Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.614
Filter
1.
J Biomed Opt ; 29(Suppl 3): S33304, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38989257

ABSTRACT

Significance: Imaging blood oxygen saturation ( SO 2 ) in the skin can be of clinical value when studying ischemic tissue. Emerging multispectral snapshot cameras enable real-time imaging but are limited by slow analysis when using inverse Monte Carlo (MC), the gold standard for analyzing multispectral data. Using artificial neural networks (ANNs) facilitates a significantly faster analysis but requires a large amount of high-quality training data from a wide range of tissue types for a precise estimation of SO 2 . Aim: We aim to develop a framework for training ANNs that estimates SO 2 in real time from multispectral data with a precision comparable to inverse MC. Approach: ANNs are trained using synthetic data from a model that includes MC simulations of light propagation in tissue and hardware characteristics. The model includes physiologically relevant variations in optical properties, unique sensor characteristics, variations in illumination spectrum, and detector noise. This approach enables a rapid way of generating high-quality training data that covers different tissue types and skin pigmentation. Results: The ANN implementation analyzes an image in 0.11 s, which is at least 10,000 times faster than inverse MC. The hardware modeling is significantly improved by an in-house calibration of the sensor spectral response. An in-vivo example shows that inverse MC and ANN give almost identical SO 2 values with a mean absolute deviation of 1.3%-units. Conclusions: ANN can replace inverse MC and enable real-time imaging of microcirculatory SO 2 in the skin if detailed and precise modeling of both tissue and hardware is used when generating training data.


Subject(s)
Microcirculation , Monte Carlo Method , Neural Networks, Computer , Oxygen Saturation , Skin , Skin/blood supply , Skin/diagnostic imaging , Skin/chemistry , Humans , Microcirculation/physiology , Oxygen Saturation/physiology , Oxygen/blood , Image Processing, Computer-Assisted/methods , Computer Simulation
2.
Comput Biol Med ; 179: 108848, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38968766

ABSTRACT

Improvements in the homeostasis model assessment of insulin resistance (HOMA-IR) and homeostasis model assessment of beta-cell function (HOMA-ß) significantly reduce the risk of disabling diabetic pathies. Nanoparticle (AuNP-AgNP)-metformin are concentration dependent cross-interacting drugs as they may have a synergistic as well as antagonistic effect(s) on HOMA indicators when administered concurrently. We have employed a blend of machine learning: Artificial Neural Network (ANN), and evolutionary optimization: multiobjective Genetic Algorithms (GA) to discover the optimum regime of the nanoparticle-metformin combination. We demonstrated how to successfully employ a tested and validated ANN to classify the exposed drug regimen into categories of interest based on gradient information. This study also prescribed standard categories of interest for the exposure of multiple diabetic drug regimen. The application of categorization greatly reduces the time and effort involved in reaching the optimum combination of multiple drug regimen based on the category of interest. Exposure of optimum AuNP, AgNP and Metformin to Diabetic rats significantly improved HOMA ß functionality (∼63 %), Insulin resistance (HOMA IR) of Diabetic animals was also reduced significantly (∼54 %). The methods explained in the study are versatile and are not limited to only diabetic drugs.

3.
Front Comput Neurosci ; 18: 1352685, 2024.
Article in English | MEDLINE | ID: mdl-38948336

ABSTRACT

As the apparent intelligence of artificial neural networks (ANNs) advances, they are increasingly likened to the functional networks and information processing capabilities of the human brain. Such comparisons have typically focused on particular modalities, such as vision or language. The next frontier is to use the latest advances in ANNs to design and investigate scalable models of higher-level cognitive processes, such as conscious information access, which have historically lacked concrete and specific hypotheses for scientific evaluation. In this work, we propose and then empirically assess an embodied agent with a structure based on global workspace theory (GWT) as specified in the recently proposed "indicator properties" of consciousness. In contrast to prior works on GWT which utilized single modalities, our agent is trained to navigate 3D environments based on realistic audiovisual inputs. We find that the global workspace architecture performs better and more robustly at smaller working memory sizes, as compared to a standard recurrent architecture. Beyond performance, we perform a series of analyses on the learned representations of our architecture and share findings that point to task complexity and regularization being essential for feature learning and the development of meaningful attentional patterns within the workspace.

4.
J Comput Neurosci ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987452

ABSTRACT

Replicating neural responses observed in biological systems using artificial neural networks holds significant promise in the fields of medicine and engineering. In this study, we employ ultra-fast artificial neurons based on antiferromagnetic (AFM) spin Hall oscillators to emulate the biological withdrawal reflex responsible for self-preservation against noxious stimuli, such as pain or temperature. As a result of utilizing the dynamics of AFM neurons, we are able to construct an artificial neural network that can mimic the functionality and organization of the biological neural network responsible for this reflex. The unique features of AFM neurons, such as inhibition that stems from an effective AFM inertia, allow for the creation of biologically realistic neural network components, like the interneurons in the spinal cord and antagonist motor neurons. To showcase the effectiveness of AFM neuron modeling, we conduct simulations of various scenarios that define the withdrawal reflex, including responses to both weak and strong sensory stimuli, as well as voluntary suppression of the reflex.

5.
Food Chem ; 458: 140209, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38943967

ABSTRACT

Honey adulteration represents a worldwide problem, driven by the illicit economic gain that producers, traders, or merchants pursue. Among the falsification methods that can unfairly influence the price is the incorrect declaration of the botanical origin and harvesting year. Therefore, the present study aimed to test the potential given by the application of Artificial Neural Networks (ANNs) for developing prediction models able to assess honey botanical origin and harvesting year based on isotope and elemental fingerprints. For each classification criterion, significant focus was dedicated to the data preprocessing phase to enhance the models' prediction capability. The obtained classification performances (accuracy scores >86% during the test phase) have highlighted the efficiency of ANNs for honey authentication as well as the feasibility of applying the developed classifiers for a large-scale application, supported by their ability to recognize the correct origin despite considerable variability in botanical source, geographical origin, and harvesting period.

6.
Sci Rep ; 14(1): 14590, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918511

ABSTRACT

This study explores machine learning (ML) capabilities for predicting the shear strength of reinforced concrete deep beams (RCDBs). For this purpose, eight typical machine-learning models, i.e., symbolic regression (SR), XGBoost (XGB), CatBoost (CATB), random forest (RF), LightGBM, support vector regression (SVR), artificial neural networks (ANN), and Gaussian process regression (GPR) models, are selected and compared based on a database of 840 samples with 14 input features. The hyperparameter tuning of the introduced ML models is performed using the Bayesian optimization (BO) technique. The comparison results show that the CatBoost model is the most reliable and accurate ML model (R2 = 0.997 and 0.947 in the training and testing sets, respectively). In addition, simple and practical design expressions for RCDBs have been proposed based on the SR model with a physical meaning and acceptable accuracy (an average prediction-to-test ratio of 0.935 and a standard deviation of 0.198). Meanwhile, the shear strength predicted by ML models was then compared with classical mechanics-driven shear models, including two prominent practice codes (i.e., ACI318, EC2) and two previous mechanical models, which indicated that the ML approach is highly reliable and accurate over conventional methods. In addition, a reliability-based design was conducted on two ML models, and their reliability results were compared with those of two code standards. The findings revealed that the ML models demonstrate higher reliability compared to code standards.

7.
Biomimetics (Basel) ; 9(6)2024 May 30.
Article in English | MEDLINE | ID: mdl-38921208

ABSTRACT

Submerged aquatic vegetation plays a fundamental role as a habitat for the biodiversity of marine species. To carry out the research and monitoring of submerged aquatic vegetation more efficiently and accurately, it is important to use advanced technologies such as underwater robots. However, when conducting underwater missions to capture photographs and videos near submerged aquatic vegetation meadows, algae can become entangled in the propellers and cause vehicle failure. In this context, a neurobiologically inspired control architecture is proposed for the control of unmanned underwater vehicles with redundant thrusters. The proposed control architecture learns to control the underwater robot in a non-stationary environment and combines the associative learning method and vector associative map learning to generate transformations between the spatial and velocity coordinates in the robot actuator. The experimental results obtained show that the proposed control architecture exhibits notable resilience capabilities while maintaining its operation in the face of thruster failures. In the discussion of the results obtained, the importance of the proposed control architecture is highlighted in the context of the monitoring and conservation of underwater vegetation meadows. Its resilience, robustness, and adaptability capabilities make it an effective tool to face challenges and meet mission objectives in such critical environments.

8.
Int J Chron Obstruct Pulmon Dis ; 19: 1333-1343, 2024.
Article in English | MEDLINE | ID: mdl-38895045

ABSTRACT

Background: Development of new tools in artificial intelligence has an outstanding performance in the recognition of multidimensional patterns, which is why they have proven to be useful in the diagnosis of Chronic Obstructive Pulmonary Disease (COPD). Methods: This was an observational analytical single-centre study in patients with spirometry performed in outpatient medical care. The segment that goes from the peak expiratory flow to the forced vital capacity was modelled with quadratic polynomials, the coefficients obtained were used to train and test neural networks in the task of classifying patients with COPD. Results: A total of 695 patient records were included in the analysis. The COPD group was significantly older than the No COPD group. The pre-bronchodilator (Pre BD) and post-bronchodilator (Post BD) spirometric curves were modelled with a quadratic polynomial, and the coefficients obtained were used to feed three neural networks (Pre BD, Post BD and all coefficients). The best neural network was the one that used the post-bronchodilator coefficients, which has an input layer of 3 neurons and three hidden layers with sigmoid activation function and two neurons in the output layer with softmax activation function. This system had an accuracy of 92.9% accuracy, a sensitivity of 88.2% and a specificity of 94.3% when assessed using expert judgment as the reference test. It also showed better performance than the current gold standard, especially in specificity and negative predictive value. Conclusion: Artificial Neural Networks fed with coefficients obtained from quadratic and cubic polynomials have interesting potential of emulating the clinical diagnostic process and can become an important aid in primary care to help diagnose COPD in an early stage.


Subject(s)
Lung , Machine Learning , Neural Networks, Computer , Predictive Value of Tests , Pulmonary Disease, Chronic Obstructive , Spirometry , Humans , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/physiopathology , Male , Aged , Female , Middle Aged , Vital Capacity , Lung/physiopathology , Reproducibility of Results , Diagnosis, Computer-Assisted , Bronchodilator Agents , Peak Expiratory Flow Rate
9.
Adv Sci (Weinh) ; : e2310241, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898738

ABSTRACT

Mechanical computing provides an information processing method to realize sensing-analyzing-actuation integrated mechanical intelligence and, when combined with neural networks, can be more efficient for data-rich cognitive tasks. The requirement of solving implicit and usually nonlinear equilibrium equations of motion in training mechanical neural networks makes computation challenging and costly. Here, an explicit mechanical neuron is developed of which the response can be directly determined without the need of solving equilibrium equations. A training method is proposed to ensure the robustness of the neuron, i.e., insensitivity to defects and perturbations. The explicitness and robustness of the neurons facilitate the assembly of various network structures. Two exemplified networks, a robust mechanical convolutional neural network and a mechanical recurrent neural network with long short-term memory capabilities for associative learning, are experimentally demonstrated. The introduction of the explicit and robust mechanical neuron streamlines the design of mechanical neural networks fulfilling robotic matter with a level of intelligence.

10.
Cureus ; 16(6): e61860, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38855494

ABSTRACT

INTRODUCTION: Neuropathy is a common and debilitating complication in type 2 diabetes, affecting quality of life and increasing healthcare costs. Identifying risk factors is essential for early intervention and management. This study aims to evaluate the factors influencing the occurrence of neuropathy in patients with type 2 diabetes using artificial neural networks. METHODS: In this cohort study, data from 371 patients with type 2 diabetes from Fereydunshahr, Iran, were analyzed over a 12-year follow-up period. Participants were selected based on diabetes screenings conducted in 2008 and 2009. Artificial neural networks with varying architectures were trained and validated, and their performance was compared to logistic regression models using receiver operating characteristic (ROC) curve analysis. RESULTS: The prevalence of neuropathy in this cohort study was 31.2%. The best-fitted artificial neural network and logistic regression model had area under the curve (AUC) values of 0.903 and 0.803, respectively. Significant risk factors identified included gender, race, family history of diabetes, type of diabetes treatment, cholesterol levels, triglyceride levels, high-density lipoprotein (HDL) levels, and duration of diabetes. Notably, women, patients with a family history of diabetes, and those using injectable or combined injectable and oral medications were at higher risk of developing neuropathy. CONCLUSION: These findings highlight the importance of vigilant monitoring and proactive management of neuropathy risk factors, especially in women, patients with a family history of diabetes, and those using injectable or combined diabetic medications.

11.
Front Med (Lausanne) ; 11: 1354925, 2024.
Article in English | MEDLINE | ID: mdl-38903814

ABSTRACT

Background: Acute abdominal pain (AAP) is a common symptom presented in the emergency department (ED), and it is crucial to have objective and accurate triage. This study aims to develop a machine learning-based prediction model for AAP triage. The goal is to identify triage indicators for critically ill patients and ensure the prompt availability of diagnostic and treatment resources. Methods: In this study, we conducted a retrospective analysis of the medical records of patients admitted to the ED of Wuhan Puren Hospital with acute abdominal pain in 2019. To identify high-risk factors, univariate and multivariate logistic regression analyses were used with thirty-one predictor variables. Evaluation of eight machine learning triage prediction models was conducted using both test and validation cohorts to optimize the AAP triage prediction model. Results: Eleven clinical indicators with statistical significance (p < 0.05) were identified, and they were found to be associated with the severity of acute abdominal pain. Among the eight machine learning models constructed from the training and test cohorts, the model based on the artificial neural network (ANN) demonstrated the best performance, achieving an accuracy of 0.9792 and an area under the curve (AUC) of 0.9972. Further optimization results indicate that the AUC value of the ANN model could reach 0.9832 by incorporating only seven variables: history of diabetes, history of stroke, pulse, blood pressure, pale appearance, bowel sounds, and location of the pain. Conclusion: The ANN model is the most effective in predicting the triage of AAP. Furthermore, when only seven variables are considered, including history of diabetes, etc., the model still shows good predictive performance. This is helpful for the rapid clinical triage of AAP patients and the allocation of medical resources.

12.
Med Decis Making ; : 272989X241255618, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858832

ABSTRACT

PURPOSE: To calibrate Cancer Intervention and Surveillance Modeling Network (CISNET)'s SimCRC, MISCAN-Colon, and CRC-SPIN simulation models of the natural history colorectal cancer (CRC) with an emulator-based Bayesian algorithm and internally validate the model-predicted outcomes to calibration targets. METHODS: We used Latin hypercube sampling to sample up to 50,000 parameter sets for each CISNET-CRC model and generated the corresponding outputs. We trained multilayer perceptron artificial neural networks (ANNs) as emulators using the input and output samples for each CISNET-CRC model. We selected ANN structures with corresponding hyperparameters (i.e., number of hidden layers, nodes, activation functions, epochs, and optimizer) that minimize the predicted mean square error on the validation sample. We implemented the ANN emulators in a probabilistic programming language and calibrated the input parameters with Hamiltonian Monte Carlo-based algorithms to obtain the joint posterior distributions of the CISNET-CRC models' parameters. We internally validated each calibrated emulator by comparing the model-predicted posterior outputs against the calibration targets. RESULTS: The optimal ANN for SimCRC had 4 hidden layers and 360 hidden nodes, MISCAN-Colon had 4 hidden layers and 114 hidden nodes, and CRC-SPIN had 1 hidden layer and 140 hidden nodes. The total time for training and calibrating the emulators was 7.3, 4.0, and 0.66 h for SimCRC, MISCAN-Colon, and CRC-SPIN, respectively. The mean of the model-predicted outputs fell within the 95% confidence intervals of the calibration targets in 98 of 110 for SimCRC, 65 of 93 for MISCAN, and 31 of 41 targets for CRC-SPIN. CONCLUSIONS: Using ANN emulators is a practical solution to reduce the computational burden and complexity for Bayesian calibration of individual-level simulation models used for policy analysis, such as the CISNET CRC models. In this work, we present a step-by-step guide to constructing emulators for calibrating 3 realistic CRC individual-level models using a Bayesian approach. HIGHLIGHTS: We use artificial neural networks (ANNs) to build emulators that surrogate complex individual-based models to reduce the computational burden in the Bayesian calibration process.ANNs showed good performance in emulating the CISNET-CRC microsimulation models, despite having many input parameters and outputs.Using ANN emulators is a practical solution to reduce the computational burden and complexity for Bayesian calibration of individual-level simulation models used for policy analysis.This work aims to support health decision scientists who want to quantify the uncertainty of calibrated parameters of computationally intensive simulation models under a Bayesian framework.

13.
BMC Plant Biol ; 24(1): 537, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867157

ABSTRACT

BACKGROUND: Avena fatua and A. sterilis are challenging to distinguish due to their strong similarities. However, Artificial Neural Networks (ANN) can effectively extract patterns and identify these species. We measured seed traits of Avena species from 122 locations across the Balkans and from some populations from southern, western, and central Europe (total over 22 000 seeds). The inputs for the ANN model included seed mass, size, color, hairiness, and placement of the awn attachment on the lemma. RESULTS: The ANN model achieved high classification accuracy for A. fatua and A. sterilis (R2 > 0.99, RASE < 0.0003) with no misclassification. Incorporating geographic coordinates as inputs also resulted in successful classification (R2 > 0.99, RASE < 0.000001) with no misclassification. This highlights the significant influence of geographic coordinates on the occurrence of Avena species. The models revealed hidden relationships between morphological traits that are not easily detectable through traditional statistical methods. For example, seed color can be partially predicted by other seed traits combined with geographic coordinates. When comparing the two species, A. fatua predominantly had the lemma attachment point in the upper half, while A. sterilis had it in the lower half. A. sterilis exhibited slightly longer seeds and hairs than A. fatua, while seed hairiness and mass were similar in both species. A. fatua populations primarily had brown, light brown, and black colors, while A. sterilis populations had black, brown, and yellow colors. CONCLUSIONS: Distinguishing A. fatua from A. sterilis based solely on individual characteristics is challenging due to their shared traits and considerable variability of traits within each species. However, it is possible to classify these species by combining multiple seed traits. This approach also has significant potential for exploring relationships among different traits that are typically difficult to assess using conventional methods.


Subject(s)
Neural Networks, Computer , Seeds , Seeds/anatomy & histology , Avena/genetics , Avena/anatomy & histology , Balkan Peninsula , Europe
14.
Sci Rep ; 14(1): 13297, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858495

ABSTRACT

E-commerce provides a large selection of goods for sale and purchase, which promotes regular transactions and commodity flows. Efficient distribution of goods and precise estimation of customer wants are essential for cost reduction. In order to improve supply chain efficiency in the context of cross-border e-commerce, this article combines machine learning approaches with the Internet of Things. The suggested approach consists of two main stages. Order prediction is done in the first step to determine how many orders each merchant is expected to get in the future. In the second phase, allocation operations are conducted and resources required for each retailer are supplied depending on their needs and inventory, taking into account each store's inventory as well as the anticipated sales level. This suggested approach makes use of a weighted mixture of neural networks to anticipate sales orders. The Capuchin Search Algorithm (CapSA) is used in this weighted combination to concurrently enhance the learning and ensemble performance of models. This indicates that an effort is made to reduce the local error of the learning model at the model level via model weight adjustments and neural network configuration. To guarantee more accurate output from the ensemble model, the best weight for each individual component is found at the ensemble model level using the CapSA method. This method yields the ensemble model's final output in the form of weighted averages by choosing suitable weight values. With a Root Mean Squared Error of 2.27, the suggested technique has successfully predicted sales based on the acquired findings, showing a minimum decrease of 2.4 in comparison to the comparing methodologies. Additionally, the suggested method's strong performance is shown by the fact that it was able to minimize the Mean Absolute Percentage Error by 14.67 when compared to other comparison approaches.

15.
Sensors (Basel) ; 24(12)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38931715

ABSTRACT

Lithium, a critical natural resource integral to modern technology, has influenced diverse industries since its discovery in the 1950s. Of particular interest is lithium-7, the most prevalent lithium isotope on Earth, playing a vital role in applications such as batteries, metal alloys, medicine, and nuclear research. However, its extraction presents significant environmental and logistical challenges. This article explores the potential for lithium exploration on the Moon, driven by its value as a resource and the prospect of cost reduction due to the Moon's lower gravity, which holds promise for future space exploration endeavors. Additionally, the presence of lithium in the solar wind and its implications for material transport across celestial bodies are subjects of intrigue. Drawing from a limited dataset collected during the Apollo missions (Apollo 12, 15, 16, and 17) and leveraging artificial intelligence techniques and sample expansion through bootstrapping, this study develops predictive models for lithium-7 concentration based on spectral patterns. The study areas encompass the Aitken crater, Hadley Rima, and the Taurus-Littrow Valley, where higher lithium concentrations are observed in basaltic lunar regions. This research bridges lunar geology and the formation of the solar system, providing valuable insights into celestial resources and enhancing our understanding of space. The data used in this study were obtained from the imaging sensors (infrared, visible, and ultraviolet) of the Clementine satellite, which significantly contributed to the success of our research. Furthermore, the study addresses various aspects related to statistical analysis, sample quality validation, resampling, and bootstrapping. Supervised machine learning model training and validation, as well as data import and export, were explored. The analysis of data generated by the Clementine probe in the near-infrared (NIR) and ultraviolet-visible (UVVIS) spectra revealed evidence of the presence of lithium-7 (Li-7) on the lunar surface. The distribution of Li-7 on the lunar surface is non-uniform, with varying concentrations in different regions of the Moon identified, supporting the initial hypothesis associating surface Li-7 concentration with exposure to solar wind. While a direct numerical relationship between lunar topography and Li-7 concentration has not been established due to morphological diversity and methodological limitations, preliminary results suggest significant economic and technological potential in lunar lithium exploration and extraction.

17.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124638, 2024 Nov 05.
Article in English | MEDLINE | ID: mdl-38880076

ABSTRACT

This work aimed to set inline Raman spectroscopy models to monitor biochemically (viable cell density, cell viability, glucose, lactate, glutamine, glutamate, and ammonium) all upstream stages of a virus-like particle-making process. Linear (Partial least squares, PLS; Principal components regression, PCR) and nonlinear (Artificial neural networks, ANN; supported vector machine, SVM) modeling approaches were assessed. The nonlinear models, ANN and SVM, were the more suitable models with the lowest absolute errors. The mean absolute error of the best models within the assessed parameter ranges for viable cell density (0.01-8.83 × 106 cells/mL), cell viability (1.3-100.0 %), glucose (5.22-10.93 g/L), lactate (18.6-152.7 mg/L), glutamine (158-1761 mg/L), glutamate (807.6-2159.7 mg/L), and ammonium (62.8-117.8 mg/L) were 1.55 ± 1.37 × 106 cells/mL (ANN), 5.01 ± 4.93 % (ANN), 0.27 ± 0.22 g/L (SVM), 4.7 ± 2.6 mg/L (SVM), 51 ± 49 mg/L (ANN), 57 ± 39 mg/L (SVM) and 2.0 ± 1.8 mg/L (ANN), respectively. The errors achieved, and best-fitted models were like those for the same bioprocess using offline data and others, which utilized inline spectra for mammalian cell lines as a host.


Subject(s)
Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Least-Squares Analysis , Glucose/analysis , Neural Networks, Computer , Cell Survival/drug effects , Glutamic Acid/analysis , Support Vector Machine , Principal Component Analysis , Glutamine/analysis , Lactic Acid/analysis , Ammonium Compounds/analysis
18.
Front Psychiatry ; 15: 1356773, 2024.
Article in English | MEDLINE | ID: mdl-38774435

ABSTRACT

Introduction: Online mental healthcare has gained significant attention due to its effectiveness, accessibility, and scalability in the management of mental health symptoms. Despite these advantages over traditional in-person formats, including higher availability and accessibility, issues with low treatment adherence and high dropout rates persist. Artificial intelligence (AI) technologies could help address these issues, through powerful predictive models, language analysis, and intelligent dialogue with users, however the study of these applications remains underexplored. The following mixed methods review aimed to supplement this gap by synthesizing the available evidence on the applications of AI in online mental healthcare. Method: We searched the following databases: MEDLINE, CINAHL, PsycINFO, EMBASE, and Cochrane. This review included peer-reviewed randomized controlled trials, observational studies, non-randomized experimental studies, and case studies that were selected using the PRISMA guidelines. Data regarding pre and post-intervention outcomes and AI applications were extracted and analyzed. A mixed-methods approach encompassing meta-analysis and network meta-analysis was used to analyze pre and post-intervention outcomes, including main effects, depression, anxiety, and study dropouts. We applied the Cochrane risk of bias tool and the Grading of Recommendations Assessment, Development and Evaluation (GRADE) to assess the quality of the evidence. Results: Twenty-nine studies were included revealing a variety of AI applications including triage, psychotherapy delivery, treatment monitoring, therapy engagement support, identification of effective therapy features, and prediction of treatment response, dropout, and adherence. AI-delivered self-guided interventions demonstrated medium to large effects on managing mental health symptoms, with dropout rates comparable to non-AI interventions. The quality of the data was low to very low. Discussion: The review supported the use of AI in enhancing treatment response, adherence, and improvements in online mental healthcare. Nevertheless, given the low quality of the available evidence, this study highlighted the need for additional robust and high-powered studies in this emerging field. Systematic review registration: https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=443575, identifier CRD42023443575.

19.
Diagnostics (Basel) ; 14(10)2024 May 13.
Article in English | MEDLINE | ID: mdl-38786302

ABSTRACT

BACKGROUND AND OBJECTIVES: This review aims to delve into the role of artificial intelligence in medicine. Ulcerative colitis (UC) is a chronic, inflammatory bowel disease (IBD) characterized by superficial mucosal inflammation, rectal bleeding, diarrhoea and abdominal pain. By identifying the challenges inherent in UC diagnosis, we seek to highlight the potential impact of artificial intelligence on enhancing both diagnosis and treatment methodologies for this condition. METHOD: A targeted, non-systematic review of literature relating to ulcerative colitis was undertaken. The PubMed and Scopus databases were searched to categorize a well-rounded understanding of the field of artificial intelligence and its developing role in the diagnosis and treatment of ulcerative colitis. Articles that were thought to be relevant were included. This paper only included articles published in English. RESULTS: Artificial intelligence (AI) refers to computer algorithms capable of learning, problem solving and decision-making. Throughout our review, we highlighted the role and importance of artificial intelligence in modern medicine, emphasizing its role in diagnosis through AI-assisted endoscopies and histology analysis and its enhancements in the treatment of ulcerative colitis. Despite these advances, AI is still hindered due to its current lack of adaptability to real-world scenarios and its difficulty in widespread data availability, which hinders the growth of AI-led data analysis. CONCLUSIONS: When considering the potential of artificial intelligence, its ability to enhance patient care from a diagnostic and therapeutic perspective shows signs of promise. For the true utilization of artificial intelligence, some roadblocks must be addressed. The datasets available to AI may not truly reflect the real-world, which would prevent its impact in all clinical scenarios when dealing with a spectrum of patients with different backgrounds and presenting factors. Considering this, the shift in medical diagnostics and therapeutics is coinciding with evolving technology. With a continuous advancement in artificial intelligence programming and a perpetual surge in patient datasets, these networks can be further enhanced and supplemented with a greater cohort, enabling better outcomes and prediction models for the future of modern medicine.

20.
Int J Phytoremediation ; : 1-15, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38757757

ABSTRACT

In this study, artificial neural network (ANN) tools were employed to forecast the adsorption capacity of Malachite green (MG) by baru fruit endocarp waste (B@FE) under diverse conditions, including pH, adsorbent dosage, initial dye concentration, contact time, and temperature. Enhanced adsorption efficiency was notably observed under alkaline pH conditions (pH 10). Kinetic analysis indicated that the adsorption process closely followed a pseudo-second-order model, while equilibrium studies revealed the Langmuir isotherm as the most suitable model, estimating a maximum adsorption capacity of 57.85 mg g-1. Furthermore, the chemical adsorption of MG by B@FE was confirmed using the Dubinin-Radushkevich isotherm. Thermodynamic analysis suggested that the adsorption is spontaneous and endothermic. Various ANN architectures were explored, employing different activation functions such as identity, logistic, tanh, and exponential. Based on evaluation metrics like the coefficient of determination (R2) and root mean square error (RMSE), the optimal network configuration was identified as a 5-11-1 architecture, consisting of five input neurons, eleven hidden neurons, and one output neuron. Notably, the logistic activation function was applied in both the hidden and output layers for this configuration. This study highlights the efficacy of B@FE as an efficient adsorbent for MG removal from aqueous solutions and demonstrates the potential of ANN models in predicting adsorption behavior across varying environmental conditions, emphasizing their utility in this field.


The innovative aspect of this study lies in the utilization of a new and effective adsorbent for the removal of Malachite Green (MG), derived from the fruit endocarp of baru (Dipteryx alata Vog.). The baru fruit endocarp, typically discarded as solid waste during processing, was found to possess favorable characteristics for adsorption processes and provides an adsorption capacity that exceeds that of most other similar adsorbents. Additionally, integrating Artificial Neural Networks (ANNs) enables accurate modeling of the adsorption process, eliminating the need for extensive laboratory experiments. This contributes significantly to wastewater treatment research, enhancing effectiveness and sustainability in unwanted dye removal.

SELECTION OF CITATIONS
SEARCH DETAIL
...