Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 144
Filter
1.
Adv Mater ; : e2405776, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38966888

ABSTRACT

Bionic artificial skin which imitates the features and functions of human skin, has broad applications in wearable human-machine interfaces. However, equipping artificial materials with skin-like mechanical properties, self-healing ability, and high sensitivity remains challenging. Here, inspired by the structure of human skin, an artificial skin based on ionogel composites with tailored mechanical properties and robust interface is prepared. Combining finite element analysis and direct ink writing (DIW) 3D printing technology, an ionogel composite with a rigid skeleton and an ionogel matrix is precisely designed and fabricated, realizing the mechanical anisotropy and nonlinear mechanical response that accurately mimic human skin. Robust interface is created through co-curing of the skeleton and matrix resins, significantly enhancing the stability of the composite. The realization of self-healing ability and resistance to crack growth further ensure the remarkable durability of the artificial skin for sensing application. In summary, the bionic artificial skin mimics the characteristics of human skin, including mechanical anisotropy, nonlinear mechanical response, self-healing capability, durability and high sensitivity when applied as flexible sensors. These strategies provide strong support for the fabrication of tissue-like materials with adaptive mechanical behaviors.

2.
Adv Sci (Weinh) ; : e2404433, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39005186

ABSTRACT

Growing demand for wound care resulting from the increasing chronic diseases and trauma brings intense pressure to global medical health service system. Artificial skin provides mechanical and microenvironmental support for wound, which is crucial in wound healing and tissue regeneration. However, challenges still remain in the clinical application of artificial skin since the lack of the synergy effect of necessary performance. In this study, a multi-functional artificial skin is fabricated through microfluidic spinning technology by using core-shell gel nanofiber scaffolds (NFSs). This strategy can precisely manipulate the microstructure of artificial skin under microscale. The as-prepared artificial skin demonstrates superior characteristics including surface wettability, breathability, high mechanical strength, strain sensitivity, biocompatibility and biodegradability. Notably, this artificial skin has the capability to deliver medications in a controlled and sustained manner, thereby accelerating the wound healing process. This innovative approach paves the way for the development of a new generation of artificial skin and introduces a novel concept for the structural design of the unique core-shell gel NFSs.

3.
ACS Appl Mater Interfaces ; 16(27): 34578-34590, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38946497

ABSTRACT

Meeting the exacting demands of wound healing encompasses rapid coagulation, superior exudate absorption, high antibacterial efficacy, and imperative support for cell growth. In this study, by emulating the intricate structure of natural skin, we prepare a multifunctional porous bilayer artificial skin to address these critical requirements. The bottom layer, mimicking the dermis, is crafted through freeze-drying a gel network comprising carboxymethyl chitosan (CMCs) and gelatin (GL), while the top layer, emulating the epidermis, is prepared via electrospinning poly(l-lactic acid) (PLLA) nanofibers. With protocatechuic aldehyde and gallium ion complexation (PA@Ga) as cross-linking agents, the bottom PA@Ga-CMCs/GL layer featured an adjustable pore size (78-138 µm), high hemostatic performance (67s), and excellent bacterial inhibition rate (99.9%), complemented by an impressive liquid-absorbing capacity (2000% swelling rate). The top PLLA layer, with dense micronanostructure and hydrophobic properties, worked as a shield to effectively thwarted liquid or bacterial penetration. Furthermore, accelerated wound closure, reduced inflammatory responses, and enhanced formation of hair follicles and blood vessels are achieved by the porous artificial skin covered on the surface of wound. Bilayer artificial skin integrates the advantages of nanofibers and freeze-drying porous materials to effectively replicate the protective properties of the epidermal layer of the skin, as well as the cell migration and tissue regeneration of the dermis. This bioabsorbable artificial skin demonstrates structural and functional comparability to real skin, which would advance the field of wound care through its multifaceted capabilities.


Subject(s)
Chitosan , Nanofibers , Skin, Artificial , Wound Healing , Wound Healing/drug effects , Chitosan/chemistry , Chitosan/analogs & derivatives , Porosity , Animals , Nanofibers/chemistry , Polyesters/chemistry , Polyesters/pharmacology , Gelatin/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Mice , Staphylococcus aureus/drug effects , Humans
4.
ACS Nano ; 18(24): 15754-15768, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38830235

ABSTRACT

The multisensory responsiveness of hydrogels positions them as promising candidates for artificial skin, whereas the mismatch of modulus between soft hydrogels and hard electrodes as well as the poor adhesion and conductance at the interface greatly impairs the stability of electronics devices. Herein, we propose an in situ postprocessing approach utilizing electrochemical reactions between metals (Zn, etc.) and hydrogels to synergistically achieve strong adhesion of the hydrogel-electrode interface, low interfacial impedance, and local strain isolation due to the structural densification of the hydrogel network. The mechanism is that Zn electrochemically oxidizes to Zn2+ and injects into the hydrogel, gradually forming a mechanically interlocked structure, Zn2+-polymer dual-helix structural nodes, and a high-modulus ZnO from the surface to the interior. Compared to untreated samples, the treated sample displays 8.7 times increased interfacial adhesion energy between the hydrogel and electrode (87 J/m2), 95% decreased interfacial impedance (218.8 Ω), and a high-strain isolation efficiency (εtotal/εisolation > 400). Akin to human skin, the prepared sensor demonstrates multimodal sensing capabilities, encompassing highly sensitive strain perception and simultaneous perception of temperature, humidity, and oxygen content unaffected by strain interference. This easy on-chip preparation of hydrogel-based multimodal sensor array shows great potential for health and environment monitoring as artificial skin.


Subject(s)
Electrodes , Hydrogels , Skin, Artificial , Hydrogels/chemistry , Zinc/chemistry , Humans , Surface Properties , Zinc Oxide/chemistry
5.
ACS Nano ; 18(28): 18503-18521, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38941540

ABSTRACT

Three-dimensional (3D) bioprinting has advantages for constructing artificial skin tissues in replicating the structures and functions of native skin. Although many studies have presented improved effect of printing skin substitutes in wound healing, using hydrogel inks to fabricate 3D bioprinting architectures with complicated structures, mimicking mechanical properties, and appropriate cellular environments is still challenging. Inspired by collagen nanofibers withstanding stress and regulating cell behavior, a patterned nanofibrous film was introduced to the printed hydrogel scaffold to fabricate a composite artificial skin substitute (CASS). The artificial dermis was printed using gelatin-hyaluronan hybrid hydrogels containing human dermal fibroblasts with gradient porosity and integrated with patterned nanofibrous films simultaneously, while the artificial epidermis was formed by seeding human keratinocytes upon the dermis. The collagen-mimicking nanofibrous film effectively improved the tensile strength and fracture resistance of the CASS, making it sewable for firm implantation into skin defects. Meanwhile, the patterned nanofibrous film also provided the biological cues to guide cell behavior. Consequently, CASS could effectively accelerate the regeneration of large-area skin defects in mouse and pig models by promoting re-epithelialization and collagen deposition. This research developed an effective strategy to prepare composite bioprinting architectures for enhancing mechanical property and regulating cell behavior, and CASS could be a promising skin substitute for treating large-area skin defects.


Subject(s)
Bioprinting , Nanofibers , Printing, Three-Dimensional , Skin, Artificial , Humans , Nanofibers/chemistry , Animals , Mice , Swine , Hydrogels/chemistry , Fibroblasts/cytology , Tissue Engineering , Keratinocytes/cytology , Tissue Scaffolds/chemistry , Hyaluronic Acid/chemistry , Gelatin/chemistry
6.
Toxicol In Vitro ; 99: 105883, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38936442

ABSTRACT

Melanoma is a type of tumor skin with high metastatic potential. Reconstructed human skin, development for pre-clinic assay, are make using primary human cells, but with same limitations. The aim this study was to characterize a cell culture model, with structure similar to human skin containing melanoma cells entirely from cell lines. Reconstructed skin with melanoma were development using human fibroblasts (MRC5), human epidermal keratinocytes (HaCat), and human melanoma (SK-MEL-28) embedded in collagen type I. The structure was characterized by hematoxylin-eosin stained, as well as points of melanoma cell invasion, which was associated with activity of MMPs (MMP-2 and MMP-9) by zymographic method. Then, the gene expression of the target molecular mechanisms involved in melanoma progression were evaluated. Here, the model development showed a region epidermis organized and separated from the dermis, with fibroblast cells confined and melanoma cells form delimited area invasion. MMP-2 and MMP-9 were identified during of cell culture and gene expression of BRAF, NRAS, and Vimentin was confirmed. The proposed model provides one more opportunity to study in vitro tumor biology of melanoma and also to allows the study of new drugs with more reliable results then whats we would find in vivo.


Subject(s)
Fibroblasts , Matrix Metalloproteinase 2 , Matrix Metalloproteinase 9 , Melanoma , Skin Neoplasms , Humans , Melanoma/pathology , Melanoma/metabolism , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 9/genetics , Skin Neoplasms/pathology , Fibroblasts/metabolism , Fibroblasts/drug effects , Cell Line, Tumor , Skin/metabolism , Skin/pathology , Neoplasm Invasiveness , Keratinocytes/drug effects , Cell Line , Vimentin/metabolism , Vimentin/genetics
7.
Adv Mater ; 36(26): e2403355, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38598646

ABSTRACT

Chronic wounds pose a significant global public health challenge due to their suboptimal treatment efficacy caused by bacterial infections and microcirculatory disturbances. Inspired by the biofunctionality of natural skin, an artificial skin (HV@BC@TBG) is bioengineered with bacterial cellulose (BC) sandwiched between photosensitizers (PS) and functionalized living cells. Glucose-modified PS (TBG) and vascular endothelial growth factor (VEGF)-functionalized living cells (HV) are successively modified on each side of BC through biological metabolism and bio-orthogonal reaction. As the outermost layer, the TBG layer can generate reactive oxygen species (ROS) upon light illumination to efficiently combat bacterial infections. The HV layer is the inner layer near the diabetic wound, which servs as a living factory to continuously secrete VEGF to accelerate wound repair by promoting fibroblast proliferation and angiogenesis. The sandwiched structural artificial skin HV@BC@TBG is nontoxic, biocompatible, and demonstrated its ability to significantly accelerate the healing process of infected diabetic wounds, rendering it a promising next-generation medical therapy for chronic wound management.


Subject(s)
Cellulose , Photosensitizing Agents , Skin, Artificial , Vascular Endothelial Growth Factor A , Wound Healing , Wound Healing/drug effects , Cellulose/chemistry , Cellulose/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Animals , Vascular Endothelial Growth Factor A/metabolism , Humans , Reactive Oxygen Species/metabolism , Mice , Fibroblasts/drug effects , Fibroblasts/cytology , Cell Proliferation/drug effects , Glucose/chemistry
8.
Micromachines (Basel) ; 15(4)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38675322

ABSTRACT

In this study, we created a 3D Artificial Skin Platform that can be used for the treatment of pigmentation by artificially realizing the skin of pregnant women. For the stable realization of 3D artificial skin, a bilayer hydrogel composed of collagen type I and fibrin was designed and applied to the study to reduce the tension-induced contraction of collagen type I, the extracellular matrix (ECM) of artificial skin, by dynamic culture. Oxygen concentration and 17ß-Estradiol (E2) concentration, which are highly related to melanin production, were selected as parameters of the pregnancy environment and applied to cell culture. Oxygen concentration, which is locally reduced in the first trimester (2.5-3%), and E2, which is upregulated in the third trimester, were applied to the cell culture process. We analyzed whether the 3D artificial skin implemented in the 3D Artificial Skin Platform could better represent the tendency of melanin expression in pregnant women than cells cultured under the same conditions in 2D. The expression levels of melanin and melanin-related genes in the 2D cell culture did not show a significant trend that was similar to the melanin expression trend in pregnant women. However, the 3D artificial skin platform showed a significant trend towards a 2-6-fold increase in melanin expression in response to low oxygen concentrations (2.5%) and E2 concentrations (17 ng/mL), which was similar to the trend in pregnant women in vivo. These results suggest that 3D artificial skin cultured on the Artificial Skin Platform has the potential to be used as a substitute for human pregnant skin in various research fields related to the treatment of pigmentation.

9.
Int J Biol Macromol ; 268(Pt 1): 131476, 2024 May.
Article in English | MEDLINE | ID: mdl-38614181

ABSTRACT

This study involved creating oligomeric conjugates of 3-hydroxy fatty acids and diclofenac, named Dic-oligo(3HAs). Advanced NMR techniques confirmed no free diclofenac in the mix. We tested diclofenac release under conditions resembling healthy and chronic wound skin. These oligomers were used to make P(3HO) blends, forming patches for drug delivery. Their preparation used the solvent casting/porogen leaching (SCPL) method. The patches' properties like porosity, roughness, and wettability were thoroughly analysed. Antimicrobial assays showed that Dic-oligo(3HAs) exhibited antimicrobial activity against reference (S. aureus, S. epidermis, S. faecalis) and clinical (Staphylococcus spp.) strains. Human keratinocytes (HaCaT) cell line tests, as per ISO 10993-5, showed no toxicity. A clear link between material roughness and HaCaT cell adhesion was found. Deep cell infiltration was verified using DAPI and phalloidin staining, observed under confocal microscopy. SEM also confirmed HaCaT cell growth on these scaffolds. The strong adhesion and proliferation of HaCaT cells on these materials indicate their potential as wound dressing layers. Additionally, the successful diclofenac release tests point to their applicability in treating both normal and chronic wounds.


Subject(s)
Diclofenac , Skin , Diclofenac/pharmacology , Diclofenac/chemistry , Humans , Skin/drug effects , Regeneration/drug effects , Keratinocytes/drug effects , Keratinocytes/cytology , HaCaT Cells , Wound Healing/drug effects , Cell Proliferation/drug effects , Chemical Phenomena , Cell Line , Polymers/chemistry , Porosity , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology
10.
Adv Healthc Mater ; 13(18): e2304321, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38490740

ABSTRACT

Skin regeneration attracts tremendous interest due to the important role of skin for human protection and beauty. Thus, methods allowing artificial skin to be carried out in a controllable fashion are potentially important for wound healing, which involves an intersection of materials, medicine, biology, and other disciplines. Herein, aiming at a new general methodology for fleshy materials, a new hydrogel-loaded hydrophobic-hydrophilic nanofiber fleshy artificial skin is designed and fabricated. The gradient hydrogel-loaded nanofiber artificial skin integrates both advantages of nanofiber and hydrogel, exhibiting fleshy feature (comparability to real skin in terms of appearance, texture, and function), excellent air permeability, compatibility, and good mechanical and antibacterial property. Interestingly, the efficient transport channels are formed throughout the hydrogel-loaded nanofiber structure, which is beneficial for water absorption and transfer. These advantages enable the establishment of a moist and favorable microenvironment; thus, greatly accelerating wound healing process. This work couples microfluidic electrospinning with reactive coating technique, which is in favor of material design and fabrication with controllable and uniform structures. The hydrogel-loaded nanofiber fleshy artificial skin shows comparability to real skin in terms of beauty, texture, and function, which would definitely provide new opportunities for the further optimization and upgrading of artificial skin.


Subject(s)
Hydrogels , Nanofibers , Skin, Artificial , Nanofibers/chemistry , Hydrogels/chemistry , Humans , Wound Healing/drug effects , Animals , Microfluidics/methods , Skin/metabolism , Hydrophobic and Hydrophilic Interactions , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology
11.
Mater Today Bio ; 25: 101010, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38495916

ABSTRACT

In this study, we explore the impact of mechanical stimuli on skin models using an innovative skin-on-a-chip platform, addressing the limitations of conventional transwell-cultured skin equivalents. This platform facilitates cyclic mechanical stimulation through compression and stretching, combined with automated media perfusion. Our findings, using bioimaging and bulk RNA sequencing, reveal increased expression of Keratin 10 and Keratin 14, indicating enhanced skin differentiation and mechanical integrity. The increase in desmosomes and tight junctions, observed through Claudin-1 and Desmoplakin 1 & 2 analysis, suggests improved keratinocyte differentiation due to mechanical stimulation. Gene expression analyses reveal a nuanced regulatory response, suggesting a potential connection to the Hippo pathway, indicative of a significant cellular reaction to mechanical stimuli. The results show the important influence of mechanical stimulation on skin model integrity and differentiation, demonstrating the potential of our microfluidic platform in advancing skin biology research and pharmaceutical testing.

12.
Int J Biol Macromol ; 266(Pt 1): 131233, 2024 May.
Article in English | MEDLINE | ID: mdl-38554907

ABSTRACT

Full-thickness wounds are severe cutaneous damages with destroyed self-healing function, which need efficient clinical interventions. Inspired by the hierarchical structure of natural skin, we have for the first time developed a biomimetic tri-layered artificial skin (TLAS) comprising silica gel-collagen membrane-collagen porous scaffold for enhanced full-thickness wound healing. The TLAS with the thickness of 3-7 mm displays a hierarchical nanostructure consisting of the top homogeneous silica gel film, the middle compact collagen membrane, and the bottom porous collagen scaffold, exquisitely mimicking the epidermis, basement membrane and dermis of natural skin, respectively. The 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide/N-Hydroxysuccinimide-dehydrothermal (EDC/NHS-DHT) dual-crosslinked collagen composite bilayer, with a crosslinking degree of 79.5 %, displays remarkable biocompatibility, bioactivity, and biosafety with no risk of hemolysis and pyrogen reactions. Notably, the extra collagen membrane layer provides a robust barrier to block the penetration of silica gel into the collagen porous scaffold, leading to the TLAS with enhanced biocompatibility and bioactivity. The full-thickness wound rat model studies have indicated the TLAS significantly facilitates the regeneration of full-thickness defects by accelerating re-epithelization, collagen deposition and migration of skin appendages. The highly biocompatible and bioactive tri-layered artificial skin provides an improved treatment for full-thickness wounds, which has great potential in tissue engineering.


Subject(s)
Biomimetic Materials , Collagen , Silica Gel , Skin, Artificial , Tissue Scaffolds , Wound Healing , Wound Healing/drug effects , Animals , Collagen/chemistry , Collagen/pharmacology , Porosity , Rats , Tissue Scaffolds/chemistry , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Silica Gel/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Biomimetics/methods , Humans , Skin/drug effects , Skin/injuries , Male
13.
Mater Today Bio ; 24: 100899, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38188644

ABSTRACT

Constructing three-dimensional (3D) bioprinted skin tissues that accurately replicate the mechanical properties of native skin and provide adequate oxygen and nutrient support remains a formidable challenge. In this study, we incorporated phosphosilicate calcium bioglasses (PSCs), a type of bioactive glass (BG), into the bioinks used for 3D bioprinting. The resulting bioink exhibited mechanical properties and biocompatibility that closely resembled those of natural skin. Utilizing 3D bioprinting technology, we successfully fabricated full-thickness skin substitutes, which underwent comprehensive evaluation to assess their regenerative potential in treating full-thickness skin injuries in rats. Remarkably, the skin substitutes loaded with PSCs exhibited exceptional angiogenic activity, as evidenced by the upregulation of angiogenesis-related genes in vitro and the observation of enhanced vascularization in wound tissue sections in vivo. These findings conclusively demonstrated the outstanding efficacy of PSCs in promoting angiogenesis and facilitating the repair of full-thickness skin wounds. The insights garnered from this study provide a valuable reference strategy for the development of skin tissue grafts with potent angiogenesis-inducing capabilities.

14.
Mater Today Bio ; 24: 100918, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38223459

ABSTRACT

The development of skin substitutes aims to replace, mimic, or improve the functions of human skin, regenerate damaged skin tissue, and replace or enhance skin function. This includes artificial skin, scaffolds or devices designed for treatment, imitation, or improvement of skin function in wounds and injuries. Therefore, tremendous efforts have been made to develop functional skin substitutes. However, there is still few reports systematically discuss the relationship between the advanced function and design requirements. In this paper, we review the classification, functions, and design requirements of artificial skin or skin substitutes. Different manufacturing strategies for skin substitutes such as hydrogels, 3D/4D printing, electrospinning, microfluidics are summarized. This review also introduces currently available skin substitutes in clinical trials and on the market and the related regulatory requirements. Finally, the prospects and challenges of skin substitutes in the field of tissue engineering are discussed.

15.
Adv Mater ; 36(1): e2307334, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37708845

ABSTRACT

Numerous efforts for emulating organ systems comprised of multiple functional units have driven substantial advancements in bio-realistic electronics and systems. The resistance change behavior observed in diffusive memristors shares similarities with the potential change in biological neurons. Here, the diffusive threshold switching phenomenon in Ag-incorporated organometallic halide perovskites is utilized to demonstrate the functions of afferent neurons. Halide perovskites-based diffusive memristors show a low threshold voltage of ≈0.2 V with little variation, attributed to the facile migration of Ag ions uniformly dispersed within the halide matrix. Based on the reversible and reliable volatile threshold switching, the memristors successfully demonstrate fundamental nociceptive functions including threshold firing, relaxation, and sensitization. Furthermore, to replicate the biological mechano-nociceptive phenomenon at a system level, an artificial mechano-nociceptive system is built by integrating a diffusive memristor with a force-sensing resistor. The presented system is capable of detecting and discerning the detrimental impact caused by a heavy steel ball, effectively exhibiting the corresponding sensitization response. By further extending the single nociceptive system into a 5 × 5 array, successful stereoscopic nociception of uneven impulses is achieved in the artificial skin system through array-scale sensitization. These results represent significant progress in the field of bio-inspired electronics and systems.

16.
Adv Sci (Weinh) ; 11(7): e2309006, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38072658

ABSTRACT

Human skin comprises multiple hierarchical layers that perform various functions such as protection, sensing, and structural support. Developing electronic skin (E-skin) with similar properties has broad implications in health monitoring, prosthetics, and soft robotics. While previous efforts have predominantly concentrated on sensory capabilities, this study introduces a hierarchical polymer system that not only structurally resembles the epidermis-dermis bilayer structure of skin but also encompasses sensing functions. The system comprises a polymeric hydrogel, representing the "dermis", and a superimposed nanoporous polymer film, forming the "epidermis". Within the film, interconnected nanoparticles mimic the arrangement of interlocked corneocytes within the epidermis. The fabrication process employs a robust in situ interfacial precipitation polymerization of specific water-soluble monomers that become insoluble during polymerization. This process yields a hybrid layer establishing a durable interface between the film and hydrogel. Beyond the structural mimicry, this hierarchical structure offers functionalities resembling human skin, which includes (1) water loss protection of hydrogel by tailoring the hydrophobicity of the upper polymer film; (2) tactile sensing capability via self-powered triboelectric nanogenerators; (3) built-in gold nanowire-based resistive sensor toward temperature and pressure sensing. This hierarchical polymeric approach represents a potent strategy to replicate both the structure and functions of human skin in synthetic designs.


Subject(s)
Biomimetics , Wearable Electronic Devices , Humans , Skin/chemistry , Hydrogels , Water
17.
Adv Mater ; 36(11): e2310429, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38095237

ABSTRACT

High-performance flexible pressure sensors are highly demanded for artificial tactile sensing. Using ionic conductors as the dielectric layer has enabled ionotronic pressure sensors with high sensitivities owing to giant capacitance of the electric double layer (EDL) formed at the ionic conductor/electronic conductor interface. However, conventional ionotronic sensors suffer from leakage, which greatly hinders long-term stability and practical applications. Herein, a leakage-free polyelectrolyte elastomer as the dielectric layer for ionotronic sensors is synthesized. The mechanical and electrical properties of the polyelectrolyte elastomer are optimized, a micropyramid array is constructed, and it is used as the dielectric layer for an ionotronic pressure sensor with marked performances. The obtained sensor exhibits a sensitivity of 69.6 kPa-1 , a high upper detecting limit on the order of 1 MPa, a fast response/recovery speed of ≈6 ms, and excellent stability under both static and dynamic loads. Notably, the sensor retains a high sensitivity of 4.96 kPa-1 at 500 kPa, and its broad sensing range within high-pressure realm enables a brand-new coding strategy. The applications of the sensor as a wearable keyboard and a quasicontinuous controller for a robotic arm are demonstrated. Durable and highly sensitive ionotronic sensors potentialize high-performance artificial skins for soft robots, human-machine interfaces, and beyond.

18.
Tissue Eng Part C Methods ; 30(2): 85-91, 2024 02.
Article in English | MEDLINE | ID: mdl-37950718

ABSTRACT

In recent years the need for in vitro skin models as a replacement for animal studies has resulted in significant progress in the development of skin-on-a-chip models. These devices allow the fine control of the microenvironment of the model and the incorporation of chemical and physical stimuli. In this study, we describe the development of an easy and low-budget open-top dynamic microfluidic device for skin-on-a-chip experiments using polydimethylsiloxane and a porous polyethylene terephthalate membrane. The chip allows the incorporation of compressive stimuli during the cultivation period by the use of syringe pumps. Proof-of-concept results show the successful differentiation of the cells and establishment of the skin structure in the chip. The microfluidic skin-on-a-chip models presented in this study can serve as a platform for future drug and feasibility studies.


Subject(s)
Microfluidics , Animals , Humans , Porosity , Pressure
19.
Soft Robot ; 11(2): 296-307, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37855814

ABSTRACT

Artificial skins with functions such as sensing, variable stiffness, actuation, self-healing, display, adhesion, and camouflage have been developed and widely used, but artificial skins with escape function are still a research gap. In nature, every species of animal can use its innate skills and functions to escape capture. Inspired by the behavior of fish-scale geckoes escaping predation by shedding scales when grasped or touched, we propose a flexible escape skin by attaching artificial scales to a flexible film. Experiments demonstrate that the escape skin has significant effects in reducing escape force, escaping from harmful force environments, and resisting mechanical damage. Furthermore, we enabled active control of escape force and skin hardness by changing temperature, increasing the adaptability of the escape skin to the surrounding. Our study helps lay the foundation for engineering systems that depend on escape skin to improve robustness.


Subject(s)
Skin , Touch Perception , Animals , Mechanical Phenomena , Touch , Hardness
20.
ACS Appl Mater Interfaces ; 15(47): 55163-55173, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-37967306

ABSTRACT

Advancements in intelligent robots and human-machine interaction necessitate a shift in artificial skins toward multimodal perception. Dual-responsive skins that can detect proximity and pressure information are significant to establishing continuous sensing of interaction processes and extending interactive application scenarios. To address the current limitations of inadequate dual-mode performance, such as limited proximal response change and low tactile sensitivity, this paper presents a bioinspired complementary gradient architecture-enabled (CGA) transduction design and a high-performance dual-responsive skin based on coplanar square-loop electrodes. Through systematic investigation into the transduction of various electrode configurations, comparative results reveal the remarkable potential of coplanar electrodes to deliver superior dual-mode performance without compromise. Simulations and experiments prove that the proposed CGA response mechanism can capture local interface deformation and overall compression signals, further enhancing response sensitivity. The final developed artificial skin is sensitive to external pressure and the approach of objects simultaneously, exhibiting a long detection distance (∼40 mm), a high proximity response (>0.4), and outstanding touch sensitivity (0.131 kPa-1). Furthermore, we demonstrate proof-of-concept applications for the proposed sensing skin in a dual-mode teleoperation interface and adaptive grasping interactions.


Subject(s)
Skin, Artificial , Skin , Humans , Touch , Electrodes , Pressure
SELECTION OF CITATIONS
SEARCH DETAIL
...