Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 207
Filter
1.
J Exp Biol ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38873751

ABSTRACT

The influence of light spectral properties on circadian rhythms is of substantial interest to laboratory-based investigation of the circadian system and to field-based understanding of the effects of artificial light at night. The tradeoffs between intensity and spectrum regarding masking behaviors are largely unknown, even for well-studied organisms. We used a custom LED illumination system to document the response of wild type house mice (Mus musculus) to 1-hr nocturnal exposure of all combinations of four intensity levels (0.01, 0.5, 5, and 50 lx) and three correlated color temperatures (CCT; 1750, 1950, and 3000 K). Higher intensities of light (50 lx) suppressed cage activity substantially, and consistently more for the higher CCT light (91% for 3000 K; 53% for 1750 K). At the lower intensities (0.01 lx), mean activity was increased, with the greatest increases for the lowest CCT (12.3% increase at 1750 K; 3% increase at 3000 K). Multiple linear regression confirmed the influence of both CCT (p<0.001) and intensity (p<0.001) on changes in activity (r2=0.66, F9,171=3.33; p<0.001) with the scaled effect size of intensity 3.6 times greater than CCT. Activity suppression was significantly lower for male than female mice (p<0.0001). Assessment of light-evoked cFos expression in the suprachiasmatic nucleus at 50 lx showed no significant difference between high and low CCT exposure. The significant differences by spectral composition illustrate a need to account for light spectrum in circadian studies of behavior and confirm that spectral controls can mitigate some, but certainly not all, of the effects of light pollution on species in the wild.

2.
Sci Total Environ ; 943: 173790, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38851339

ABSTRACT

The growth of human activity and infrastructure has led to an unprecedented rise in the use of Artificial Light at Night (ALAN) with demonstrable impacts on ecological communities and ecosystem services. However, there remains very little information on how ALAN interacts with or obscures light from celestial bodies, which provide vital orientating cues in a number of species. Furthermore, no studies to date have examined how climatic conditions such as cloud cover, known to influence the intensity of skyglow, interact with lunar irradiance and ALAN over the course of a lunar cycle to alter migratory abilities of species. Our night-time field study aimed to establish how lunar phase and climatic conditions (cloud cover) modulate the impact of ALAN on the abundance and migratory behaviour of Talitrus saltator, a key sandy beach detritivore which uses multiple light associated cues during nightly migrations. Our results showed that the number and size of individuals caught decreased significantly as ALAN intensity increased. Additionally, when exposed to ALAN more T. saltator were caught travelling parallel to the shoreline, indicating that the presence of ALAN is inhibiting their ability to navigate along their natural migration route, potentially impacting the distribution of the population. We found that lunar phase and cloud cover play a significant role in modifying the impact of ALAN, highlighting the importance of incorporating natural light cycles and climatic conditions when investigating ALAN impacts. Critically we demonstrate that light levels as low as 3 lx can have substantial effects on coastal invertebrate distributions. Our results provide the first evidence that ALAN impacted celestial migration can lead to changes to the distribution of a species.

3.
Environ Pollut ; 355: 124209, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38795821

ABSTRACT

Artificial Light at Night (ALAN) has been identified as a primary driver of environmental change in the 21st century with key impacts on ecosystems. At the same time, developments of LED lighting systems with adjustable parameters-such as color temperature and light intensity-may provide an opportunity to mitigate the negative effects of ALAN. To test the potential effects of LED properties, we conducted a comprehensive field study over two summers at three forest sites in Switzerland. We investigated the impact of three key attributes of LED lights (color temperature, brightness, and luminaire shape) on the abundance and community structure of ground-dwelling invertebrate functional groups (predators, omnivores, and detritivores). We found a significantly increased nocturnal attraction of omnivores (+275%) and predators (+70%), but not detritivores, to ALAN, altering arthropod community composition and trophic interactions in forests. LED color temperature and luminaire shape showed minimal effects on all three functional groups, while reducing light level from 100% to 50% attracted fewer individuals in all groups with a significant effect in omnivores (-57%). In addition, we observed significant interactions of color temperatures and luminaire shapes with light intensity, with a decrease in numbers when dimming the light to 50% intensity combined with a color temperature of 3700 K for predators (-53%), with diffusing luminaire shapes for omnivores (-77%) and with standard luminaire shape for detritivores (-27%). The predator-detritivore ratio showed a significant color temperature - light level interaction, with increased numbers of predators around streetlights with 3700 K and 100% intensity, resulting in an elevated top-down pressure on detritivores. These results suggest the importance of considering combined light characteristics in future outdoor lighting designs.


Subject(s)
Forests , Invertebrates , Light , Lighting , Animals , Invertebrates/physiology , Switzerland , Ecosystem
4.
Trends Ecol Evol ; 39(7): 612-615, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38777636

ABSTRACT

Natural experiments provide remarkable opportunities to test the large-scale effects of human activities. Widespread energy blackouts offer such an 'experiment' to test the impacts of artificial light at night (ALAN) on wildlife. We use the situation in South Africa, where regular scheduled blackouts are being implemented, to highlight this opportunity.


Subject(s)
Light , South Africa , Animals , Light/adverse effects , Lighting/adverse effects , Conservation of Natural Resources
5.
J Hazard Mater ; 472: 134523, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38723485

ABSTRACT

Urban ecosystems are subjected to multiple anthropogenic stresses, which impact aquatic communities. Artificial light at night (ALAN) for instance can significantly alter the composition of algal communities as well as the photosynthetic cycles of autotrophic organisms, possibly leading to cellular oxidative stress. The combined effects of ALAN and chemical contamination could increase oxidative impacts in aquatic primary producers, although such combined effects remain insufficiently explored. To address this knowledge gap, a one-month experimental approach was implemented under controlled conditions to elucidate effects of ALAN and dodecylbenzyldimethylammonium chloride (DDBAC) on aquatic biofilms. DDBAC is a biocide commonly used in virucidal products, and is found in urban aquatic ecosystems. The bioaccumulation of DDBAC in biofilms exposed or not to ALAN was analyzed. The responses of taxonomic composition, photosynthetic activity, and fatty acid composition of biofilms were examined. The results indicate that ALAN negatively affects photosynthetic yield and chlorophyll production of biofilms. Additionally, exposure to DDBAC at environmental concentrations induces lipid peroxidation, with an increase of oxylipins. This experimental study provides first insights on the consequences of ALAN and DDBAC for aquatic ecosystems. It also opens avenues for the identification of new biomarkers that could be used to monitor urban pollution impacts in natural environments.


Subject(s)
Biofilms , Fresh Water , Oxidative Stress , Photosynthesis , Water Pollutants, Chemical , Biofilms/drug effects , Photosynthesis/drug effects , Oxidative Stress/drug effects , Water Pollutants, Chemical/toxicity , Fresh Water/microbiology , Lipid Peroxidation/drug effects , Disinfectants/toxicity , Chlorophyll/metabolism , Fatty Acids/metabolism
6.
Hypertens Res ; 47(7): 1897-1907, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38664509

ABSTRACT

Artificial light at night (ALAN) disrupts 24-h variability of blood pressure, but the molecular mechanisms underlying these effects are unknown. Therefore, we analysed the daily variability of pulse pressure, the maximum value of acceleration rate of aortic pressure (dP/dt(max)) measured by telemetry and protein expression in the thoracic aorta of normotensive male rats exposed to ALAN (1-2 lx) for 3 weeks. Daily, 24-h variability of pulse pressure and dP/dt(max) was observed during a regular light/dark regimen with higher values during the dark compared to the light phase of the day. ALAN suppressed 24-h variability and enhanced ultradian (<12-h) periods of pulse pressure and dP/dt(max) in duration-dependent manners. From beat-to-beat blood pressure variability, ALAN decreased low-frequency bands (a sympathetic marker) and had minimal effects on high-frequency bands. At the molecular level, ALAN decreased angiotensin II receptor type 1 expression and reduced 24-h variability. ALAN caused the appearance of 12-h oscillations in transforming growth factor ß1 and fibulin 4. Expression of sarco/endoplasmic reticulum Ca2+-ATPase type 2 was increased in the middle of the light and dark phase of the day, and ALAN did not affect its daily and 12-h variability. In conclusion, ALAN suppressed 24-h variability of pulse pressure and dP/dt(max), decreased the power of low-frequency bands and differentially affected the expression of specific proteins in the rat thoracic aorta. Suppressed 24-h oscillations by ALAN underline the pulsatility of individual endocrine axes with different periods, disrupting the cardiovascular control of central blood pressure.


Subject(s)
Aorta, Thoracic , Blood Pressure , Circadian Rhythm , Animals , Male , Aorta, Thoracic/metabolism , Blood Pressure/physiology , Rats , Circadian Rhythm/physiology , Transforming Growth Factor beta1/metabolism , Receptor, Angiotensin, Type 1/metabolism , Light , Extracellular Matrix Proteins/metabolism , Rats, Sprague-Dawley , Calcium-Binding Proteins/metabolism
7.
Insects ; 15(4)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38667397

ABSTRACT

The management of Lepidopteran pests with light traps (LTs) is often achieved by luring adults to death at light sources (light trap-based mass trapping, or LTmt). Large-scale LTmt programs against agricultural pests initiated in the late 1920s in the United States were phased out in the 1970s, coinciding with the rise of pheromone-based management research. The interest in LTmt has surged in recent years with the advent of light emitting diodes, solar power sources, and intelligent design. The first step in implementing LTmt is to identify a trapping design that maximizes the capture of target pests and minimizes the capture of non-target beneficial insects-with a cautionary note that high captures in LTs are not equivalent to the feasibility of mass trapping: the ultimate objective of LTmt is to protect crop plants from pest damage, not to trap adults. The captures of egg-carrying females in light traps have a greater impact on the efficiency of LTmt than the captures of males. When LTmt is defined as a harvesting procedure, the biomass of females in LTs may be viewed as the best estimator of the mass trapping yield; biomass proxy has universal application in LTmt as every living organism can be defined on a per weight basis. While research has largely focused on agricultural pests, an attempt is made here to conceptualize LTmt as a pest management strategy in forest ecosystems, using spruce budworm as a case study. The mass trapping of female budworms is impossible to achieve in endemic populations due to the large spatial scale of forest landscapes (implying the deployment of a prohibitively large number of LTs); in addition, ovipositing female budworms do not respond to light sources at a low density of conspecifics. The light-based mass trapping of female budworms may provide a realistic management option for geographically isolated forest stands heavily infested with budworms, as a tool to prevent tree mortality. Somehow unexpectedly, however, one factor obscuring the feasibility of LTmt is as follows: the complex ('unknowable') economic valuation of forest stands as opposed to agricultural landscapes.

8.
Integr Comp Biol ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664063

ABSTRACT

In temperate environments most species of insects enter an arrested state of development, known as diapause, that enables them to survive the adverse environmental conditions associated with winter. Although diapause is restricted to a single life stage within species of insects, there are examples of insects that overwinter in the egg, larval, pupal and adult stages. Here we offer a targeted, non-systematic literature review examining how overwintering impacts subsequent reproduction in female insects. Several factors, including the lifestage at which insects overwinter, the type of energy investment strategy females use for breeding, elements of the winter environment, and contributions from male insects can influence trade-offs that female insects face between overwintering survival and post-diapause reproduction. Additionally, climate change and elements of the urban environment, including light pollution and higher temperatures in cities, can exacerbate or ameliorate trade-offs faced by reproducing female insects. Better understanding trade-offs between overwintering survival and reproduction in insects not only enhances our understanding of the underlying physiological mechanisms and ecological processes governing diapause and reproduction, but also provide opportunities to better manage insect pests and/or support beneficial insects.

9.
Biol Lett ; 20(3): 20230486, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38471566

ABSTRACT

Moths and other insects are attracted by artificial light sources. This flight-to-light behaviour disrupts their general activity focused on finding resources, such as mating partners, and increases predation risk. It thus has substantial fitness costs. In illuminated urban areas, spindle ermine moths Yponomeuta cagnagella were reported to have evolved a reduced flight-to-light response. Yet, the specific mechanism remained unknown, and was hypothesized to involve either changes in visual perception or general flight ability or overall mobility traits. Here, we test whether spindle ermine moths from urban and rural populations-with known differences in flight-to-light responses-differ in flight-related morphological traits. Urban individuals were found to have on average smaller wings than rural moths, which in turn correlated with a lower probability of being attracted to an artificial light source. Our finding supports the reduced mobility hypothesis, which states that reduced mobility in urban areas is associated with specific morphological changes in the flight apparatus.


Subject(s)
Moths , Humans , Animals , Moths/physiology , Flight, Animal/physiology , Biological Evolution , Wings, Animal/anatomy & histology
10.
Sci Total Environ ; 926: 171905, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38531451

ABSTRACT

Light is the most important Zeitgeber for temporal synchronization in nature. Artificial light at night (ALAN) disrupts the natural light-dark rhythmicity and thus negatively affects animal behavior. However, to date, ALAN research has been mostly conducted under laboratory conditions in this context. Here, we used the field cricket, Gryllus bimaculatus, to investigate the effect of ALAN on insect behavior under semi-natural conditions, i.e., under shaded natural lighting conditions, natural temperature and soundscape. Male crickets were placed individually in outdoor enclosures and exposed to ALAN conditions ranging from <0.01 to 1500 lx intensity. The crickets' stridulation behavior was recorded for 14 consecutive days and nights and their daily activity patterns were analysed. ALAN impaired the crickets' stridulation rhythm, evoking a change in the crickets' naturally synchronized daily activity period. This was manifested by a light-intensity-dependent increase in the proportion of insects demonstrating an intrinsic circadian rhythm (free-run behavior). This also resulted in a change in the population's median activity cycle period. These ALAN-induced effects occurred despite the crickets' exposure to almost natural conditions. Our findings provide further validity to our previous studies on ALAN conducted under lab conditions and establish the deleterious impacts of ALAN on animal behavioral patterns. TEASER: Artificial light at night alters cricket behavior and desynchronizes their stridulation even under near-natural conditions.


Subject(s)
Light Pollution , Light , Animals , Male , Lighting/adverse effects , Circadian Rhythm , Behavior, Animal
11.
Landsc Ecol ; 39(4): 83, 2024.
Article in English | MEDLINE | ID: mdl-38550967

ABSTRACT

Context: Artificial light at night (ALAN) is increasing worldwide, with many ecological effects. Aerial insectivores may benefit from foraging on insects congregating at light sources. However, ALAN could negatively impact them by increasing nest visibility and predation risk, especially for ground-nesting species like nightjars (Caprimulgidae). Objectives: We tested predictions based on these two alternative hypotheses, potential foraging benefits vs potential predation costs of ALAN, for two nightjar species in British Columbia: Common Nighthawks (Chordeiles minor) and Common Poorwills (Phalaenoptilus nuttallii). Methods: We modeled the relationship between ALAN and relative abundance using count data from the Canadian Nightjar Survey. We distinguished territorial from extra-territorial Common Nighthawks based on their wingboom behaviour. Results: We found limited support for the foraging benefit hypothesis: there was an increase in relative abundance of extra-territorial Common Nighthawks in areas with higher ALAN but only in areas with little to no urban land cover. Common Nighthawks' association with ALAN became negative in areas with 18% or more urban land cover. We found support for the nest predation hypothesis: the were strong negative associations with ALAN for both Common Poorwills and territorial Common Nighthawks. Conclusions: The positive effects of ALAN on foraging nightjars may be limited to species that can forage outside their nesting territory and to non-urban areas, while the negative effects of ALAN on nesting nightjars may persist across species and landscape contexts. Reducing light pollution in breeding habitat may be important for nightjars and other bird species that nest on the ground. Supplementary Information: The online version contains supplementary material available at 10.1007/s10980-024-01875-3.

12.
Sci Total Environ ; 924: 171594, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38461989

ABSTRACT

BACKGROUND: Recently, the effect of artificial light at night (ALAN) on the physiology and behavior of insects has gradually attracted the attention of researchers and has become a new research topic. Aedes albopictus is an important vector that poses a great public health risk. Further studies on the diapause of Ae. albopictus can provide a basis for new vector control, and it is also worth exploring whether the effect of ALAN on the diapause of Ae. albopictus will provide a reference for the prevention and control of infectious diseases mediated by Ae. albopictus. METHODS: In this study, we experimentally studied the diapause characteristics of different geographical strains of Ae. albopictus under the interference of ALAN, explored the effect of ALAN on the diapause of Ae. albopictus and explored the molecular mechanism of ALAN on the diapause process through RNA-seq. RESULTS: As seen from the diapause incidence, Ae. albopictus of the same geographic strain showed a lower diapause incidence when exposed to ALAN. The differentially expressed genes (DEGs) were mainly enriched in signaling and metabolism-related pathways in the parental females and diapause eggs of the ALAN group. CONCLUSIONS: ALAN inhibits Ae. albopictus diapause. In the short photoperiod induced diapause of Ae. albopictus in temperate strain Beijing and subtropical strain Guangzhou, the disturbance of ALAN reduced the egg diapause rate and increased the egg hatching rate of Ae. albopictus, and the disturbance of ALAN also shortened the life cycle of Ae. albopictus eggs after hatching.


Subject(s)
Aedes , Diapause , Animals , Female , Light Pollution , Aedes/physiology , Photoperiod
13.
Sci Total Environ ; 920: 170513, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38360314

ABSTRACT

This study examines the impact of Artificial Light at Night (ALAN) on two coral species, Acropora eurystoma and Pocillopora damicornis, in the Gulf of Aqaba/Eilat Red Sea, assessing their natural isotopic responses to highlight changes in energy and nutrient sourcing due to sensory light pollution. Our findings indicate significant disturbances in photosynthetic processes in Acropora eurystoma, as evidenced by shifts in δ13C values under ALAN, pointing to alterations in carbon distribution or utilization. In Pocillopora damicornis, similar trends were observed, with changes in δ13C and δ15N values suggesting a disruption in its nitrogen cycle and feeding strategies. The study also uncovers species-specific variations in heterotrophic feeding, a crucial factor in coral resilience under environmental stress, contributing to the corals' fixed carbon budget. Light measurements across the Gulf demonstrated a gradient of light pollution which possess the potential of affecting marine biology in the region. ALAN was found to disrupt natural diurnal tentacle behaviors in both coral species, crucial for prey capture and nutrient acquisition, thereby impacting their isotopic composition and health. Echoing previous research, our study underscores the need to consider each species' ecological and physiological contexts when assessing the impacts of anthropogenic changes. The findings offer important insights into the complexities of marine ecosystems under environmental stress and highlight the urgency of developing effective mitigation strategies.


Subject(s)
Anthozoa , Animals , Nitrogen , Ecosystem , Carbon Isotopes , Light Pollution , Carbon , Coral Reefs
14.
J R Soc Interface ; 21(211): 20230555, 2024 02.
Article in English | MEDLINE | ID: mdl-38412961

ABSTRACT

Artificial light at night (ALAN), from streetlights and other sources, has a wide variety of impacts on the natural environment. A significant challenge remains, however, to predict at intermediate spatial extents (e.g. across a city) the ALAN that organisms experience under different lighting regimes. Here we use Monte Carlo radiative Transfer to model the three-dimensional lighting environment at, and just above, ground level, on the spatial scales at which animals and humans experience it. We show how this technique can be used to model a suite of both real and hypothetical lighting environments, mimicking the transition of public infrastructure between different lighting technologies. We then demonstrate how the behaviour of animals experiencing these simulated lighting environments can be emulated to probe the availability of darkness, and dark corridors, within them. Our simulations show that no single lighting technology provides an unmitigated alleviation of negative impacts within urban environments, and that holistic treatments of entire lighting environments should be employed when understanding how animals use and traverse them.


Subject(s)
Light , Lighting , Animals , Humans , Darkness , Environment , Cities
15.
Sci Total Environ ; 919: 170849, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38350570

ABSTRACT

BACKGROUND: Emerging evidence suggests that exposure to outdoor artificial light at night (ALAN) may be associated with diabetes. However, limited research explores the relationship between outdoor ALAN and gestational diabetes mellitus (GDM). METHODS: We utilized data from a multilevel infant and early life cohort study conducted in Sichuan Province, China, between February 2018 and April 2021. A total of 9,120 participants were included in the final analysis. Outdoor ALAN exposure at participants' residential locations was estimated using time-varying satellite data, focusing on persistent night-time illumination at a scale of approximately 500x500m. The information about GDM was obtained from medical records. After adjusting for potential confounders, multivariable logistic regression models and restricted cubic splines were employed to estimate the association between ALAN exposure during pregnancy and GDM. RESULTS: Among the total recruitments, 1,484 (16.27%) women were diagnosed with GDM. Compared to women without GDM, those with GDM had a significantly higher mean outdoor ALAN exposure during pregnancy (18.98 nW/cm2/sr1 vs 24.28 nW/cm2/sr1, P < 0.001). Results from multivariable logistic models showed that higher outdoor ALAN exposure during pregnancy could increase the risk of GDM (OR (95% CI) 1st+2nd trimesters ALAN = 1.253 (1.157-1.356)). Meanwhile, results from the restricted cubic spline further indicated a non-linear association between outdoor ALAN exposure during pregnancy and GDM. Generally, with the radiance of the first two trimesters of ALAN increasing to about 17.9 nW/cm2/sr1, outdoor ALAN exposure became a risk factor for GDM. However, when the radiance of ALAN reached about 40.7 nW/cm2/sr1, the continued increasing OR estimation (OR (95% CI) = 1.489 (1.223-1.814)) of outdoor ALAN changed to steady. CONCLUSION: Our findings suggested that high levels of outdoor ALAN exposure during pregnancy can be associated with an increased risk of GDM, and a non-linear relationship pattern might exist. These findings substantially augment existing evidence, positing outdoor ALAN as an emergent, modifiable risk factor for GDM.


Subject(s)
Diabetes, Gestational , Pregnancy , Humans , Female , Male , Diabetes, Gestational/epidemiology , Cohort Studies , Prospective Studies , Light Pollution , China/epidemiology
16.
Sci Total Environ ; 921: 171129, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38395158

ABSTRACT

Urban soils host diverse bacteria crucial for ecosystem functions and urban health. As urbanization rises, artificial light at night (ALAN) imposes disturbances on soil ecosystems, yet how ALAN affects the structure and stability of soil bacterial community remains unclear. Here we coupled a short-term incubation experiment, community profiling, network analysis, and in situ field survey to assess the ecological impacts of ALAN. We showed that ALAN influenced bacterial compositions and shifted the bacterial network to a less stable phase, altering denitrification potential. Such transition in community stability probably resulted from an ALAN-induced decrease in competition and/or an increase in facilitation, in line with the Stress Gradient Hypothesis. Similar destabilizing effects were also detected in bacterial networks in multiple urban soils subjected to different levels of ALAN stress, supporting the action of ALAN on naturally-occurring soil bacterial communities. Overall, our findings highlight ALAN as a new form of anthropogenic stress that jeopardizes the stability of soil bacterial community, which would facilitate ecological projection of expanding ALAN exposure.


Subject(s)
Ecosystem , Soil , Light Pollution , Environment , Bacteria , Light
17.
Chronobiol Int ; 41(3): 347-355, 2024 03.
Article in English | MEDLINE | ID: mdl-38353271

ABSTRACT

Urbanization, and the accompanying artificial light at night (ALAN), can disrupt the activity of animals. Such disruptions at the base of a food web can ripple through the ecosystem. Most studies of ALAN are performed in the laboratory. Thus, we lack basic information about the circadian responses of animals under natural environmental conditions to fully evaluate the impact of ALAN. We studied the behaviour and activity of wild-caught, peri-urban single-striped grass mice (Lemniscomys rosalia) under a natural treatment and in a standard laboratory treatment, including dim light at night to mimic conditions that they could experience. The species exhibited predominantly crepuscular activity under all experimental treatments. It showed the highest level of activity under the natural treatment, whereas ALAN significantly suppressed its activity. Males were more active than females under all experimental treatments. The marked changes in activity under ALAN is of particular concern since global change in combination with urbanization can lead to a change in vegetation density and composition that will decrease the number of suitable microhabitats and expose small mammals to novel habitat changes. We suggest that the single-striped mice could become vulnerable because of urbanization, leading to impacts on its ecosystem broadly.


Subject(s)
Ecosystem , Environmental Pollution , Male , Female , Animals , Mice , Circadian Rhythm/physiology , Urbanization , Sigmodontinae
18.
Philos Trans R Soc Lond B Biol Sci ; 379(1898): 20220506, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38310936

ABSTRACT

Environmental conditions experienced within and across generations can impact individual phenotypes via so-called 'epigenetic' processes. Here we suggest that endocrine signalling acts as a 'sensor' linking environmental inputs to epigenetic modifications. We focus on thyroid hormone signalling and DNA methylation, but other mechanisms are likely to act in a similar manner. DNA methylation is one of the most important epigenetic mechanisms, which alters gene expression patterns by methylating cytosine bases via DNA methyltransferase enzymes. Thyroid hormone is mechanistically linked to DNA methylation, at least partly by regulating the activity of DNA methyltransferase 3a, which is the principal enzyme that mediates epigenetic responses to environmental change. Thyroid signalling is sensitive to natural and anthropogenic environmental impacts (e.g. light, temperature, endocrine-disrupting pollution), and here we propose that thyroid hormone acts as an environmental sensor to mediate epigenetic modifications. The nexus between thyroid hormone signalling and DNA methylation can integrate multiple environmental signals to modify phenotypes, and coordinate phenotypic plasticity at different time scales, such as within and across generations. These dynamics can have wide-ranging effects on health and fitness of animals, because they influence the time course of phenotypic adjustments and potentially the range of environmental stimuli that can elicit epigenetic responses. This article is part of the theme issue 'Endocrine responses to environmental variation: conceptual approaches and recent developments'.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Animals , Phenotype , Thyroid Hormones/metabolism , Environment
19.
Philos Trans R Soc Lond B Biol Sci ; 379(1898): 20220515, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38310937

ABSTRACT

Hormones regulate most physiological functions and life history from embryonic development to reproduction. In addition to their roles in growth and development, hormones also mediate responses to the abiotic, social and nutritional environments. Hormone signalling is responsive to environmental changes to adjust phenotypes to prevailing conditions. Both hormone levels and receptor densities can change to provide a flexible system of regulation. Endocrine flexibility connects the environment to organismal function, and it is central to understanding environmental impacts and their effect on individuals and populations. Hormones may also act as a 'sensor' to link environmental signals to epigenetic processes and thereby effect phenotypic plasticity within and across generations. Many environmental parameters are now changing in unprecedented ways as a result of human activity. The knowledge base of organism-environmental interactions was established in environments that differ in many ways from current conditions as a result of ongoing human impacts. It is an urgent contemporary challenge to understand how evolved endocrine responses will modulate phenotypes in response to anthropogenic environmental impacts including climate change, light-at-night and chemical pollution. Endocrine responses play a central role in ecology, and their integration into conservation can lead to more effective outcomes. This article is part of the theme issue 'Endocrine responses to environmental variation: conceptual approaches and recent developments'.


Subject(s)
Endocrine System , Hormones , Humans , Endocrine System/physiology , Environment , Signal Transduction , Ecology
20.
Philos Trans R Soc Lond B Biol Sci ; 379(1898): 20220505, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38310939

ABSTRACT

Environmental variation in the Anthropocene involves several factors that interfere with endocrine systems of wildlife and humans, presenting a planetary boundary of still unknown dimensions. Here, we focus on chemical compounds and other impacts of anthropogenic and natural origins that are adversely affecting reproduction and development. The main sink of these endocrine disruptors (EDs) is surface waters, where they mostly endanger aquatic vertebrates, like teleost fish and amphibians. For regulatory purposes, EDs are categorized into EATS modalities (oestrogenic, androgenic, thyroidal, steroidogenesis), only addressing endocrine systems being assessable by validated tests. However, there is evidence that non-EATS modalities-and even natural sources, such as decomposition products of plants or parasitic infections-can affect vertebrate endocrine systems. Recently, the disturbance of natural circadian light rhythms by artificial light at night (ALAN) has been identified as another ED. Reviewing the knowledge about EDs affecting teleosts and amphibians leads to implications for risk assessment. The generally accepted WHO-definition for EDs, which focuses exclusively on 'exogenous substances' and neglects parasitic infections or ALAN, seems to require some adaptation. Natural EDs have been involved in coevolutionary processes for ages without resulting in a general loss of biodiversity. Therefore, to address the 'One Health'-principle, future research and regulatory efforts should focus on minimizing anthropogenic factors for endocrine disruption. This article is part of the theme issue 'Endocrine responses to environmental variation: conceptual approaches and recent developments'.


Subject(s)
Endocrine System , Parasitic Diseases , Animals , Humans , Amphibians/physiology , Vertebrates , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL
...