Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(1): 166913, 2024 01.
Article in English | MEDLINE | ID: mdl-37813168

ABSTRACT

In the syngeneic, subcutaneous B16F10 mouse model of malignant melanoma, treatment with exogenous ARSB markedly reduced tumor size and extended survival. In vivo experiments showed that local treatment with exogenous N-acetylgalactosamine-4-sulfatase (Arylsulfatase B; ARSB) led to reduced tumor growth over time (p < 0.0001) and improved the probability of survival up to 21 days (p = 0.0391). Tumor tissue from the treated mice had lower chondroitin 4-sulfate (C4S) content and lower sulfotransferase activity. The free galectin-3 declined, and the SHP2 activity increased, due to altered binding with chondroitin 4-sulfate. These changes induced effects on transcription, which were mediated by Sp1, phospho-ERK1/2, and phospho-p38 MAPK. Reduced mRNA expression of chondroitin sulfate proteoglycan 4 (CSPG4), carbohydrate sulfotransferase 15 (N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase), and matrix metalloproteinases 2 and 9 resulted. Experiments in the human melanoma cell line A375 demonstrated similar responses to exogenous ARSB as in the tumors, and inverse effects followed ARSB siRNA. ARSB, which removes the 4-sulfate group at the non-reducing end of C4S, acts as a tumor suppressor, and treatment with exogenous ARSB impacts on vital cell signaling and reduces the expression of critical genes associated with melanoma progression.


Subject(s)
Melanoma , N-Acetylgalactosamine-4-Sulfatase , Skin Neoplasms , Animals , Humans , Mice , Chondroitin Sulfates/metabolism , Melanoma/drug therapy , N-Acetylgalactosamine-4-Sulfatase/genetics , N-Acetylgalactosamine-4-Sulfatase/metabolism , Signal Transduction , Skin Neoplasms/drug therapy , Melanoma, Cutaneous Malignant
2.
Toxicon ; 233: 107231, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37517595

ABSTRACT

Research on centipede venoms has led to the discovery of a diverse array of novel proteins and peptides, including those with homology to previously discovered toxin families (e.g., phospholipase A2s and pM12a metalloproteases) and novel toxin families not previously detected in venoms (e.g., ß-pore forming toxins and scoloptoxins). Most of this research has focused on centipedes in the order Scolopendromorpha, particularly those in the families Scolopendridae, Cryptopidae, and Scolopocryptopidae. To generate the first high-throughput venom characterization for a centipede in the scolopendromorph family Plutoniumidae, we performed venom-gland transcriptomics and venom proteomics on two Theatops posticus. We identified a total of 64 venom toxins, 60 of which were detected in both the venom-gland transcriptome and venom proteome and four of which were only detected transcriptomically. We detected a single highly abundant arylsulfatase B (ARSB) toxin, the first ARSB toxin identified from centipede venoms. As ARSBs have been detected in other venomous species (e.g., scorpions), ARSBs in T. posticus highlights a new case of convergent evolution across venoms. Theatops posticus venom also contained a much higher abundance and diversity of phospholipase A2 toxins compared to other characterized centipede venoms. Conversely, we detected other common centipedes toxins, such as CAPs and scoloptoxins, at relatively low abundances and diversities. Our observation of a diverse set of toxins from T. posticus venom, including those from novel toxin families, emphasizes the importance of studying unexplored centipede taxonomic groups and the continued potential of centipede venoms for novel toxin discovery and unraveling the molecular mechanisms underlying trait evolution.


Subject(s)
Arthropod Venoms , Arthropods , Animals , Chilopoda/metabolism , Arthropods/chemistry , Arylsulfatases/metabolism , Phospholipases/metabolism , Arthropod Venoms/chemistry , Transcriptome
3.
J Alzheimers Dis Rep ; 7(1): 527-534, 2023.
Article in English | MEDLINE | ID: mdl-37313486

ABSTRACT

Background: Chondroitin sulfate and chondroitin sulfate proteoglycans have been associated with Alzheimer's disease (AD), and the impact of modified chondroitin sulfates is being investigated in several animal and cell-based models of AD. Published reports have shown the role of accumulation of chondroitin 4-sulfate and decline in Arylsulfatase B (ARSB; B-acetylgalactosamine-4-sulfatase) in other pathology, including nerve injury, traumatic brain injury, and spinal cord injury. However, the impact of ARSB deficiency on AD pathobiology has not been reported, although changes in ARSB were associated with AD in two prior reports. The enzyme ARSB removes 4-sulfate groups from the non-reducing end of chondroitin 4-sulfate and dermatan sulfate and is required for their degradation. When ARSB activity declines, these sulfated glycosaminoglycans accumulate, as in the inherited disorder Mucopolysaccharidosis VI. Objective: Reports about chondroitin sulfate, chondroitin sulfate proteoglycans, and chondroitin sulfatases in AD were reviewed. Methods: Measurements of SAA2, iNOS, lipid peroxidation, chondroitin sulfate proteoglycan 4 (CSPG4), and other parameters were performed in cortex and hippocampus from ARSB-null mice and controls by QRT-PCR, ELISA, and other standard assays. Results: SAA2 mRNA expression and protein, CSPG4 mRNA, chondroitin 4-sulfate, and iNOS were increased significantly in ARSB-null mice. Measures of lipid peroxidation and redox state were significantly modified. Conclusion: Findings indicate that decline in ARSB leads to changes in expression of parameters associated with AD in the hippocampus and cortex of the ARSB-deficient mouse. Further investigation of the impact of decline in ARSB on the development of AD may provide a new approach to prevent and treat AD.

4.
Toxicon ; 226: 107080, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36907567

ABSTRACT

Scorpion venoms have long been studied for their peptide discovery potential, with modern high-throughput venom-characterization techniques paving the way for the discovery of thousands of novel putative toxins. Research into these toxins has provided insight into the pathology and treatment of human diseases, even resulting in the development of one compound with Food and Drug Administration (FDA) approval. Although most of this research has focused on the toxins of scorpion species considered medically significant to humans, the venom of harmless scorpion species possess toxins that are homologous to those from medically significant species, indicating that harmless scorpion venoms may also serve as valuable sources of novel peptide variants. Furthermore, as harmless scorpions represent a vast majority of scorpion species diversity, and therefore venom toxin diversity, venoms from these species likely contain entirely new toxin classes. We sequenced the venom-gland transcriptome and venom proteome of two male Big Bend scorpions (Diplocentrus whitei), providing the first high-throughput venom characterization for a member of this genus. We identified a total of 82 toxins in the venom of D. whitei, 25 of which were identified in both the transcriptome and proteome, and 57 of which were only identified in the transcriptome. Furthermore, we identified a unique, enzyme-rich venom dominated by serine proteases and the first arylsulfatase B toxins identified in scorpions.


Subject(s)
Scorpion Venoms , Scorpions , Animals , Humans , Male , Proteome , Transcriptome , Peptides/chemistry , Scorpion Venoms/toxicity , Scorpion Venoms/chemistry
5.
Int J Mol Sci ; 23(21)2022 Oct 29.
Article in English | MEDLINE | ID: mdl-36361933

ABSTRACT

The enzyme N-acetylgalactosamine-4-sulfatase (Arylsulfatase B; ARSB) was originally identified as a lysosomal enzyme which was deficient in Mucopolysaccharidosis VI (MPS VI; Maroteaux-Lamy Syndrome). The newly directed attention to the impact of ARSB in human pathobiology indicates a broader, more pervasive effect, encompassing roles as a tumor suppressor, transcriptional mediator, redox switch, and regulator of intracellular and extracellular-cell signaling. By controlling the degradation of chondroitin 4-sulfate and dermatan sulfate by removal or failure to remove the 4-sulfate residue at the non-reducing end of the sulfated glycosaminoglycan chain, ARSB modifies the binding or release of critical molecules into the cell milieu. These molecules, such as galectin-3 and SHP-2, in turn, influence crucial cellular processes and events which determine cell fate. Identification of ARSB at the cell membrane and in the nucleus expands perception of the potential impact of decline in ARSB activity. The regulation of availability of sulfate from chondroitin 4-sulfate and dermatan sulfate may also affect sulfate assimilation and production of vital molecules, including glutathione and cysteine. Increased attention to ARSB in mammalian cells may help to integrate and deepen our understanding of diverse biological phenomenon and to approach human diseases with new insights.


Subject(s)
Mucopolysaccharidosis VI , N-Acetylgalactosamine-4-Sulfatase , Humans , Chondroitin Sulfates/metabolism , Dermatan Sulfate , Mucopolysaccharidosis VI/genetics , Mucopolysaccharidosis VI/metabolism , N-Acetylgalactosamine-4-Sulfatase/genetics , N-Acetylgalactosamine-4-Sulfatase/metabolism , Sulfates
6.
JIMD Rep ; 63(5): 475-483, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36101826

ABSTRACT

Mucopolysaccharidoses (MPSs) are a group of genetic alterations whose effect is the progressive intralysosomal accumulation of glycosaminoglycans. Affected individuals are deficient in one or more lysosomal enzymes which, depending on the MPS, may cause coarse facial features, short stature, multiple skeletal dysplasia, joint stiffness, or developmental delay. Their diagnosis is mostly performed late or incorrectly, and it represents a challenge since it requires specialized tests only performed in major cities. This makes it difficult for patients to have access to physicians since their geographical location is distant and therefore, the use of samples collected in solid-phase represents an advantage for the study of high-risk populations. In addition, epidemiological information about rare diseases, especially in Latin America, is scarce or inconsistent. Our aim was to report the experience of 20 years of selective screening by assessing enzyme activity and reporting incidence values of MPS in Colombia. This study validated a group of fluorometric endpoint techniques in 8239 patients. The samples were dried blood spots (DBS) collected on filter paper and leukocyte extracts. Reference values in the Colombian population for α-l-iduronidase, iduronate 2-sulfatase, α-N-acetylglucosaminidase, N-acetylglucosamine-6-sulfate sulfatase, ß-galactosidase, arylsulfatase B, and ß-glucuronidase were established in leukocyte extracts, and patients reference ranges were updated in the case of DBS samples. Incidence values were calculated for each MPS and the distribution of cases across the country is also shown. This study offers very useful information for the health system, the scientific community, and it facilitates the diagnosis of these disorders. This is indispensable when seeking to develop new diagnostic or treatment approaches for patients.

7.
Biochem Biophys Rep ; 31: 101321, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36032399

ABSTRACT

Mucopolysaccharidosis type VI (MPS VI) is an autosomal recessive lysosomal disorder caused by a mutation in the ARSB gene, which encodes arylsulfatase B (ARSB), and is characterized by glycosaminoglycan accumulation. Some pathogenic mutations have been identified in or near the substrate-binding pocket of ARSB, whereas many missense mutations present far from the substrate-binding pocket. Each MPS VI patient shows different severity of clinical symptoms. To understand the relationship between mutation patterns and the severity of MPS VI clinical symptoms, mutations located far from the substrate-binding pocket must be investigated using mutation knock-in mice. Here, I generated a knock-in mouse model of human ARSB Y85H mutation identified in Japanese MPS VI patients using a CRISPR-Cas9-mediated approach. The generated mouse model exhibited phenotypes similar to those of MPS VI patients, including facial features, mucopolysaccharide accumulation, and smaller body size, suggesting that this mouse will be a valuable model for understanding MPS VI pathology.

8.
Biomaterials ; 284: 121526, 2022 05.
Article in English | MEDLINE | ID: mdl-35461098

ABSTRACT

Traumatic damage to the spinal cord does not spontaneously heal, often leading to permanent tissue defects. We have shown that injection of imidazole-poly(organophosphazene) hydrogel (I-5) bridges cystic cavities with the newly assembled fibronectin-rich extracellular matrix (ECM). The hydrogel-created ECM contains chondroitin sulfate proteoglycans (CSPGs), collagenous fibrils together with perivascular fibroblasts, and various fibrotic proteins, all of which could hinder axonal growth in the matrix. In an in vitro fibrotic scar model, fibroblasts exhibited enhanced sensitivity to TGF-ß1 when grown on CSPGs. To alleviate the fibrotic microenvironment, the I-5 hydrogel was equipped with an additional function by making a complex with ARSB, a human enzyme degrading CSPGs, via hydrophobic interaction. Delivery of the I-5/ARSB complex significantly diminished the fibrotic ECM components. The complex promoted serotonergic axonal growth into the hydrogel-induced matrix and enhanced serotonergic innervation of the lumbar motor neurons. Regeneration of the propriospinal axons deep into the matrix and to the lumbar spinal cord was robustly increased accompanied by improved locomotor recovery. Therefore, our dual-functional system upgraded the functionality of the hydrogel for spinal cord regeneration by creating ECM to bridge tissue defects and concurrently facilitating axonal connections through the newly assembled ECM.


Subject(s)
N-Acetylgalactosamine-4-Sulfatase , Spinal Cord Injuries , Spinal Cord Regeneration , Animals , Axons/metabolism , Chondroitin Sulfate Proteoglycans/metabolism , Delayed-Action Preparations/metabolism , Humans , Hydrogels/chemistry , N-Acetylgalactosamine-4-Sulfatase/metabolism , N-Acetylgalactosamine-4-Sulfatase/therapeutic use , Nerve Regeneration/physiology , Rats , Rats, Sprague-Dawley , Spinal Cord
9.
J Med Case Rep ; 16(1): 46, 2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35078524

ABSTRACT

BACKGROUND: Mucopolysaccharidosis VI, or Maroteaux-Lamy disease, is an autosomal recessive disease characterized by deficiency of the enzyme arylsulfatase B in the lysosomal catabolism of glycosaminoglycans. Due to reduced (or even null) enzyme activity, glycosaminoglycans (mainly dermatan sulfate) accumulates, leading to a multisystemic disease. Mucopolysaccharidosis VI induces reduced growth, coarse face, audiovisual deficits, osteoarticular deformities, and cardiorespiratory issues, hampering the quality of life of the patient. Enzyme replacement therapy with galsulfase (Naglazyme, BioMarin Pharmaceuticals Inc., USA) is the specific treatment for this condition. Although studies have shown that enzyme replacement therapy slows the progression of the disease, the effects of long-term enzyme replacement therapy remain poorly understood. CASE PRESENTATION: A 29-year-old, Caucasian, male patient diagnosed with mucopolysaccharidosis VI was treated with enzyme replacement therapy for over 15 years. Enzyme replacement therapy was initiated when patient was 13 years old. The patient evolved multiplex dysostosis, carpal tunnel syndrome, thickened mitral valve, and hearing and visual loss. CONCLUSIONS: Although enzyme replacement therapy did not prevent the main signs of mucopolysaccharidosis VI, it slowed their progression. Additionally, enzyme replacement therapy was associated with a longer survival compared with the untreated affected sibling. Taken together, the results indicate that enzyme replacement therapy positively modified the course of the disease.


Subject(s)
Carpal Tunnel Syndrome , Mucopolysaccharidosis VI , Adolescent , Adult , Enzyme Replacement Therapy , Glycosaminoglycans/therapeutic use , Humans , Male , Mucopolysaccharidosis VI/drug therapy , Quality of Life
10.
Pathobiology ; 89(2): 81-91, 2022.
Article in English | MEDLINE | ID: mdl-34788765

ABSTRACT

INTRODUCTION: The potential role of accumulation of chondroitin sulfates (CSs) in the pathobiology of COVID-19 has not been examined. Accumulation may occur by increased synthesis or by decline in activity of the enzyme arylsulfatase B (ARSB; N-acetylgalactosamine-4-sulfatase) which requires oxygen for activity. METHODS: Immunostaining of lung tissue from 28 patients who died due to COVID-19 infection was performed for CS, ARSB, and carbohydrate sulfotransferase (CHST)15. Measurements of mRNA expression of CHST15 and CHST11, sulfotransferase activity, and total sulfated glycosaminoglycans (GAGs) were determined in human vascular smooth muscle cells following angiotensin (Ang) II treatment. RESULTS: CS immunostaining showed increase in intensity and distribution, and immunostaining of ARSB was diminished in COVID-19 compared to normal lung tissue. CHST15 immunostaining was prominent in vascular smooth muscle cells associated with diffuse alveolar damage due to COVID-19 or other causes. Expression of CHST15 and CHST11 which are required for synthesis of CSE and chondroitin 4-sulfate, total sulfated GAGs, and sulfotransferase activity was significantly increased following AngII exposure in vascular smooth muscle cells. Expression of Interleukin-6 (IL-6), a mediator of cytokine storm in COVID-19, was inversely associated with ARSB expression. DISCUSSION/CONCLUSION: Decline in ARSB and resulting increases in CS may contribute to the pathobiology of COVID-19, as IL-6 does. Increased expression of CHSTs following activation of Ang-converting enzyme 2 may lead to buildup of CSs.


Subject(s)
COVID-19 , N-Acetylgalactosamine-4-Sulfatase , Respiratory Insufficiency , Chondroitin Sulfates/metabolism , Glycosaminoglycans/metabolism , Humans , Membrane Glycoproteins , N-Acetylgalactosamine-4-Sulfatase/genetics , N-Acetylgalactosamine-4-Sulfatase/metabolism , Sulfotransferases
11.
Front Pediatr ; 9: 803732, 2021.
Article in English | MEDLINE | ID: mdl-35186827

ABSTRACT

Arylsulfatase B is an enzyme present in the lysosomes that involves in the breakdown of large sugar molecules known as glycosaminoglycans (GAGs). Arylsulfatase B chemically modifies two GAGs, namely, dermatan sulfate and chondroitin sulfate, by removing the sulfate group. Mutations in the gene encoding the arylsulfataseB enzyme causes lysosomal storage disorder, mucopolysaccharidosis type VI (MPS VI), or Maroteaux-Lamy syndrome. In this study, we report a case of congenital hearing loss with mild pigmentary changes in the retina, indicative of Usher syndrome, and a missense variant reported as likely pathogenic for MPS VI. Sequencing results identified a pathogenic missense variant p.Arg1746Gln in the CDH23 gene. However, another missense variant ARSB:p.Arg159Cys was reported as likely pathogenic to the treating physician. Mutations in ARSB gene have been associated with MPS VI. Subsequently, ARSB enzyme activity was found low twice in dried blood spot (DBS), suggestive of MPS VI. The patient did not have the clinical features of MPS VI, but considering the wide clinical spectrum, progressive nature of MPS VI, and the fact that a treatment for MPS VI is available to prevent disease progression, further biochemical, enzymatic, and in silico studies were performed to confirm the pathogenicity of this variant. In silico tools predicted this variant to be pathogenic. However, the results of urine and serum GAGs and ARSB enzyme levels measured from patient's fibroblast were found normal. Based on clinical and biochemical findings, ARSB:p.Arg159Cys is likely benign and did not support the diagnosis of MPS VI. However, CDH23:p.Arg1746Gln, a pathogenic variant, supports the underlying cause of hearing loss. This study highlights the importance of a robust correlation between genetic results and clinical presentation, and biochemical and enzymatic studies, to achieve a differential diagnosis.

12.
Front Mol Biosci ; 8: 780184, 2021.
Article in English | MEDLINE | ID: mdl-35118118

ABSTRACT

Mucopolysaccharidosis VI (MPS VI) is an autosomal recessive lysosomal storage disease caused by mutations in the arylsulfatase B gene (ARSB) and consequent deficient activity of ARSB, a lysosomal enzyme involved in the glycosaminoglycan (s) (GAGs) metabolism. Here, we present the results of the study of ARSB DNA analysis in MPS VI patients in the Russian Federation (RF) and other republics of the Former Soviet Union. In a cohort of 68 patients (57 families) with MPS VI, a total of 28 different pathogenic alleles were found. The most prevalent nucleotide changes included NM_000046.5:c.194C>T and NM_000046.5:c.454C>T. Five pathogenic alleles were novel, not previously reported (NM_000046.5:c.304C>G, NM_000046.5:c.533A>G, NM_000046.5:c.941T>C, NM_000046.5:c.447_456del10, and NM_000046.5:c.990_10003del14). The nucleotide variant NM_000045.6:c.454C>T was the prevalent allele among Slavic Russian patients. The nucleotide variant NM_000045.6:c.194C>T was found only in MPS VI families from the Republic of Dagestan. Based on the analysis of dry blood spots (DBSs) collected from newborns in this RF region, we showed the frequency of this mutant allele in the Republic of Dagestan to be 0.01 corresponding to the MPS VI frequency of nearly 1:10,000, which is one of the highest worldwide. This may eventually make the selective asymptomatic carrier test and newborn screening highly feasible in this region of the country.

13.
Int J Mol Sci ; 21(5)2020 Feb 26.
Article in English | MEDLINE | ID: mdl-32111099

ABSTRACT

External secretions, composed of a variety of chemical components, are among the most important traits that endow insects with the ability to defend themselves against predators, parasites, or other adversities, especially pathogens. Thus, these exudates play a crucial role in external immunity. Red palm weevil larvae are prolific in this regard, producing large quantities of p-benzoquinone, which is present in their oral secretion. Benzoquinone with antimicrobial activity has been proven to be an active ingredient and key factor for external immunity in a previous study. To obtain a better understanding of the genetic and molecular basis of external immune secretions, we identify genes necessary for p-benzoquinone synthesis. Three novel ARSB genes, namely, RfARSB-0311, RfARSB-11581, and RfARSB-14322, are screened, isolated, and molecularly characterized on the basis of transcriptome data. To determine whether these genes are highly and specifically expressed in the secretory gland, we perform tissue/organ-specific expression profile analysis. The functions of these genes are further determined by examining the antimicrobial activity of the secretions and quantification of p-benzoquinone after RNAi. All the results reveal that the ARSB gene family can regulate the secretory volume of p-benzoquinone by participating in the biosynthesis of quinones, thus altering the host's external immune inhibitory efficiency.


Subject(s)
Benzoquinones/metabolism , Larva/genetics , Larva/metabolism , N-Acetylgalactosamine-4-Sulfatase/genetics , N-Acetylgalactosamine-4-Sulfatase/metabolism , Weevils/genetics , Weevils/immunology , Animals , Body Fluids/immunology , Immunity , Insecta/genetics , Larva/immunology , RNA Interference , Salivary Glands/immunology , Salivary Glands/metabolism , Transcriptome
14.
Pathol Res Pract ; 215(9): 152516, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31262576

ABSTRACT

Arylsulfatases are lysosomal enzymes with important roles in the cell metabolism. Several subtypes of arylsulfatase are known, from A to K. Congenital deficiencies of arylsulfatases, especially A (ARSA) and B (ARSB), can induce metabolic disorders such as metachromatic leucodystrophy (ARSA deficiency) and Maroteaux-Lamy syndrome (ARSB deficiency). ARSA and ARSB pseudodeficiencies were recently described but their exact roles are far to be known. The aim of this review was to synthesize the literature data, combined with personal results, regarding the roles of ARSA and ARSB in non-tumor disorders but also carcinogenesis. Few than 50 published papers regard ARSA and ARSB expression in cancer. They suggest decreased activity of these arylsulfatases in most of carcinomas, compared with normal tissues. However, the clinical impact is still unknown. Further complex studies are necessary to be done, to understand the role of ARSA and ARSB expression in cancer.


Subject(s)
Cerebroside-Sulfatase/metabolism , Lysosomal Storage Diseases/physiopathology , N-Acetylgalactosamine-4-Sulfatase/metabolism , Neoplasms/enzymology , Animals , Humans
15.
Mol Biol Rep ; 46(3): 3417-3426, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30982216

ABSTRACT

Mucopolysaccharidosis VI is a rare autosomal recessive disorder caused by the deficiency of enzyme Arylsulfatase B. The enzyme deficiency leads to the accumulation of dermatan sulfate in connective tissue which causes manifestations related to MPS VI. Up to now, three different disease causing variants are reported in Iranian patients. In this study, we scanned ARSB gene of 13 Iranian patients from 12 families in whom all parents were consanguineous and from the same ethnicity except one family that were not consanguineous but co-ethnic. We found six not previously reported disease causing variants. We extracted DNA from peripheral blood samples of patients that were previously confirmed as MPS VI by clinical, biochemical and enzymatic assays including berry-spot test and fluorimetry, followed by PCR and direct sequencing. Computational approaches were used to analyze novel variants in terms of their impact on the protein structure. 11 disease causing variants and 15 polymorphisms were found. Six disease causing variants were novel and five were previously reported of which three were in Iranian population. Four of patients, who were unrelated, two by two had the same disease causing variant and polymorphisms, which indicates a possible founder effect. Our study also implicates genotype-phenotype correlation. Computational structural modeling indicated these disease causing variants might affect structural stability and function of the protein. Data of this study confirms the existence of mutational heterogeneity in the ARSB between Iranian patients. Disease causing variants with high frequency can be used in the prenatal diagnosis and genetic counseling. Also, the existence of the same variants and polymorphisms in some of the unrelated patients indicates a possible founder effect.


Subject(s)
Mucopolysaccharidosis VI/genetics , Mutation , N-Acetylgalactosamine-4-Sulfatase/genetics , Child , Child, Preschool , DNA/genetics , DNA Mutational Analysis , Exons , Female , Genetic Association Studies , Genetic Testing , Genetic Variation/genetics , Humans , Infant , Iran , Male , Mucopolysaccharidosis VI/enzymology , Mucopolysaccharidosis VI/metabolism , N-Acetylgalactosamine-4-Sulfatase/metabolism , Pedigree , Polymorphism, Genetic/genetics
16.
Gene ; 706: 1-5, 2019 Jul 20.
Article in English | MEDLINE | ID: mdl-31009684

ABSTRACT

BACKGROUND: Mucopolysaccharidosis (MPS) type VI, also known as Maroteaux-Lamy syndrome, is an autosomal recessive lysosomal storage disorder caused by a deficiency in arylsulfatase B (ARSB) enzyme. Our objectives were to investigate clinical phenotypes and performed molecular studies in Iranian patients with MPS VI, for the first time, in the southwestern Iran. METHODS: We studied 14 cases from 10 unrelated kindreds with MPS VI that were enrolled during 8 years. The mutational analysis of coding and flanking regions of ARSB gene was performed for the patients and their families using genomic DNA from whole blood by direct sequencing. RESULTS: All cases had parental consanguinity. Except one who had Fars ethnicity and presented with a very mild degree of coarse face, but normal otherwise, even near normal height, all were from Arab ethnicity with characteristic phenotypes including severe facial changes, cardiac involvement and dysostosis multiplex. Sequencing analysis of ARSB gene revealed four pathogenic homozygote mutations, including a novel nonsense mutation c.281C>A (p.Ser94X) in 9 patients, as well as, a known nonsense mutation c.753C>G (p.Try251X) in 3 cases, and two missense mutations c.904G>A (p.Gly302Arg) and c.454C>T (p.Arg152Trp) in two cases. The type of mutations affected the severity patient's phenotypes. CONCLUSIONS: These findings increased the genetic databases of Iranian patients with MPS VI and would be so much helpful for the high-risk families to speed the detection of carriers with accuracy and perform the prenatal test of disorder with cost-effective in this population.


Subject(s)
Mucopolysaccharidosis VI/genetics , N-Acetylgalactosamine-4-Sulfatase/genetics , Adult , Consanguinity , DNA/genetics , DNA Mutational Analysis/methods , Exons , Female , Humans , Iran , Male , Mucopolysaccharidosis VI/enzymology , Mucopolysaccharidosis VI/metabolism , Mutation/genetics , N-Acetylgalactosamine-4-Sulfatase/metabolism , N-Acetylgalactosamine-4-Sulfatase/physiology , Phenotype , Sequence Analysis, DNA/methods
17.
Prostate ; 79(7): 689-700, 2019 05.
Article in English | MEDLINE | ID: mdl-30801800

ABSTRACT

BACKGROUND: In tissue microarrays, immunostaining of the enzyme arylsulfatase B (ARSB; N-acetylgalactosamine-4-sulfatase) was less in recurrent prostate cancers and in cancers with higher Gleason scores. In cultured prostate stem cells, decline in ARSB increased Wnt signaling through effects on Dickkopf Wnt Signaling Pathway Inhibitor (DKK)3. The effects of androgen exposure on ARSB and the impact of decline in ARSB on Wnt signaling in prostate tissue were unknown. METHODS: Epithelial and stromal tissues from malignant and normal human prostate were obtained by laser capture microdissection. mRNA expression of ARSB, galactose-6-sulfate-sulfatase (GALNS) and Wnt-signaling targets was determined by QPCR. Non-malignant human epithelial and stromal prostate cells were grown in tissue culture, including two-cell layer cultures. ARSB was silenced by specific siRNA, and epithelial cells were treated with stromal spent media following treatment with IWP-2, an inhibitor of Wnt secretion, and by exogenous recombinant human Wnt3A. Promoter methylation was detected using specific DKK3 and ARSB promoter primers. The effects of DHT and of ARSB overexpression on DKK expression were determined. Cell proliferation was assessed by BrdU incorporation. RESULTS: Normal stroma showed higher expression of vimentin, ARSB, and Wnt3A than epithelium. Normal epithelium had higher expression of E-cadherin, galactose 6-sulfate-sulfatase (GALNS), and DKK3 than stroma. In malignant epithelium, expression of ARSB and DKK3 declined, and expression of GALNS and Wnt signaling targets increased. In cultured prostate epithelial cells, Wnt-mediated signaling was greatest when ARSB was silenced and cells were exposed to exogenous Wnt3A. Exposure to 5α-dihydrotestosterone (DHT) increased ARSB and DKK3 promoter rmethylation, and effects of DHT on DKK3 expression were reversed when ARSB was overexpressed. CONCLUSIONS: Androgen-induced declines in ARSB and DKK3 may contribute to prostate carcinogenesis by sustained activation of Wnt signaling in prostate epithelium in response to stromal Wnt3A.


Subject(s)
Adaptor Proteins, Signal Transducing/biosynthesis , Androgens/pharmacology , Dihydrotestosterone/pharmacology , N-Acetylgalactosamine-4-Sulfatase/biosynthesis , Prostate/metabolism , Prostatic Neoplasms/metabolism , Wnt3A Protein/biosynthesis , Androgens/administration & dosage , Cell Line , Dihydrotestosterone/administration & dosage , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelium/drug effects , Epithelium/metabolism , Humans , Laser Capture Microdissection , Male , Neoplasm Recurrence, Local/metabolism , Prostate/drug effects , Stromal Cells/drug effects , Stromal Cells/metabolism , Wnt Signaling Pathway/drug effects , Wnt Signaling Pathway/physiology
18.
Pediatr Int ; 61(2): 180-189, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30548979

ABSTRACT

BACKGROUND: Mucopolysaccharidosis (MPS) VI is a rare, autosomal recessive congenital metabolic disorder caused by deficient activity of the lysosomal metabolic enzyme, N-acetylgalactosamine 4-sulfatase. Enzyme replacement therapy (ERT) is the current treatment for MPS VI, although it involves limited compliance to the therapy and high cost. The aim of this study was to develop a new method of treatment by conducting an orthotopic liver transplantation (LTx) using an animal model of human MPS VI, and to evaluate and examine its effectiveness for treating MPS VI. METHODS: LTx was carried out from normal unaffected to affected MPS VI rats (MPR), which were then killed after LTx, and tissues from the heart, spleen, and knee joint, as well as serum, collected for biological and morphologic evaluation. RESULTS: Liver-transplanted (LTx) MPR had the same level of N-acetylgalactosamine 4-sulfatase activity in the liver and lungs as normal unaffected MPR, and the urinary secretion of mucopolysaccharides/glycosaminoglycan (GAG) in LTx MPR was significantly decreased. Furthermore, on histopathology, the spleens of LTx MPR showed elimination of vacuole cells. In the knee joints, growth plates became thinner, and on radiography the facial and cranial bones of LTx MPR were morphologically normal. CONCLUSIONS: LTx from normal to affected MPR was effective for symptoms of MPS and accumulation of GAG, suggesting that LTx could be a promising alternative approach for MPS VI.


Subject(s)
Liver Transplantation , Mucopolysaccharidosis VI/surgery , Animals , Rats , Rats, Wistar , Treatment Outcome
19.
Iran J Basic Med Sci ; 21(9): 950-956, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30524696

ABSTRACT

OBJECTIVES: Mucopolysaccharidosis VI (MPS VI) or Maroteaux-Lamy syndrome is a rare metabolic disorder, resulting from the deficient activity of the lysosomal enzyme arylsulfatase B (ARSB). The enzymatic defect of ARSB leads to progressive lysosomal storage disorder and accumulation of glycosaminoglycan (GAG) dermatan sulfate (DS), which causes harmful effects on various organs and tissues and short stature. To date, more than 160 different mutations have been reported in the ARSB gene. MATERIALS AND METHODS: Here, we analyzed 4 Iranian and 2 Afghan patients, with dysmorphism indicating MPS VI from North-east Iran. To validate the patients' type of MPS VI, urine mucopolysaccharide and leukocyte ARSB activity were determined. Meanwhile, genomic DNA was amplified for all 8 exons and flanking intron sequences of the ARSB gene to analyze the spectrum of mutations responsible for the disorder in all patients. RESULTS: Abnormal excretion of DS and low leukocyte ARSB activity were observed in the urine samples of all 6 studied patients. In direct DNA sequencing, we detected four different homozygous mutations in different exons, three of which seem not to have been reported previously: p.H178N, p.H242R, and p.*534W. All three novel substitutions were found in patients with Iranian breed. We further detected the IVS5+2T>C mutation in Afghan siblings and four different homozygous polymorphisms, which have all been observed in other populations. CONCLUSION: results indicated that missense mutations were the most common mutations in the ARSB gene, most of them being distributed throughout the ARSB gene and restricted to individual families, reflecting consanguineous marriages.

20.
J Mol Med (Berl) ; 96(12): 1375-1385, 2018 12.
Article in English | MEDLINE | ID: mdl-30353303

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a leading cause of death worldwide, and long-term oxygen therapy has been shown to reduce mortality in COPD patients with severe hypoxemia. However, the Long-term Oxygen Treatment Trial (LOTT), a large randomized trial, found no benefit of oxygen therapy in COPD patients with moderate hypoxemia. We hypothesized that there may be differences in response to oxygen which depend on genotype or gene expression. In a genome-wide time-to-event analysis of the primary outcome of death or hospitalization in 331 subjects, 97 single nucleotide polymorphisms (SNPs) showed evidence of interaction with oxygen therapy at P < 1e-5, including 7 SNPs near arylsulfatase B (ARSB; P = 6e-6). In microarray expression profiling on 51 whole blood samples from 37 individuals, at screening and/or at 12-month follow-up, ARSB expression was associated with the primary outcome depending on oxygen treatment. The significant SNPs were conditional expression quantitative trait loci for ARSB expression. In a network analysis of genes affected by long-term oxygen, two observed clusters including 26 co-expressed genes were enriched in mitochondrial function. Using data from the observational COPDGene Study, we validated the expression of 25 of these 26 genes, plus ARSB. The effect of long-term oxygen therapy in COPD varied based on ARSB expression and genotype. ARSB has previously been shown to be associated with hypoxemia in human bronchial and colonic epithelial cells and in a mouse model. In peripheral blood, long-term oxygen treatment affected expression of mitochondrial-related genes, a biologically relevant pathway in COPD. SNPs and expression of ARSB are associated with response to long-term oxygen in COPD. The ARSB SNPs were expression quantitative trait loci depending on oxygen therapy. Genes differentially expressed by long-term oxygen were enriched in mitochondrial functions. This suggests a potential biomarker to personalize use of long-term oxygen in COPD.


Subject(s)
Oxygen/therapeutic use , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/therapy , Aged , Aged, 80 and over , Female , Gene Expression , Genomics , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...