms and neurotransmitter breakdown.


Subject(s)
ARNTL Transcription Factors , Bipolar Disorder , Monoamine Oxidase , Humans , ARNTL Transcription Factors/genetics , Bipolar Disorder/genetics , Circadian Rhythm/genetics , Cross-Sectional Studies , Gene Expression , Monoamine Oxidase/genetics
20.
Chinese Journal of Nephrology ; (12): 613-622, 2022.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-958064

ABSTRACT

Objective:To explore the relative genes that may influence kidney aging and verify the expression of clock gene Arntl in aging kidney. Methods:The differentially expressed genes between C57BL/6 male aging mice (24 months old) group and young mice (3 months old) group were identified by whole transcriptome sequencing, and the enriched biological pathways and key proteins were analyzed by bioinformatics methods. RT-qPCR and Western blotting were used to verify the mRNA and protein expression of Arntl.Results:(1) A total of 119 differentially expressed genes were screened between aging mice group and young mice group by whole transcriptome sequencing. Differentially expressed genes were mainly enriched in biological processes such as rhythmic process, circadian rhythm and circadian regulation of gene expression (all P<0.001). Protein-protein interaction analysis results showed that Nfil3, Hspa8, Arntl, Hlf, Rorc, Per3 and Npas2 and so on, were the key proteins in these differentially expressed genes. The results of RT-qPCR confirmed that the expression differences of clock genes Arntl, Nfil3, Npas2 and Per3 between aging mice group and young mice group were consistent with sequencing results (all P<0.05). (2) Compared with C57BL/6 young mice group and SAMR1 rapidly aging mice, the protein expression of Arntl in aging mice group and SAMP8 rapidly aging mice had downward trends. Conclusions:Clock genes and their circadian biological pathways may play an important role in the process of renal aging. The expression of Arntl in aging kidney has a downward trend.

SELECTION OF CITATIONS
SEARCH DETAIL
...