Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 326
Filter
1.
Respirol Case Rep ; 12(7): e01423, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38962400

ABSTRACT

Allergic bronchopulmonary aspergillosis (ABPA) is an inflammatory disease induced by exaggerated immune responses to Aspergillus species. Although ABPA has a high recurrence (48%), its instances with sequential isolation of distinct Aspergillus species are sporadic. Only one case report has documented the metachronous isolation of Aspergillus fumigatus and Aspergillus flavus. However, no reported cases of metachronous isolation involving three distinct Aspergillus species exist. Herein, we report a novel case of a 47-year-old Japanese man with sequential metachronous isolation of A. flavus, A. terreus, and A. fumigatus. Initially presenting with symptoms of productive cough and pulmonary infiltration, the patient experienced two relapses following treatment with oral prednisolone. Adjustments in therapy, including voriconazole and a tailored corticosteroid regimen, resulted in significant improvement without relapse for over 6 months. This case report highlights the challenges and successful management of ABPA involving multiple Aspergillus species.

2.
J Agric Food Chem ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949246

ABSTRACT

Aflatoxin B1 is a notorious mycotoxin with mutagenicity and carcinogenicity, posing a serious hazard to human and animal health. In this study, an AFB1-degrading dipeptidyl-peptidase III mining from Aspergillus terreus HNGD-TM15 (ADPP III) with a molecular weight of 79 kDa was identified. ADPP III exhibited optimal activity toward AFB1 at 40 °C and pH 7.0, maintaining over 80% relative activity at 80 °C. The key amino acid residues that affected enzyme activity were identified as H450, E451, H455, and E509 via bioinformatic analysis and site-directed mutagenesis. The degradation product of ADPP III toward AFB1 was verified to be AFD1. The zebrafish hepatotoxicity assay verified the toxicity of the AFB1 degradation product was significantly weaker than that of AFB1. The result of this study proved that ADPP III presented a promising prospect for industrial application in food and feed detoxification.

3.
Article in English | MEDLINE | ID: mdl-38916050

ABSTRACT

Owing to its high interest as prolific source of diverse bioactive compounds referred in our previous research work, we have scaled-up the fermentation of the marine Aspergillus terreus LGO13 on a liquid culture medium to isolate and identify the very minor/further promising bioactive secondary metabolites and to study their antibacterial, cytotoxic, and antiviral properties. Twenty-three known bioactive metabolites, including the recently discovered microbial natural product N-benzoyl-tryptophan (1), were obtained herein. Their structures were determined using HR-ESI-MS 1D/2D NMR spectroscopy and data from the literature. The biological properties of the microbial extract and the resulting compounds were examined using a set of microorganisms, cervix carcinoma KB-3-1, nonsmall cell lung cancer (NSCLC) A549, and coronavirus (SARS-CoV-2), respectively. Molecular docking (MD) simulations were used to investigate the potential targets of the separated metabolites as anti-SARS-CoV-2 drugs. According to the current study, a viral protein that may be the target of anticovid drugs is a papain-like protease (PLpro), and chaetominine (2) appears to be a viable choice against this protein. We evaluated the antiviral efficacy of chaetominine (2), fumitremorgin C (6), and azaspirofuran A (9) against SARS-CoV-2 based on MD data. Chaetominine (2) and azaspirofuran A (9) displayed intermediate selectivity indices (SI = 6.6 and 3.2, respectively), while fumitremorgin C (6) displayed a high selectivity index (SI = 19.77). These findings show that fumitremorgin C has promising antiviral action against SARS-CoV-2.

4.
Biotechnol Lett ; 46(4): 601-614, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38844646

ABSTRACT

OBJECTIVE: The aim of this study was to determine the influence of the inoculation volume ratio on the production of secondary metabolites in submerged cocultures of Aspergillus terreus and Streptomyces rimosus. RESULTS: The shake flask cocultures were initiated by using 23 inoculum variants that included different volumes of A. terreus and S. rimosus precultures. In addition, the axenic controls were propagated in parallel with the cocultures. UPLC‒MS analysis revealed the presence of 15 secondary metabolites, 12 of which were found both in the "A. terreus vs. S. rimosus" cocultures and axenic cultures of either A. terreus or S. rimosus. The production of the remaining 3 molecules was recorded solely in the cocultures. The repertoire and quantity of secondary metabolites were evidently dependent on the inoculation ratio. It was also noted that detecting filamentous structures resembling typical morphological forms of a given species was insufficient to predict the presence of a given metabolite. CONCLUSIONS: The modification of the inoculation ratio is an effective strategy for awakening and enhancing the production of secondary metabolites that are not biosynthesized under axenic conditions.


Subject(s)
Aspergillus , Coculture Techniques , Secondary Metabolism , Streptomyces rimosus , Aspergillus/metabolism , Streptomyces rimosus/metabolism , Mass Spectrometry , Streptomyces/metabolism
5.
J Infect Chemother ; 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38857641

ABSTRACT

An eleven year old male reported a ten-day history of unilateral pain, redness, and sudden loss of vision. Ophthalmic examination revealed panophthalmitis that did not respond to conventional intravenous antibiotics, and systemic deterioration raised suspicion of a fungal aetiology. However, the worsening of the ocular condition from panophthalmitis to orbital cellulitis upon commencement of amphotericin B suggests the presence of a fastidious microorganism. Aspergillus terreus was isolated from a vitreous tap sample and responded well to intravenous voriconazole, exhibiting a distinct antimicrobial susceptibility spectrum and emphasising its possible involvement in relatively healthy early adolescence. To the author's knowledge, panophthalmitis with orbital cellulitis in early adolescence, without prior ocular insult, paranasal sinus involvement, or immunocompromised status, has not been reported previously.

6.
Microb Cell Fact ; 23(1): 134, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724934

ABSTRACT

BACKGROUND: Lovastatin has widespread applications thanks to its multiple pharmacological effects. Fermentation by filamentous fungi represents the major way of lovastatin production. However, the current lovastatin productivity by fungal fermentation is limited and needs to be improved. RESULTS: In this study, the lovastatin-producing strains of Aspergillus terreus from marine environment were screened, and their lovastatin productions were further improved by genetic engineering. Five strains of A. terreus were isolated from various marine environments. Their secondary metabolites were profiled by metabolomics analysis using Ultra Performance Liquid Chromatography-Mass spectrometry (UPLC-MS) with Global Natural Products Social Molecular Networking (GNPS), revealing that the production of secondary metabolites was variable among different strains. Remarkably, the strain of A. terreus MJ106 could principally biosynthesize the target drug lovastatin, which was confirmed by High Performance Liquid Chromatography (HPLC) and gene expression analysis. By one-factor experiment, lactose was found to be the best carbon source for A. terreus MJ106 to produce lovastatin. To improve the lovastatin titer in A. terreus MJ106, genetic engineering was applied to this strain. Firstly, a series of strong promoters was identified by transcriptomic and green fluorescent protein reporter analysis. Then, three selected strong promoters were used to overexpress the transcription factor gene lovE encoding the major transactivator for lov gene cluster expression. The results revealed that compared to A. terreus MJ106, all lovE over-expression mutants exhibited significantly more production of lovastatin and higher gene expression. One of them, LovE-b19, showed the highest lovastatin productivity at a titer of 1512 mg/L, which represents the highest production level reported in A. terreus. CONCLUSION: Our data suggested that combination of strain screen and genetic engineering represents a powerful tool for improving the productivity of fungal secondary metabolites, which could be adopted for large-scale production of lovastatin in marine-derived A. terreus.


Subject(s)
Aspergillus , Fermentation , Genetic Engineering , Lovastatin , Lovastatin/biosynthesis , Lovastatin/metabolism , Aspergillus/metabolism , Aspergillus/genetics , Aquatic Organisms/metabolism , Aquatic Organisms/genetics
7.
Fitoterapia ; 175: 105967, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38631597

ABSTRACT

Sulfur-containing natural products possess a variety of biological functions including antitumor, antibacterial, anti-inflammatory and antiviral activities. In this study, four previously undescribed sulfur-containing compounds asperteretals L and M, terreins A and B, together with 17 known compounds were obtained from a culture of marine fungus A. terreus supplemented with inorganic sulfur source Na2SO4. Their planar structures and absolute configurations were elucidated by NMR, HRESIMS, and ECD experiments. The in vitro cytotoxicities of compounds 1-21 against HCT-116 and Caco-2 were evaluated by SRB assay. Asperteretal M (2) exhibited activity against HCT-116 with the IC50 value at 30µM. The antiproliferative effect of asperteretal M was confirmed by colony formation assay and cell death staining. Furthermore, the preliminary study on the anti-colon cancer mechanism of asperteretal M was performed by RNA-seq analysis. Western blotting validated that asperteretal M significantly decreased the expression of cell-cycle regulatory proteins CDK1, CDK4, and PCNA in a concentration-dependent manner.


Subject(s)
Antineoplastic Agents , Aspergillus , Sulfur Compounds , Humans , Aspergillus/chemistry , Molecular Structure , HCT116 Cells , Sulfur Compounds/pharmacology , Sulfur Compounds/isolation & purification , Antineoplastic Agents/pharmacology , Antineoplastic Agents/isolation & purification , Caco-2 Cells , Colonic Neoplasms/drug therapy
8.
Curr Res Microb Sci ; 6: 100220, 2024.
Article in English | MEDLINE | ID: mdl-38303967

ABSTRACT

Aspergillus species encompass a variety of infections, ranging from invasive aspergillosis to allergic conditions, contingent upon the immune status of the host. In this spectrum, Aspergillus terreus stands out due to its emergence as a notable pathogen and its intrinsic resistance to amphotericin-B. The significance of Aspergillus-associated infections has witnessed a marked increase in the past few decades, particularly with the increasing number of immunocompromised individuals. The exploration of epidemiology, morphological transitions, immunopathology, and novel treatment approaches such as new antifungal drugs (PC945, olorofim) and combinational therapy using antifungal drugs and phytochemicals (Phytochemicals: quercetin, shikonin, artemisinin), also using immunotherapies to modulate immune response has resulted in better outcomes. Furthermore, in the context COVID-19 era and its aftermath, fungal infections have emerged as a substantial challenge for both immunocompromised and immunocompetent individuals. This is attributed to the use of immune-suppressing therapies during COVID-19 infections and the increase in transplant cases. Consequently, this review aims to provide an updated overview encompassing the epidemiology, germination events, immunopathology, and novel drug treatment strategies against Aspergillus terreus-associated infections.

9.
Front Microbiol ; 15: 1336533, 2024.
Article in English | MEDLINE | ID: mdl-38404598

ABSTRACT

Soil salinity is one of the major environmental stresses that results in reduction of cultivable land and decreased productivity. In the present study, halotolerant and plant growth-promoting endophytic fungi were isolated from Catharanthus roseus, and their effect in mitigating salt stress in Vigna radiata was evaluated. An isolate CR7, identified to be Aspergillus terreus, showing plant growth promotion activities, viz. IAA production (23.43 ± 0.79 µg/ml), phosphate solubilization (133.63 ± 6.40 µg/ml), ACC deaminase activity (86.36 ± 2.70 µmol α-ketobutyrate/h/mg protein) etc. and ability to grow at 15% NaCl was selected for further in vivo studies. Colonization of CR7 was carried out in V. radiata which was subjected to different concentrations of salt (150, 200, and 250 mM NaCl). Under salt stress, A. terreus CR7 inoculated plants showed substantially improved root and shoot length, biomass, chlorophyll content, relative water content, phenolics, protein content, and DPPH scavenging activity. Endogenous IAA level was enhanced by 5.28-fold in treated plants at maximum salt stress. Inoculation of A. terreus CR7 affected oxidative stress parameters, exhibiting an increase in catalase and superoxide dismutase and reduction in proline, electrolyte leakage, and malondialdehyde content. Fluorescent microscopic analysis of roots revealed improved cell viability and decreased levels of glutathione and hydrogen peroxide under salt stress in treated plants. The isolate A. terreus CR7 also protected against DNA damage induced by salt stress which was evaluated using comet assay. A decrease in DNA tail length, tail moment, and olive tail moment to the extent of 19.87%, 19.76%, and 24.81%, respectively, was observed in A. terreus CR7-colonized plants under salt stress. It can be concluded that A. terreus CR7 can be exploited for alleviating the impact of salt stress in crop plants.

10.
J Microbiol ; 62(2): 113-124, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38411880

ABSTRACT

Glycyrrhizic acid, glycyrrhetinic acid, and their oxo, ester, lactone, and other derivatives, are known for their anti-inflammatory, anti-oxidant, and hypoglycemic pharmacological activities. In this study, chryseno[2,1-c]oxepin-12-carboxylic acid (MG) was first biosynthesized from glycyrrhizic acid through sequential hydrolysis, oxidation, and esterification using Aspergillus terreus TMZ05-2, providing a novel in vitro biosynthetic pathway for glycyrrhizic acid derivatives. Assessing the influence of fermentation conditions and variation of strains during culture under stress-induction strategies enhanced the final molar yield to 88.3% (5 g/L glycyrrhizic acid). CCK8 assays showed no cytotoxicity and good cell proliferation, and anti-inflammatory experiments demonstrated strong inhibition of NO release (36.3%, low-dose MG vs. model), transcriptional downregulation of classical effective cellular factors tumor necrosis factor-α (TNF-α; 72.2%, low-dose MG vs. model), interleukin-6 (IL-6; 58.3%, low-dose MG vs. model) and interleukin-1ß (IL-1ß; 76.4%, low-dose MG vs. model), and decreased abundance of P-IKK-α, P-IKB-α, and P-P65 proteins, thereby alleviating inflammatory responses through the NF-κB pathway in LPS-induced RAW264.7 cells. The findings provide a reference for the biosynthesis of lactone compounds from medicinal plants.


Subject(s)
Aspergillus , Glycyrrhizic Acid , Oxepins , Glycyrrhizic Acid/pharmacology , Oxepins/pharmacology , Signal Transduction , Carboxylic Acids/pharmacology , Anti-Inflammatory Agents/pharmacology , NF-kappa B/metabolism , Lactones/pharmacology , Lipopolysaccharides/pharmacology , Tumor Necrosis Factor-alpha
11.
Phytochemistry ; 219: 113983, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38215814

ABSTRACT

Six undescribed meroterpenoids aspertermeroterpenes A-F and four known analogues were isolated from the marine-derived fungus Aspergillus terreus GZU-31-1. Their structures were elucidated based on spectroscopic methods and electronic circular dichroism calculations. All meroterpenoids possessed the unique acetyl group at C-11, and also aspertermeroterpene A featured the rare C-14 decarboxylated in DMOA meroterpenoids. In the bioassays, aspermeroterpene B exhibited a potent inhibitory effect on the activation of hepatic stellate cells at the concentration of 5 µM via targeting the Nrf2 signaling. This is the first time reported that aspermeroterpene B as a previously undescribed carbon skeleton of meroterpenoid possessed anti-liver fibrosis effect.


Subject(s)
Aspergillus , NF-E2-Related Factor 2 , Aspergillus/chemistry , Circular Dichroism , Fibrosis , Molecular Structure
12.
Microb Cell Fact ; 23(1): 15, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38183118

ABSTRACT

Attenuation of camptothecin (CPT) productivity by fungi with preservation and subculturing is the challenge that halts fungi to be an industrial platform of CPT production. Thus, screening for novel endophytic fungal isolates with metabolic stability for CPT production was the objective. Catharanthus roseus is one of the medicinal plants with diverse bioactive metabolites that could have a plethora of novel endophytes with unique metabolites. Among the endophytes of C. roseus, Aspergillus terreus EFBL-NV OR131583.1 had the most CPT producing potency (90.2 µg/l), the chemical identity of the putative CPT was verified by HPLC, FT-IR, NMR and LC-MS/MS. The putative A. terreus CPT had the same molecular mass (349 m/z), and molecular fragmentation patterns of the authentic one, as revealed from the MS/MS analyses. The purified CPT had a strong activity against MCF7 (5.27 µM) and UO-31 (2.2 µM), with a potential inhibition to Topo II (IC50 value 0.52 nM) than Topo 1 (IC50 value 6.9 nM). The CPT displayed a high wound healing activity to UO-31 cells, stopping their metastasis, matrix formation and cell immigration. The purified CPT had a potential inducing activity to the cellular apoptosis of UO-31 by ~ 17 folds, as well as, arresting their cellular division at the S-phase, compared to the control cells. Upon Plackett-Burman design, the yield of CPT by A. terreus was increased by ~ 2.6 folds, compared to control. The yield of CPT by A. terreus was sequentially suppressed with the fungal storage and subculturing, losing ~ 50% of their CPT productivity by 3rd month and 5th generation. However, the productivity of the attenuated A. terreus culture was completely restored by adding 1% surface sterilized leaves of C. roseus, and the CPT yield was increased over-the-first culture by ~ 3.2 folds (315.2 µg/l). The restoring of CPT productivity of A. terreus in response to indigenous microbiome of C. roseus, ensures the A. terreus-microbiome interactions, releasing a chemical signal that triggers the CPT productivity of A. terreus. This is the first reports exploring the potency of A. terreus, endophyte of C. roseus" to be a platform for industrial production of CPT, with an affordable sustainability with addition of C. roseus microbiome.


Subject(s)
Catharanthus , Chromatography, Liquid , Endophytes , Spectroscopy, Fourier Transform Infrared , Tandem Mass Spectrometry , Isomerases , Camptothecin/pharmacology , Cell Cycle
13.
Chem Biodivers ; 21(3): e202301900, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38282171

ABSTRACT

The emergence of multi-drug-resistant microbial strains spurred the search for antimicrobial agents; as a result, two distinct approaches were combined: four in vitro studies and four corresponding molecular docking investigations. Antituberculosis, anti-methicillin-resistant Staphylococcus aureus (anti-MRSA), antifungal, and larvicidal activities of the crude extract, two fractions, and seven isolated compounds from Aspergillus terreus derived from Morus alba roots were explored. The isolated compounds (5 butyrolactones and 2 orsellinic acid derivatives) showed potent to moderate antitubercular activity with MIC values ranging from 1.95 to 62.5 µg/mL (compared to isoniazid, 0.24 µg/mL) and promising anti-MRSA potential with inhibition zone diameters ranging from 8 to 25 mm. Additionally, the in silico study proved that the isolated compounds bind to the two corresponding proteins' active sites with high to moderate -(C-Docker interaction energies) and stable interactions. The isolated compounds displayed antifungal activities against different fungal strains at diverse degrees of activity, among them compound (8"S,9")-dihydroxy-dihydrobutyrolactone I eliciting the best antifungal activity. Meanwhile, all isolated compounds, fractions, and the crude extract demonstrated extremely selective potent to moderate activity against Cryptococcus neoformans. The isolated five butyrolactone derivatives could develop potential mosquito larvicidal agents as a result of promising docking outcomes in the larval enzyme carboxylesterase.


Subject(s)
Anti-Infective Agents , Aspergillus , Methicillin-Resistant Staphylococcus aureus , Morus , Resorcinols , Animals , Antifungal Agents/pharmacology , Molecular Docking Simulation , Microbial Sensitivity Tests , Anti-Infective Agents/pharmacology , Fungi , Complex Mixtures , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry
14.
J Fungi (Basel) ; 9(10)2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37888264

ABSTRACT

The rare, but emerging mold Aspergillus terreus is an important pathogen in some geographical areas, like Tyrol (Austria) and Houston (Texas). The reason for this high prevalence is unknown. The present serosurveillance study aimed to evaluate the trends in levels of A. terreus-specific IgG antibodies in various regions of Tyrol and to compare the results to the environmental spread of A. terreus in Tyrol. Therefore, 1058 serum samples from healthy blood donors were evaluated. Data revealed a significant difference between the Tyrolean Upland and Lowland. Moreover, female participants had higher A. terreus IgG antibody levels than male participants. The differences found in our study are consistent with the distributional differences in environmental and clinical samples described in previous studies, supporting that A. terreus IgG antibody levels reflect the environmental epidemiology of A. terreus in Tyrol.

15.
AMB Express ; 13(1): 107, 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37789186

ABSTRACT

Aspergillus terreus has been reported to produce many bioactive metabolites that possess potential activities including anti-inflammatory, cytotoxic, and antimicrobial activities. In the present study, we report the isolation and identification of A. terreus from a collected soil sample. The metabolites existing in the microbial ethyl acetate extract were tentatively identified by HPLC/MS and chemically categorized into alkaloids, terpenoids, polyketides, γ-butyrolactones, quinones, and peptides. In addition, a new triglyceride (1) and a diketopiperazine derivative namely asterrine (4), together with two known butyrolactone (2-3) were purified from the extract. The chemical skeleton of the purified compounds was established by comprehensive analysis of their ESI/MS, 1 and 2D-NMR data. The extract and compounds 3,4 exhibited a strong inhibitory activity for the binding of ACE2 to SARS-CoV-2 spike-protein receptor with IC50 7.4, 9.5, and 8.5 µg/mL, respectively. In addition, the extract, 1 and 2 displayed a potent anti-inflammatory effect with IC50 51.31 and 37.25 pg/mL (Il-6) and 87.97, 68.22 pg/mL (TNF-α), respectively, in comparison to LPS control. In addition, the extract and compound 4 displayed an antimicrobial effect towards S. aureus by MIC 62.5 and 125 µg/mL, while the extract exhibited a potent effect against C. albicans (MIC of 125 µg/mL). Collectively, our data introduce novel bioactivities for the secondary metabolites produced by the terrestrial fungus Aspergillus terreus.

16.
World J Microbiol Biotechnol ; 39(12): 346, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37843644

ABSTRACT

Itaconic acid is an important bio-based chemical. The present study aims to evaluate the applicability of semi-continuous fermentation technique for itaconic acid production by Aspergillus terreus. The fermentation is planned to be connected with bipolar membrane electrodialysis unit for acid recovery. This process allows the reuse of residual glucose from the effluent. Our particular attention was focused on the effect of glucose concentration. Two different glucose supplementation strategies were tested: constant glucose concentration in the refilling medium and adjusted glucose concentration in order to maintain a continuously high - 120 g/L - glucose concentration in the fermentor. The itaconic acid titre, yield and productivity for the 24 h time periods between draining/refilling interventions were investigated. The constantly high glucose concentration in the fermentor resulted in doubled biomass formation. The average itaconic acid titre was 32.9 ± 2.7 g/L. The producing strain formed numerous spores during semi-continuous fermentation that germinated continuously. Yield and volumetric productivity showed a periodic pattern during the procedure.


Subject(s)
Aspergillus , Succinates , Fermentation , Glucose
17.
Microbiol Spectr ; 11(6): e0228123, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37855596

ABSTRACT

IMPORTANCE: Decreasing the camptothecin productivity by fungi with storage and subculturing is the challenge that halts their further implementation to be an industrial platform for camptothecin (CPT) production. The highest differentially abundant proteins were Pleckstrin homology (PH) domain-containing proteins and Peptidyl-prolyl cis/trans isomerase that fluctuated with the subculturing of A. terreus with a remarkable relation to CPT biosynthesis and restored with addition of F. elastica microbiome.


Subject(s)
Pleckstrin Homology Domains , Proteomics , Peptidylprolyl Isomerase , Camptothecin
18.
J Vitreoretin Dis ; 7(5): 448-454, 2023.
Article in English | MEDLINE | ID: mdl-37706086

ABSTRACT

Purpose: To report a case of Aspergillus terreus endophthalmitis associated with systemic immunosuppression and an intraocular steroid implant in a patient with sarcoidosis. Methods: A case report was evaluated and a literature review performed. Results: A patient with a history of pulmonary and ocular sarcoidosis presented with new-onset uveitis and was treated for presumed sarcoid flare with oral prednisone and an intravitreal dexamethasone implant before developing worsening vision. She was ultimately diagnosed with A terreus endophthalmitis. Despite both systemic and local antifungals, the visual acuity at the most recent follow-up was no light perception without pain or active inflammation. No definitive source of the fungal disease had been identified. Conclusions: Endophthalmitis resulting from A terreus is associated with poor outcomes. Given the ability of fungal endophthalmitis to mimic other causes of uveitis, one must maintain a high suspicion in patients with any degree of immunosuppression.

19.
Microorganisms ; 11(9)2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37763992

ABSTRACT

Gossypol, generally found in the roots, stems, leaves, and, especially, the seeds of cotton plants, is highly toxic to animals and humans, which inhibits the use of cotton stalks as a feed resource. Here, a promising fungal strain for biodegrading gossypol was successfully isolated from the soil of cotton stalk piles in Xinjiang Province, China, and identified as Aspergillus terreus-YJ01 with the analysis of ITS. Initial gossypol of 250 mg·L-1 could be removed by 97% within 96 h by YJ01, and initial gossypol of 150 mg·L-1 could also be catalyzed by 98% or 99% within 36 h by the intracellular or extracellular crude enzymes of YJ01. Sucrose and sodium nitrate were found to be the optimal carbon and nitrogen sources for the growth of YJ01, and the optimal initial pH and inoculum size for the growth of YJ01 were 6.0 and 1%, respectively. To further elucidate the mechanisms underlying gossypol biodegradation by YJ01, the draft genome of YJ01 was sequenced using Illumina HiSeq, which is 31,566,870 bp in length with a GC content of 52.27% and a total of 9737 genes. Eight genes and enzymes were predicted to be involved in gossypol biodegradation. Among them, phosphoglycerate kinase, citrate synthase, and other enzymes are related to the energy supply process. With sufficient energy, ß-1, 4-endo-xylanase may achieve the purpose of biodegrading gossypol. The findings of this study provide valuable insights into both the basic research and the application of A. terreus-YJ01 in the biodegradation of gossypol in cotton stalks.

20.
Biotechnol Appl Biochem ; 70(6): 2150-2162, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37766485

ABSTRACT

Pterin deaminase stands as a metalloenzyme and exhibits both antitumor and anticancer activities. Therefore, this study aimed to explore the molecular function of zinc finger protein-160 (zfp160) from Aspergillus terreus with its enzyme mechanism in detail. Subsequently, preliminary molecular docking studies on zfp160 from A. terreus were done. Next, the cloning and expression of zfp160 protein were carried out. Following, protein expression was induced and purified through nickel NTA column with imidazole gradient elution. Through the Mascot search engine tool, the expressed protein of MALDI-TOF was confirmed by 32 kDa bands of SDS-PAGE. Furthermore, its enzymatic characterization and biochemical categorization were also explored. The optimum conditions for enzyme were determined to be pH 8, temperature 35°C, km 50 µm with folic acid as substrate, and Vmax of 24.16 (IU/mL). Further, in silico analysis tried to explore the interactions and binding affinity of various substrates to the modeled pterin deaminase from A. terreus. Our results revealed the binding mode of different substrate molecules with pterin deaminase using the approximate scoring functions that possibly correlate with actual experimental binding affinities. Following this, molecular dynamic simulations provided the in-depth knowledge on deciphering functional mechanisms of pterin deaminase over other drugs.


Subject(s)
Aminohydrolases , Aspergillus , Molecular Docking Simulation , Aminohydrolases/chemistry , Aminohydrolases/metabolism , Hydrogen-Ion Concentration , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...