Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 271
Filter
1.
Res Sq ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38947083

ABSTRACT

Background and Purpose: Impaired cerebral circulation, induced by blood vessel constrictions and microthrombi, leads to delayed cerebral ischemia after subarachnoid hemorrhage (SAH). 12/15-Lipooxygenase (12/15-LOX) overexpression has been implicated in worsening early brain injury outcomes following SAH. However, it is unknown if 12/15-LOX is important in delayed pathophysiological events after SAH. Since 12/15-LOX produces metabolites that induce inflammation and vasoconstriction, we hypothesized that 12/15-LOX leads to microvessel constriction and microthrombi formation after SAH, and thus 12/15-LOX is an important target to prevent delayed cerebral ischemia. Methods: SAH was induced in C57BL/6 and 12/15-LOX-/- mice of both sexes by endovascular perforation. Expression of 12/15-LOX was assessed in brain tissue slices and in vitro. C57BL/6 mice were administered either ML351 (12/15-LOX inhibitor) or vehicle. Mice were evaluated for daily neuroscore and euthanized on day five to assess cerebral 12/15-LOX expression, vessel constrictions, platelet activation, microthrombi, neurodegeneration, infarction, cortical perfusion, and for development of delayed deficits. Finally, the effect of 12/15-LOX inhibition on platelet activation was assessed in SAH patient samples using a platelet spreading assay. Results: In SAH mice, 12/15-LOX was upregulated in brain vascular cells and there was an increase in 12-S-HETE. Inhibition of 12/15-LOX improved brain perfusion on days 4-5 and attenuated delayed pathophysiological events, including microvessel constrictions, microthrombi, neuronal degeneration, and infarction. Additionally, 12/15-LOX inhibition reduced platelet activation in human and mouse blood samples. Conclusions: Cerebrovascular 12/15-LOX overexpression plays a major role in brain dysfunction after SAH by triggering microvessel constrictions and microthrombi formation, which reduces brain perfusion. Inhibiting 12/15-LOX may be a therapeutic target to improve outcomes after SAH.

2.
Article in English | MEDLINE | ID: mdl-38918266

ABSTRACT

Pulmonary artery stenosis (PAS) often presents in children with congenital heart disease, altering blood flow and pressure during critical periods of growth and development. Variability in stenosis onset, duration, and severity result in variable growth and remodeling of the pulmonary vasculature. Computational fluid dynamics (CFD) models enable investigation into the hemodynamic impact and altered mechanics associated with PAS. In this study, a one-dimensional (1D) fluid dynamics model was used to simulate hemodynamics throughout the pulmonary arteries of individual animals. The geometry of the large pulmonary arteries was prescribed by animal-specific imaging, whereas the distal vasculature was simulated by a three-element Windkessel model at each terminal vessel outlet. Remodeling of the pulmonary vasculature, which cannot be measured in vivo, was estimated via model-fitted parameters. The large artery stiffness was significantly higher on the left side of the vasculature in the left pulmonary artery (LPA) stenosis group, but neither side differed from the sham group. The sham group exhibited a balanced distribution of total distal vascular resistance, whereas the left side was generally larger in the LPA stenosis group, with no significant differences between groups. In contrast, the peripheral compliance on the right side of the LPA stenosis group was significantly greater than the corresponding side of the sham group. Further analysis indicated the underperfused distal vasculature likely moderately decreased in radius with little change in stiffness given the increase in thickness observed with histology. Ultimately, our model enables greater understanding of pulmonary arterial adaptation due to LPA stenosis and has potential for use as a tool to noninvasively estimate remodeling of the pulmonary vasculature.

3.
Hypertension ; 81(7): 1467-1476, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38716665

ABSTRACT

Epidemiological studies have revealed that hypertensive heart disease is a major risk factor for heart failure, and its heart failure burden is growing rapidly. The need to act in the face of this threat requires first an understanding of the multifactorial origin of hypertensive heart disease and second an exploration of new mechanistic pathways involved in myocardial alterations critically involved in cardiac dysfunction and failure (eg, myocardial interstitial fibrosis). Increasing evidence shows that alterations of gut microbiota composition and function (ie, dysbiosis) leading to changes in microbiota-derived metabolites and impairment of the gut barrier and immune functions may be involved in blood pressure elevation and hypertensive organ damage. In this review, we highlight recent advances in the potential contribution of gut microbiota alterations to myocardial interstitial fibrosis in hypertensive heart disease through blood pressure-dependent and blood pressure-independent mechanisms. Achievements in this field should open a new path for more comprehensive treatment of myocardial interstitial fibrosis in hypertensive heart disease and, thus, for the prevention of heart failure.


Subject(s)
Fibrosis , Gastrointestinal Microbiome , Heart Failure , Hypertension , Myocardium , Humans , Gastrointestinal Microbiome/physiology , Heart Failure/microbiology , Heart Failure/physiopathology , Hypertension/complications , Myocardium/pathology , Myocardium/metabolism , Dysbiosis/microbiology , Dysbiosis/complications , Animals
4.
Neuron ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38781972

ABSTRACT

Brain arterioles are active, multicellular complexes whose diameters oscillate at ∼ 0.1 Hz. We assess the physiological impact and spatiotemporal dynamics of vaso-oscillations in the awake mouse. First, vaso-oscillations in penetrating arterioles, which source blood from pial arterioles to the capillary bed, profoundly impact perfusion throughout neocortex. The modulation in flux during resting-state activity exceeds that of stimulus-induced activity. Second, the change in perfusion through arterioles relative to the change in their diameter is weak. This implies that the capillary bed dominates the hydrodynamic resistance of brain vasculature. Lastly, the phase of vaso-oscillations evolves slowly along arterioles, with a wavelength that exceeds the span of the cortical mantle and sufficient variability to establish functional cortical areas as parcels of uniform phase. The phase-gradient supports traveling waves in either direction along both pial and penetrating arterioles. This implies that waves along penetrating arterioles can mix, but not directionally transport, interstitial fluids.

5.
J Cereb Blood Flow Metab ; : 271678X241258569, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806143

ABSTRACT

This study measured the relationship between pial collateral (leptomeningeal anastomoses, LMA) flow, intraparenchymal cortical cerebral blood flow (cCBF) and brain tissue oxygenation (btO2) during acute ischemic stroke to investigate how pial flow translates to downstream cCBF and btO2 and examined how this relationship is altered in hypertension. Proximal transient middle cerebral artery occlusion (tMCAO) was performed in male Wistar (n = 8/group) and Spontaneously Hypertensive Rats (SHR, n = 8/group). A combination laser Doppler-oxygen probe was placed within the expected cortical peri-infarct in addition to a surface laser doppler probe which measured LMA flow. Phenylephrine (PE) was infused 30 minutes into tMCAO to increase blood pressure (BP) by 30% for 10 minutes and assessed CBF autoregulation. During the initial 30-minute period of tMCAO, btO2 and cCBF were lower in SHR compared to Wistar rats (btO2: 11.5 ± 10.5 vs 17.5 ± 10.8 mmHg and cCBF: -29.7 ± 23.3% vs -17.8 ± 41.9%); however, LMA flow was similar between groups. The relationship between LMA flow, cCBF and btO2 were interdependent in Wistar rats. However, this relationship was disrupted in SHR rats and partially restored by induced hypertension. This study provides evidence that cCBF and btO2 were diminished during tMCAO in chronic hypertension, and that induced hypertension was beneficial regardless of hypertensive status.

8.
Article in English | MEDLINE | ID: mdl-38673350

ABSTRACT

Our aim was to investigate the impact of shiftwork on changes in central retinal arteriolar equivalent (CRAE), a measure of arteriolar width, and central retinal venular equivalent (CRVE), a measure of venular width, over five years. The participants were 117 officers (72.7% men) examined at the first (2011-2014) and second (2015-2019) follow-up examinations in the Buffalo Cardio-Metabolic Occupational Police Stress study. Shiftwork data were obtained from the City of Buffalo, NY payroll records. Retinal diameters were measured using a standardized protocol. ANCOVA was used to compare mean change in CRAE and CRVE between the two examinations across shiftwork categories. Among men only, those who worked ≥70% hours on day shifts had a larger decrease in mean CRAE (-7.13 µm ± 2.51) compared to those who worked <70% day (-0.08 ± 0.96; p = 0.011). Among patrol officers, those who worked ≥70% day had a larger decrease in CRAE compared to those who worked <70% day (p = 0.015). Also, officers who worked ≥70% day had an increase in mean CRVE (µm) (4.56 ± 2.56) compared to those who worked <70% (-2.32 ± 1.32; p = 0.027). Over the five-year period, we observed adverse changes in arteriolar and venular diameters among officers who worked ≥70% on day shifts. The results should be interpreted with caution due to the small sample sizes.


Subject(s)
Retinal Vessels , Humans , Male , Retinal Vessels/anatomy & histology , Female , Adult , Middle Aged , Shift Work Schedule , Police , New York
9.
J Physiol ; 602(10): 2199-2226, 2024 May.
Article in English | MEDLINE | ID: mdl-38656747

ABSTRACT

During the urine storage phase, tonically contracting urethral musculature would have a higher energy consumption than bladder muscle that develops phasic contractions. However, ischaemic dysfunction is less prevalent in the urethra than in the bladder, suggesting that urethral vasculature has intrinsic properties ensuring an adequate blood supply. Diameter changes in rat or mouse urethral arterioles were measured using a video-tracking system. Intercellular Ca2+ dynamics in arteriolar smooth muscle (SMCs) and endothelial cells were visualised using NG2- and parvalbumin-GCaMP6 mice, respectively. Fluorescence immunohistochemistry was used to visualise the perivascular innervation. In rat urethral arterioles, sympathetic vasoconstrictions were predominantly suppressed by α,ß-methylene ATP (10 µM) but not prazosin (1 µM). Tadalafil (100 nM), a PDE5 inhibitor, diminished the vasoconstrictions in a manner reversed by N-ω-propyl-l-arginine hydrochloride (l-NPA, 1 µM), a neuronal NO synthesis (nNOS) inhibitor. Vesicular acetylcholine transporter immunoreactive perivascular nerve fibres co-expressing nNOS were intertwined with tyrosine hydroxylase immunoreactive sympathetic nerve fibres. In phenylephrine (1 µM) pre-constricted rat or mouse urethral arterioles, nerve-evoked vasodilatations or transient SMC Ca2+ reductions were largely diminished by l-nitroarginine (l-NA, 10 µM), a broad-spectrum NOS inhibitor, but not by l-NPA. The CGRP receptor antagonist BIBN-4096 (1 µM) shortened the vasodilatory responses, while atropine (1 µM) abolished the l-NA-resistant transient vasodilatory responses. Nerve-evoked endothelial Ca2+ transients were abolished by atropine plus guanethidine (10 µM), indicating its neurotransmitter origin and absence of non-adrenergic non-cholinergic endothelial NO release. In urethral arterioles, NO released from parasympathetic nerves counteracts sympathetic vasoconstrictions pre- and post-synaptically to restrict arteriolar contractility. KEY POINTS: Despite a higher energy consumption of the urethral musculature than the bladder detrusor muscle, ischaemic dysfunction of the urethra is less prevalent than that of the bladder. In the urethral arterioles, sympathetic vasoconstrictions are predominately mediated by ATP, not noradrenaline. NO released from parasympathetic nerves counteracts sympathetic vasoconstrictions by its pre-synaptic inhibition of sympathetic transmission as well as post-synaptic arteriolar smooth muscle relaxation. Acetylcholine released from parasympathetic nerves contributes to endothelium-dependent, transient vasodilatations, while CGRP released from sensory nerves prolongs NO-mediated vasodilatations. PDE5 inhibitors could be beneficial to maintain and/or improve urethral blood supply and in turn the volume and contractility of urethral musculature.


Subject(s)
Urethra , Vasoconstriction , Animals , Female , Urethra/innervation , Urethra/physiology , Urethra/drug effects , Vasoconstriction/drug effects , Mice , Arterioles/drug effects , Arterioles/physiology , Arterioles/metabolism , Rats , Mice, Inbred C57BL , Rats, Sprague-Dawley , Sympathetic Nervous System/physiology , Sympathetic Nervous System/drug effects
10.
Stroke ; 55(4): 801-811, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38527143

ABSTRACT

Vascular contributions to cognitive impairment and dementia (VCID) is an all-encompassing term that describes cognitive impairment due to cerebrovascular origins. With the advancement of imaging and pathological studies, we now understand that VCID is often comorbid with Alzheimer disease. While researchers in the Alzheimer disease field have been working for years to establish and test blood-based biomarkers for Alzheimer disease diagnosis, prognosis, clinical therapy discovery, and early detection, blood-based biomarkers for VCID are in their infancy and also face challenges. VCID is heterogeneous, comprising many different pathological entities (ischemic, or hemorrhagic), and spatial and temporal differences (acute or chronic). This review highlights pathways that are aiding the search for sensitive and specific blood-based cerebrovascular dysfunction markers, describes promising candidates, and explains ongoing initiatives to discover blood-based VCID biomarkers.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Dementia, Vascular , Humans , Alzheimer Disease/diagnosis , Dementia, Vascular/diagnosis , Biomarkers/metabolism
11.
Pol Merkur Lekarski ; 52(1): 67-72, 2024.
Article in English | MEDLINE | ID: mdl-38518236

ABSTRACT

OBJECTIVE: Aim: To perform a morphometric analysis of the features of vascular remodeling of the arterial bed of the testicles in post-resection portal and pulmonary hypertension. PATIENTS AND METHODS: Materials and Methods: The testes of 54 white rats were studied, which were divided into groups: 1st included 16 intact animals, 2nd - 20 rats with pulmonary hypertension, 3rd - 18 individuals with post-resection portal hypertension. Postresection pulmonary hypertension was modeled by right-sided pulmonectomy. Postresection portal hypertension was simulated by removing 58.1 % of the liver parenchyma. RESULTS: Results: The outer diameter of the small-caliber arteries of the left testicle increased by 3.4% (p<0.05) in post-resection arterial pulmonary hypertension, and by 2.9% in post-resection portal hypertension. The inner diameter of the small-caliber arteries of the left testicle decreased by 7.7% (p<0.001) in pulmonary heart disease, and by 6.5% (p<0.01) in post-resection portal hypertension. The Kernogan index decreased by 23.0% (p<0.001), the Vogenvoort index increased by 1.26 times. In case of post-resection portal hypertension, the Kernogan index decreased by 19.0% (p<0.001) and the Wogenvoort's index increased by 1.19 times. The relative volume of damaged endotheliocytes in the small-caliber arteries of the left testis increased 20.6 times (p<0.001) in pulmonary heart disease, and increased 16.3 times (p<0.001) in post-resection portal hypertension. CONCLUSION: Conclusions: Portal and pulmonary hypertension lead to pronounced remodeling of the arterial bed of the testicles, which is characterized by thickening of the arterial wall, narrowing of their lumen, significant changes in Wogenvoort and Kernogan indexes, atrophy, dystrophy, and necrobiosis of endotheliocytes.


Subject(s)
Hypertension, Portal , Hypertension, Pulmonary , Hypertension , Pulmonary Heart Disease , Male , Rats , Animals , Testis/surgery , Arteries , Pulmonary Artery/surgery
12.
Lab Invest ; 104(5): 102036, 2024 May.
Article in English | MEDLINE | ID: mdl-38408704

ABSTRACT

Arterioles are key determinants of the total peripheral vascular resistance, which, in turn, is a key determinant of arterial blood pressure. However, the amount of protein available from one isolated human arteriole may be less than 5 µg, making proteomic analysis challenging. In addition, obtaining human arterioles requires manual dissection of unfrozen clinical specimens. This limits its feasibility, especially for powerful multicenter clinical studies in which clinical specimens need to be shipped overnight to a research laboratory for arteriole isolation. We performed a study to address low-input, test overnight tissue storage and develop a reference human arteriolar proteomic profile. In tandem mass tag proteomics, use of a booster channel consisting of human induced pluripotent stem cell-derived endothelial and vascular smooth muscle cells (1:5 ratio) increased the number of proteins detected in a human arteriole segment with a false discovery rate of <0.01 from 1051 to more than 3000. The correlation coefficient of proteomic profile was similar between replicate arterioles isolated freshly, following cold storage, or before and after the cold storage (1-way analysis of variance; P = .60). We built a human arteriolar proteomic profile consisting of 3832 proteins based on the analysis of 12 arteriole samples from 3 subjects. Of 1945 blood pressure-relevant proteins that we curated, 476 (12.5%) were detected in the arteriolar proteome, which was a significant overrepresentation (χ2 test; P < .05). These findings demonstrate that proteomic analysis is feasible with arterioles isolated from human adipose tissue following cold overnight storage and provide a reference human arteriolar proteome profile highly valuable for studies of arteriole-related traits.


Subject(s)
Adipose Tissue , Proteomics , Humans , Arterioles/metabolism , Proteomics/methods , Adipose Tissue/metabolism , Adipose Tissue/blood supply , Proteome/metabolism , Proteome/analysis , Female , Male , Adult , Middle Aged
14.
Stroke ; 55(5): 1409-1411, 2024 May.
Article in English | MEDLINE | ID: mdl-38269538
15.
Biomedicines ; 12(1)2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38255202

ABSTRACT

The recently described perivascular unit (PVU) resides immediately adjacent to the true capillary neurovascular unit (NVU) in the postcapillary venule and contains the normal-benign perivascular spaces (PVS) and pathological enlarged perivascular spaces (EPVS). The PVS are important in that they have recently been identified to be the construct and the conduit responsible for the delivery of metabolic waste from the interstitial fluid to the ventricular cerebrospinal fluid for disposal into the systemic circulation, termed the glymphatic system. Importantly, the outermost boundary of the PVS is lined by protoplasmic perivascular astrocyte endfeet (pvACef) that communicate with regional neurons. As compared to the well-recognized and described neurovascular unit (NVU) and NVU coupling, the PVU is less well understood and remains an emerging concept. The primary focus of this narrative review is to compare the similarities and differences between these two units and discuss each of their structural and functional relationships and how they relate not only to brain homeostasis but also how they may relate to the development of multiple clinical neurological disease states and specifically how they may relate to obesity, metabolic syndrome, and type 2 diabetes mellitus. Additionally, the concept and importance of a perisynaptic astrocyte coupling to the neuronal synapses with pre- and postsynaptic neurons will also be considered as a perisynaptic unit to provide for the creation of the information transfer in the brain via synaptic transmission and brain homeostasis. Multiple electron microscopic images and illustrations will be utilized in order to help explain these complex units.

16.
Hypertension ; 81(1): 24-33, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37937425

ABSTRACT

Alterations in microcirculation play a crucial role in the pathogenesis of cardiovascular and metabolic disorders such as obesity and hypertension. The small resistance arteries of these patients show a typical remodeling, as indicated by an increase of media or total wall thickness to lumen diameter ratio that impairs organ flow reserve. The majority of blood vessels are surrounded by a fat depot which is termed perivascular adipose tissue (PVAT). In recent years, data from several studies have indicated that PVAT is an endocrine organ that can produce a variety of adipokines and cytokines, which may participate in the regulation of vascular tone, and the secretory profile varies with adipocyte phenotype and disease status. The PVAT of lean humans largely secretes the vasodilator adiponectin, which will act in a paracrine fashion to reduce peripheral resistance and improve nutrient uptake into tissues, thereby protecting against the development of hypertension and diabetes. In obesity, PVAT becomes enlarged and inflamed, and the bioavailability of adiponectin is reduced. The inevitable consequence is a rise in peripheral resistance with higher blood pressure. The interrelationship between obesity and hypertension could be explained, at least in part, by a cross-talk between microcirculation and PVAT. In this article, we propose an integrated pathophysiological approach of this relationship, in order to better clarify its role in obesity and hypertension, as the basis for effective and specific prevention and treatment.


Subject(s)
Adiponectin , Hypertension , Humans , Adiponectin/metabolism , Microcirculation , Adipose Tissue/pathology , Obesity
17.
Eur J Intern Med ; 122: 86-92, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37914655

ABSTRACT

OBJECTIVE: Microvascular structural alterations may be considered an important form of hypertension-mediated organ damage. An increased media-to-lumen ratio of subcutaneous small arteries evaluated with locally invasive techniques (micromyography) predicts the development of cardiovascular (CV) events. However, it is not known whether retinal arteriole structural alterations evaluated with a noninvasive approach (Adaptive Optics) may have a prognostic significance. DESIGN AND METHODS: Two-hundred and thirty-seven subjects (mean age 58.7 ± 16.1 years, age range 13-89 years; 116 males) were included in the study: 65 normotensive subjects (27.4 %) and 172 patients with essential hypertension or primary aldosteronism (72.6 %). All subjects underwent a non-invasive evaluation of retinal arteriolar wall-to-lumen ratio (WLR) by Adaptive Optics. Subjects were re-evaluated after an average follow-up time of 4.55 years in order to assess the occurrence of clinical events (non CV and/or CV death or events). RESULTS: Fifty-four events occurred in the study population:26 were cardio-cerebrovascular events (ischemic or hemorragic stroke, atrial fibrillation, heart failure, coronary artery disease, peripheral artery disease, cardiac valvular disease) while the remaining were deaths for any cause, or neoplastic diseases. Subjects with events were older and had a WLR of retinal arterioles significantly greater than those without events. The event-free survival was significantly worse in those with a baseline WLR above the median value of the population (0.28) according to Kaplan-Mayer survival curves and multivariate analysis (Cox's proportional hazard model). The evidence was confirmed after restricting the analysis to CV events. CONCLUSIONS: Structural alterations of retinal arterioles evaluated by Adaptive Optics may predict total and CV events.


Subject(s)
Hypertension , Retinal Vessels , Male , Humans , Adolescent , Young Adult , Adult , Middle Aged , Aged , Aged, 80 and over , Arterioles/diagnostic imaging , Prognosis , Retinal Vessels/diagnostic imaging , Blood Pressure
18.
J Cereb Blood Flow Metab ; 44(2): 155-168, 2024 02.
Article in English | MEDLINE | ID: mdl-37728791

ABSTRACT

Hypoglycemia is a serious complication of insulin treatment of diabetes that can lead to coma and death. Neurovascular coupling, which mediates increased local blood flow in response to neuronal activity, increases glucose availability to active neurons. This mechanism could be essential for neuronal health during hypoglycemia, when total glucose supplies are low. Previous studies suggest, however, that neurovascular coupling (a transient blood flow increase in response to an increase in neuronal activity) may be reduced during hypoglycemia. Such a reduction in blood flow increase would exacerbate the effects of hypoglycemia, depriving active neurons of glucose. We have reexamined the effects of hypoglycemia on neurovascular coupling by simultaneously monitoring neuronal and vascular responses to whisker stimulation in the awake mouse somatosensory cortex. We find that neurovascular coupling at both penetrating arterioles and at 2nd order capillaries did not change significantly during insulin-induced hypoglycemia compared to euglycemia. In addition, we show that the basal diameter of both arterioles and capillaries increases during hypoglycemia (10.3 and 9.7% increases, respectively). Our results demonstrate that both neurovascular coupling and basal increases in vessel diameter are active mechanisms which help to maintain an adequate supply of glucose to the brain during hypoglycemia.


Subject(s)
Hypoglycemia , Insulins , Neurovascular Coupling , Mice , Animals , Neurovascular Coupling/physiology , Arterioles/metabolism , Capillaries/metabolism , Cerebrovascular Circulation/physiology , Vibrissae/physiology , Hypoglycemia/chemically induced , Hypoglycemia/metabolism , Glucose/metabolism , Insulins/metabolism , Insulins/pharmacology
19.
Eur J Med Res ; 28(1): 518, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37968750

ABSTRACT

OBJECTIVES: Vascular stiffening is highly predictive of major adverse cardiovascular events. It is not clear whether microangiopathy, such as fundus arteriosclerosis, is related to carotid atherosclerosis. Hence, this study was designed to investigate the relationship between carotid atherosclerosis and fundus arteriosclerosis among individuals of different sexes in the Chinese health-examination population. METHODS: This retrospective cross-sectional study involved 20,836 participants, including 13050 males and 7786 females. All participants underwent a detailed health examination, including medical history assessment, physical examination, assessment of lifestyle factors, fundus photography, Doppler ultrasound examination of the neck, and laboratory examinations. Two trained ophthalmologists analysed fundus arteriosclerosis based on fundus photographs, while carotid atherosclerosis was diagnosed using colour Doppler sonography of the neck. Binary logistic regression was used to analyse the relationship between carotid atherosclerosis and fundus arteriosclerosis. RESULTS: In participants with fundus arteriosclerosis, the incidence of carotid atherosclerosis was higher than that of participants without fundus arteriosclerosis (52.94% vs. 47.06%). After adjustments for potential confounding factors, fundus arteriosclerosis was significantly associated with the risk of carotid atherosclerosis. The OR with 95% CI for fundus arteriosclerosis was 1.17 (1.02, 1.34) with p = 0.0262, and individuals who did not have fundus arteriosclerosis were used as a reference in the total population. Fundus arteriosclerosis was associated with the incidence of carotid atherosclerosis in males (p = 0.0005) but not in females (p = 0.0746). CONCLUSIONS: Fundus arteriosclerosis was closely associated with carotid atherosclerosis in the Chinese population. This association was found in males but not in females.


Subject(s)
Arteriosclerosis , Carotid Artery Diseases , Male , Female , Humans , Retrospective Studies , Cross-Sectional Studies , Risk Factors , Arteriosclerosis/diagnostic imaging , Arteriosclerosis/epidemiology , Arteriosclerosis/complications , Carotid Artery Diseases/complications , Carotid Artery Diseases/diagnostic imaging , Carotid Artery Diseases/epidemiology
20.
Cureus ; 15(10): e47196, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38021690

ABSTRACT

Red blood cells (RBCs) start to break down early in hemolytic anemia, which can be chronic or life-threatening. It should be considered while determining if normocytic or macrocytic anemia is present. Hemolysis in the reticuloendothelial system may happen intravascularly, extravascularly, or both. It accounts for a broad spectrum of laboratory and clinical situations, both physiological and pathological. Whenever the frequency of RBC breakdown is rapid enough to lower hemoglobin levels below the normal range, hemolytic anemia occurs. Microangiopathic hemolytic anemia (MAHA) is a term used to describe non-immune hemolysis induced by intravascular RBC fragmentation caused by substances in the tiny blood arteries that generate schistocytes in the peripheral circulation. Microvasculature abnormalities, such as small arterioles and capillaries, are usually involved. Furthermore, MAHA can also be brought on by intravascular devices like a prosthetic heart valve or assistive technologies. Poor deformity results in entrapment, phagocytosis, antibody-mediated elimination through phagocytosis or direct complement activation, fragmentation brought about by microthrombi or acute mechanical stress, oxidation, or spontaneous cellular death. Hemolysis may cause acute anemia, jaundice, hematuria, dyspnea, tiredness, tachycardia, and possibly hypotension. This article aims to synthesize existing research, identify therapeutic strategies, and provide insights into current and emerging approaches for managing this complex hematological disorder.

SELECTION OF CITATIONS
SEARCH DETAIL
...