Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 296
Filter
2.
Chin Med ; 19(1): 117, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39210410

ABSTRACT

Danggui Buxue (DGBX) decoction is a classical prescription composed of Astragali Radix (AR) and Angelicae Sinensis Radix (ASR), used to enrich blood, and nourish Qi in Chinese medicine, with the potential to recover energy and stimulate metabolism. Chronic inflammation is a risk factor in the development of inflammatory bowel disease (IBD)-related colorectal cancer (CRC). More importantly, AR and ASR have anti-inflammatory and anti-cancer activities, as well as prefiguring a potential effect on inflammation-cancer transformation. We, therefore, aimed to review the immunometabolism potential of DGBX decoction and its components in this malignant transformation, to provide a helpful complement to manage the risk of IBD-CRC. The present study investigates the multifaceted roles of DGBX decoction and its entire components AR and ASR, including anti-inflammation effects, anti-cancer properties, immune regulation, and metabolic regulation. This assessment is informed by a synthesis of scholarly literature, with more than two hundred articles retrieved from PubMed, Web of Science, and Scopus databases within the past two decades. The search strategy employed utilized keywords such as "Danggui Buxue", "Astragali Radix", "Angelicae Sinensis Radix", "Inflammation", and "Metabolism", alongside the related synonyms, with a particular emphasis on high-quality research and studies yielding significant findings. The potential of DGBX decoction in modulating immunometabolism holds promise for the treatment of IBD-related CRC. It is particularly relevant given the heterogeneity of CRC and the growing trend towards personalized medicine, but the precise and detailed mechanism necessitate further in vivo validation and extensive clinical studies to substantiate the immunometabolic modulation and delineate the pathways involved.

3.
Biology (Basel) ; 13(8)2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39194563

ABSTRACT

Huang-Qi (Astragali radix) is one of the most widely used herbs in traditional Chinese medicine, derived from the dried roots of Astragalus membranaceus or Astragalus membranaceus var. mongholicus. To date, more than 200 compounds have been reported to be isolated and identified in Huang-Qi. However, information pertaining to Huang-Qi breeding is considerably fragmented, with fundamental gaps in knowledge, creating a bottleneck in effective breeding strategies. This review systematically introduces Huang-Qi germplasm resources, genetic diversity, and genetic breeding, including wild species and cultivars, and summarizes the breeding strategy for cultivars and the results thereof as well as recent progress in the functional characterization of the structural and regulatory genes related to horticultural traits. Perspectives about the resource protection and utilization, breeding, and industrialization of Huang-Qi in the future are also briefly discussed.

4.
Zhongguo Zhong Yao Za Zhi ; 49(12): 3295-3301, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-39041092

ABSTRACT

This study aims to reveal the effects of the herb pair Astragali Radix-Salviae Miltiorrhizae Radix et Rhizoma(AR-SMRR) on phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin(PI3K/Akt/mTOR) pathway and autophagy in the lung tissue of the rat model of acute lung injury(ALI). Fifty adult male SD rats were randomized into sham, model, autophagy inhibition(intraperitoneal injection of chloroquine at 10 mg·kg~(-1)), autophagy induction(intraperitoneal injection of rapamycin at 15 mg·kg~(-1)), and AR-SMRR(5 g·kg~(-1), gavage) groups. The rats in the sham group received intratracheal instillation of normal saline, and those in other groups received intratracheal instillation of lipopolysaccharide(LPS, 5 mg·kg~(-1)) for the modeling of ALI. Seven days before the operation, the rats in the sham and model groups were administrated with normal saline, and those in other groups with corresponding drugs. Specimens were collected 24 h after modeling. The pathological changes of the lung tissue were observed under a light microscope. The lung wet/dry weight ratio and the lactate dehydrogenase(LDH) activity and total protein concentration in the bronchoalveolar lavage fluid(BALF) were measured. Western blot was employed to measure the protein levels of microtubule-associated protein 1-light chain 3(LC3), beclin-1, p62, PI3K, Akt, and mTOR. Compared with the sham group, the model group showed increased histopathological score of the lung tissue, lung wet/dry weight ratio, and LDH activity and protein concentration in BALF. Autophagy inhibition further increased these indicators compared with the model group, while autophagy induction and AR-SMRR lowered the levels. In addition, AR-SMRR up-regulated the protein levels of LC3-Ⅱ and beclin-1, down-regulated the expression of p62, and inhibited the expression of p-PI3K, p-Akt, and p-mTOR in the lung tissue of ALI rats. The findings suggest that AR-SMRR can alleviate the lung injury and edema in the rat model of ALI induced by LPS by enhancing autophagy via down-regulating PI3K/Akt/mTOR signaling pathway.


Subject(s)
Acute Lung Injury , Autophagy , Drugs, Chinese Herbal , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Rats, Sprague-Dawley , Signal Transduction , TOR Serine-Threonine Kinases , Animals , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Male , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/genetics , Rats , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/pharmacology , Autophagy/drug effects , Signal Transduction/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Salvia miltiorrhiza/chemistry , Astragalus propinquus/chemistry , Rhizome/chemistry , Lung/drug effects , Lung/metabolism , Lung/pathology , Humans
5.
Zhongguo Zhong Yao Za Zhi ; 49(13): 3493-3504, 2024 Jul.
Article in Chinese | MEDLINE | ID: mdl-39041121

ABSTRACT

Based on the processing and compatibility, this study explored the effects of components in Corni Fructus(CF) and Astragali Radix(AR) on plasma metabolomics in diabetic nephropathy rats. SD rats were randomly divided into four groups and diabetic nephropathy rat model was induced by high-fat diet combined with 30 mg·kg~(-1) streptozotocin(STZ). Histopathological observations of kidney tissue sections of rats in each group were conducted using HE, PAS, and Masson staining. Ultra-high performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry(UHPLC-Q-TOF-MS/MS) metabolomics method was employed to investigate the effects of CF before and after wine-processing combined with AR-related components on plasma metabolites in diabetic nephropathy rats. After drug treatment, kidney tissue damage and interstitial collagen fiber deposition area in diabetic nephropathy rats were improved to varying degrees(P<0.001). The detection results of plasma metabolomics showed that 71 biomarkers related to the pathogenesis of diabetic nephropathy were identified in diseased rats, mainly involving linoleic acid metabolism, caffeine metabolism, glycerophospholipid metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, arachidonic acid metabolism, phenylalanine metabolism, retinol metabolism, and ether lipid metabolism. After drug intervention, 26 of them were significantly downregulated, with better efficacy observed in precision processed herb-pair group(P-CG_5). This study elucidated from the perspective of plasma metabolomics that P-CG_5 could improve metabolic disorders in diabetic nephropathy through pathways such as phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism, and caffeine metabolism, providing theoretical support and experimental basis for the clinical application of CF and AR compatibility in traditional Chinese medicine.


Subject(s)
Cornus , Diabetic Nephropathies , Drugs, Chinese Herbal , Metabolomics , Rats, Sprague-Dawley , Tandem Mass Spectrometry , Animals , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Rats , Male , Chromatography, High Pressure Liquid , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/pharmacology , Cornus/chemistry , Astragalus propinquus/chemistry , Wine/analysis , Humans , Kidney/drug effects , Kidney/metabolism
6.
J Ethnopharmacol ; 333: 118447, 2024 Oct 28.
Article in English | MEDLINE | ID: mdl-38885914

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Ginseng Radix and Astragali Radix are commonly combined to tonify Qi and alleviate fatigue. Previous studies have employed biological networks to investigate the mechanisms of herb pairs in treating different diseases. However, these studies have only elucidated a single network for each herb pair, without emphasizing the superiority of the herb combination over individual herbs. AIM OF THE STUDY: This study proposes an approach of comparing biological networks to highlight the synergistic effect of the pair in treating cancer-related fatigue (CRF). METHODS: The compounds and targets of Ginseng Radix, Astragali Radix, and CRF diseases were collected and predicted using different databases. Subsequently, the overlapping targets between herbs and disease were imported into the STRING and DAVID tools to build protein-protein interaction (PPI) networks and analyze enriched KEGG pathways. The biological networks of Ginseng Radix and Astragali Radix were compared separately or together using the DyNet application. Molecular docking was used to verify the predicted results. Further, in vitro experiments were conducted to validate the synergistic pathways identified in in silico studies. RESULTS: In the PPI network comparison, the combination created 89 new interactions and an increased average degree (11.260) when compared to single herbs (10.296 and 9.394). The new interactions concentrated on HRAS, STAT3, JUN, and IL6. The topological analysis identified 20 core targets of the combination, including three Ginseng Radix-specific targets, three Astragali Radix-specific targets, and 14 shared targets. In KEGG enrichment analysis, the combination regulated additional signaling pathways (152) more than Ginseng Radix (146) and Astragali Radix (134) alone. The targets of the herb pair synergistically regulated cancer pathways, specifically hypoxia-inducible factor 1 (HIF-1) signaling pathway. In vitro experiments including enzyme-linked immunosorbent assay and Western blot demonstrated that two herbs combination could up-regulate HIF-1α signaling pathway at different combined concentrations compared to either single herb alone. CONCLUSION: The herb pair increased protein interactions and adjusted metabolic pathways more than single herbs. This study provides insights into the combination of Ginseng Radix and Astragali Radix in clinical practice.


Subject(s)
Astragalus propinquus , Drug Synergism , Drugs, Chinese Herbal , Fatigue , Molecular Docking Simulation , Neoplasms , Panax , Protein Interaction Maps , Panax/chemistry , Humans , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Neoplasms/drug therapy , Fatigue/drug therapy , Astragalus propinquus/chemistry , Astragalus Plant/chemistry , Signal Transduction/drug effects
7.
Phytomedicine ; 132: 155824, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38941816

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is one of the most common causes of cancer-related mortality and significantly impairs quality of life. Astragali Radix-Curcumae Rhizoma (AC) is widely employed in the treatment of CRC in Chinese medicine, but the precise mechanisms remain unclear. PURPOSE: This study aimed to elucidate the mechanisms by which AC inhibits CRC progression. METHODS: The active components of AC were identified using UPLC-MS/MS analysis. An orthotopic transplantation colorectal tumor model was established in BALB/c mice using the CT26-Lucifer cell line to evaluate the effects of AC. Tumor volumes were monitored using IVIS imaging technology. Histological examination of tumor morphology was performed with hematoxylin and eosin (H&E) staining. Transcriptomic sequencing of mouse tumor samples was conducted to identify critical pathways and molecular targets. The impact of AC on cell viability and migration was assessed using CCK-8 and wound healing assays, respectively. To investigate the effects of AC on CRC cells, an in vitro hypoxic model was established using cobalt chloride (CoCl2), a hypoxia inducer. HIF-2α overexpression was achieved by constructing stable lentiviral vectors. Key targets identified from RNA-seq, such as c-Myc, Ki-67, ß-catenin, cleaved caspase 3, CD133, and CD44, were evaluated using western blotting, qRT-PCR, and immunofluorescence assays. Epithelial-Mesenchymal Transition (EMT) and spheroid cloning assays were employed to evaluate phenotypic changes in cancer stem cells. RESULTS: Twelve components of AC were identified. AC effectively inhibited CRC progression in vivo. Transcriptomic analysis highlighted hypoxic signaling as a significantly enriched pathway, implicating its role in suppressing CRC progression by AC. In the hypoxic model, AC inhibited the proliferation and migration of CRC cells in vitro. Furthermore, AC reduced cancer stemness by downregulating stemness markers, inhibiting EMT, and decreasing tumor sphere formation. The downregulation of hypoxic responses and the shift in stemness by AC involved attenuation of HIF-2α and WNT/ß-catenin signaling. CONCLUSION: This study provides the first evidence that AC reduces the stemness of CRC and the inhibition of the transition of CRC to stem-like cells by AC is closely related to the downregulation of the HIF-2α/ß-catenin pathway, especially under hypoxic conditions.


Subject(s)
Astragalus propinquus , Basic Helix-Loop-Helix Transcription Factors , Colorectal Neoplasms , Drugs, Chinese Herbal , Mice, Inbred BALB C , beta Catenin , Animals , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , beta Catenin/metabolism , Astragalus propinquus/chemistry , Drugs, Chinese Herbal/pharmacology , Cell Line, Tumor , Mice , Basic Helix-Loop-Helix Transcription Factors/metabolism , Humans , Neoplastic Stem Cells/drug effects , Epithelial-Mesenchymal Transition/drug effects , Cell Movement/drug effects , Rhizome/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Wnt Signaling Pathway/drug effects
8.
J Asian Nat Prod Res ; : 1-9, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856077

ABSTRACT

Astragali Radix (AR), a common traditional Chinese medicinal herb, exhibits protective effects on diabetic nephropathy (DN) in extensive researches. Aticles focusing on AR in PubMed were collected and reviewed in order to summarize the latest pharmacological effects on DN. The action mechanisms for protectiving effects of AR were associated with regulation of anti-fibrosis, anti-inflammation, anti-oxidative stress, anti-podocyte apoptosis, restoration of mitochondrial function, restoration of endothelial function in diabetes nephropathy experimental models. Consequently, AR hold promise as potential novel therapeutics for the treatment of DN.

9.
Zhongguo Zhong Yao Za Zhi ; 49(9): 2326-2335, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38812133

ABSTRACT

Based on the association network of "drug pair-disease", the effect characteristics of Astragali Radix-Chuanxiong Rhizoma drug pair in the treatment of ischemic stroke(IS) with Qi deficiency and blood stasis and the matching mechanism of the two were explored. Through Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP) and SwissTargetPrediction Database, the effective chemical components of the drug pair were screened, and the candidate targets were predicted. Databa-ses such as GeneCards, DrugBank, Online Mendelian Inheritance in Man(OMIM), and Therapeutic Target Database(TTD) were searched to obtain gene targets related to IS. Through STRING and Cytoscape 3.9.1 software, the protein-protein interaction(PPI) network was constructed by using the interaction information of disease syndrome-related genes and candidate targets of drug pairs, and the core targets were screened according to the network topological feature values. Based on the Metascape platform and DAVID database, the biomolecular interaction information was integrated to analyze the Kyoto Encyclopedia of Genes and Genomes(KEGG) and mine biological functions, so as to further explore the mechanism of action and compatibility characteristics of Astragali Radix-Chuan-xiong Rhizoma. The results showed that the candidate biological process was mainly involved in the regulation of functional modules such as immune, blood circulation, neurotransmitter, and oxidative stress, and it was enriched in lipid and atherosclerosis, calcium signaling pathway, and platelet activation. Astragali Radix and Chuanxiong Rhizoma have their own characteristics. Astragali Radix has a regulatory response to growth factors while maintaining the body's immune balance, while Chuanxiong Rhizoma mainly improves the circulatory system and participates in hormone metabolism, so as to indicate the compatibility mechanism of Astragali Radix-Chuanxiong Rhizoma drug pair for multi-target and multi-pathway synergistic treatment of IS. Through further experimental verification, it was found that the Astragali Radix-Chuanxiong Rhizoma drug pair could significantly down-regulate the expression of key targets including TLR4, NF-κB, IL-1ß, F2R, PLCß1, and MYLK. This study preliminarily reveals that the Astragali Radix-Chuanxiong Rhizoma drug pair may play the three replenishing effects of promoting blood circulation, benefiting Qi, and clearing collaterals by correcting immune di-sorders, blood circulation disorders, and inflammation, which provide support for the clinical research on the subsequent improvement of Qi deficiency and blood stasis in the treatment of IS and provide a new idea for the analysis of modern biological connotation of the compatibility of seven emotions of traditional Chinese medicine.


Subject(s)
Astragalus propinquus , Drugs, Chinese Herbal , Ischemic Stroke , Protein Interaction Maps , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Humans , Astragalus propinquus/chemistry , Ischemic Stroke/drug therapy , Ischemic Stroke/genetics , Ischemic Stroke/metabolism , Rhizome/chemistry , Ligusticum/chemistry
10.
Zhongguo Zhong Yao Za Zhi ; 49(4): 1044-1051, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38621911

ABSTRACT

The animal and cell models were used in this study to investigate the mechanism of Astragali Radix-Curcumae Rhizoma(HQEZ) in inhibiting colon cancer progression and enhancing the efficacy of 5-fluorouracil(5-FU) by regulating hypoxia-inducible factors and tumor stem cells. The animal model was established by subcutaneous transplantation of colon cancer HCT116 cells in nude mice, and 24 successfully modeled mice were randomized into model, 5-FU, HQEZ, and 5-FU+HQEZ groups. The tumor volume was measured every two days. Western blot was employed to measure the protein levels of epidermal growth factor receptor(EGFR), dihydropyrimidine dehydrogenase(DPYD), and thymidylate synthase(TYMS), the key targets of the hypoxic core region, as well as the hypoxia-inducible factors HIF-1α and HIF-2α and the cancer stem cell surface marker CD133 and SRY-box transcription factor 2(SOX2). The results of animal experiments showed that HQEZ slowed down the tumor growth and significantly increased the tumor inhibition rate of 5-FU. Compared with the model group, HQEZ significantly down-regulated the protein levels of EGFR and DPYD, and 5-FU+HQEZ significantly down-regulated the protein levels of EGFR and TYMS in tumors. Compared with the model group, HQEZ significantly down-regulated the protein levels of HIF-1α, HIF-2α, SOX2, and CD133 in the hypoxic core region. Compared with the 5-FU group, 5-FU+HQEZ lowered the protein levels of HIF-1α, HIF-2α, and SOX2. The cell experiments showed that the protein le-vels of HIF-1α and HIF-2α in HCT116 cells elevated significantly after low oxygen treatment. Compared with 5-FU(1.38 µmol·L~(-1)) alone, HQEZ(40 mg·mL~(-1)) and 5-FU+HQEZ significantly down-regulated the protein levels of HIF-1α, HIF-2α, and TYMS. In conclusion, HQEZ can inhibit the expression of hypoxia-responsive molecules in colon cancer cells and reduce the properties of cancer stem cells, thereby enhancing the therapeutic effect of 5-FU on colon cancer.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Colonic Neoplasms , Mice , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Mice, Nude , Fluorouracil/pharmacology , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , Hypoxia , ErbB Receptors , Neoplastic Stem Cells , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Cell Line, Tumor
11.
Molecules ; 29(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38675511

ABSTRACT

Astragali radix is a traditional medicinal herb with a long history and wide application. It is frequently used in prescriptions with other medicinal materials to replenish Qi. According to the classics of traditional Chinese medicine, Astragali radix is attributed with properties such as Qi replenishing and surface solidifying, sore healing and muscle generating, and inducing diuresis to reduce edema. Modern pharmacological studies have demonstrated that some extracts and active ingredients in Astragali radix function as antioxidants. The polysaccharides, saponins, and flavonoids in Astragali radix offer beneficial effects in preventing and controlling diseases caused by oxidative stress. However, there is still a lack of comprehensive research on the effective components and molecular mechanisms through which Astragali radix exerts antioxidant activity. In this paper, we review the active components with antioxidant effects in Astragali radix; summarize the content, bioavailability, and antioxidant mechanisms; and offer a reference for the clinical application of Astragalus and the future development of novel antioxidants.


Subject(s)
Antioxidants , Astragalus propinquus , Drugs, Chinese Herbal , Antioxidants/pharmacology , Antioxidants/chemistry , Astragalus propinquus/chemistry , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Humans , Astragalus Plant/chemistry , Oxidative Stress/drug effects , Animals , Flavonoids/chemistry , Flavonoids/pharmacology , Medicine, Chinese Traditional , Saponins/pharmacology , Saponins/chemistry
12.
Front Pharmacol ; 15: 1326415, 2024.
Article in English | MEDLINE | ID: mdl-38606179

ABSTRACT

Yi Mai Jian herbal formula (YMJ) is formulated with Eucommiae Folium, Astragali Radix, Ligustri Lucidi Fructus, and Elaeagnus Fructus to improve bone function in traditional Chinese medicine. The anti-osteoporotic effects of YMJ in bone metabolism were evaluated in ovariectomized (OVX) rats. The skeletal structure of the femur and vertebrae was analyzed after treating OVX rats with YMJ for 114 days. The results showed that YMJ significantly increased the bone mineral density (BMD) and trabecular number (Tb. N) of the femur and 5th lumbar vertebrae and reduced trabecular separation (Tb. Sp). Moreover, trabecular bone volume/total tissue volume (BV/TV), bone stiffness, and maximum femur load were significantly increased. The serum concentrations of NTX1 and PYD were significantly decreased. According to these results, YMJ could ameliorate osteoporosis in ovariectomized rats. Eucommiae Folium and Elaeagnus Fructus inhibited osteoclast differentiation, Ligustri Lucidi Fructus inhibited calcium reabsorption, Astragali Radix stimulated osteoblast proliferation, and Astragali Radix and Eucommiae Folium stimulated mineralization. Therefore, the combination of the four herbs into one formula, YMJ, could alleviate bone remodeling caused by low estrogen levels. We suggest that YMJ could be a healthy food candidate for preventing post-menopausal osteoporosis.

13.
Front Plant Sci ; 15: 1368135, 2024.
Article in English | MEDLINE | ID: mdl-38486854

ABSTRACT

Introduction: With the depletion of wild Astragali Radix (WA) resources, imitated-wild Astragali Radix (IWA) and cultivated Astragali Radix (CA) have become the main products of Astragali Radix. However, the quality differences of three growth patterns (WA, IWA, CA) and different growth years of Astragali Radix have not been fully characterized, leading to a lack of necessary scientific evidence for their use as substitutes for WA. Methods: We innovatively proposed a multidimensional evaluation method that encompassed traits, microstructure, cell wall components, saccharides, and pharmacodynamic compounds, to comprehensively explain the quality variances among different growth patterns and years of Astragali Radix. Results and discussion: Our study showed that the quality of IWA and WA was comparatively similar, including evaluation indicators such as apparent color, sectional structure and odor, thickness of phellem, diameter and number of vessels, morphology of phloem and xylem, and the levels and ratios of cellulose, hemicellulose, lignin, sucrose, starch, water-soluble polysaccharides, total-saponins. However, the content of sucrose, starch and sorbose in CA was significantly higher than WA, and the diameter and number of vessels, total-flavonoids content were lower than WA, indicating significant quality differences between CA and WA. Hence, we suggest that IWA should be used as a substitute for WA instead of CA. As for the planting years of IWA, our results indicated that IWA aged 1-32 years could be divided into three stages according to their quality change: rapid growth period (1-5 years), stable growth period (6-20 years), and elderly growth period (25-32 years). Among these, 6-20 years old IWA exhibited consistent multidimensional comparative results, showcasing elevated levels of key active components such as water-soluble polysaccharides, flavonoids, and saponins. Considering both the quality and cultivation expenses of IWA, we recommend a cultivation duration of 6-8 years for growers. In conclusion, we established a novel multidimensional evaluation method to systematically characterize the quality of Astragali Radix, and provided a new scientific perspective for the artificial cultivation and quality assurance of Astragali Radix.

14.
Arch Pharm Res ; 47(3): 165-218, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38493280

ABSTRACT

Astragali Radix (A. Radix) is the dried root of Astragalus membranaceus var. mongholicus (Bge) Hsiao or Astragalus membranaceus (Fisch.) Bge., belonging to the family Leguminosae, which is mainly distributed in China. A. Radix has been consumed as a tonic in China for more than 2000 years because of its medicinal effects of invigorating the spleen and replenishing qi. Currently, more than 400 natural compounds have been isolated and identified from A. Radix, mainly including saponins, flavonoids, phenylpropanoids, alkaloids, and others. Modern pharmacological studies have shown that A. Radix has anti-tumor, anti-inflammatory, immunomodulatory, anti-atherosclerotic, cardioprotective, anti-hypertensive, and anti-aging effects. It has been clinically used in the treatment of tumors, cardiovascular diseases, and cerebrovascular complications associated with diabetes with few side effects and high safety. This paper reviewed the progress of research on its chemical constituents, pharmacological effects, clinical applications, developing applications, and toxicology, which provides a basis for the better development and utilization of A. Radix.


Subject(s)
Astragalus Plant , Botany , Drugs, Chinese Herbal , Saponins , Astragalus Plant/chemistry , Astragalus propinquus/chemistry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/chemistry , Saponins/pharmacology
15.
Rejuvenation Res ; 27(2): 61-74, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38386515

ABSTRACT

Astragali radix (AR) and anemarrhenae rhizoma (AAR) are used clinically in Chinese medicine for the treatment of chronic heart failure (CHF), but the exact therapeutic mechanism is unclear. In this study, a total of 60 male C57BL/6 mice were divided into 5 groups, namely sham, model, AR, AAR, and AR-AAR. In the sham group, the chest was opened without ligation. In the other groups, the chest was opened and the transverse aorta was ligated to construct the transverse aortic constriction model. After 8 weeks of feeding, mice were given medicines by gavage for 4 weeks. Left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS) were detected by echocardiography. Heart weight index (HWI) and wheat germ agglutinin staining were used to evaluate cardiac hypertrophy. Hematoxylin-eosin staining was used to observe the pathological morphology of myocardial tissue. Masson staining was used to evaluate myocardial fibrosis. The content of serum brain natriuretic peptide (BNP) was detected by enzyme-linked immunosorbent assay kit. The content of serum immunoglobulin G (IgG) was detected by immunoturbidimetry. The mechanism of AR-AAR in the treatment of CHF was explored by proteomics. Western blot was used to detect the protein expressions of complement component 1s (C1s), complement component 9 (C9), and terminal complement complex 5b-9 (C5b-9). The results show that AR-AAR inhibits the expression of complement proteins C1s, C9, and C5b-9 by inhibiting the production of IgG antibodies from B cell activation, which further inhibits the complement activation, attenuates myocardial fibrosis, reduces HWI and cardiomyocyte cross-sectional area, improves cardiomyocyte injury, reduces serum BNP release, elevates LVEF and LVFS, improves cardiac function, and exerts myocardial protection.


Subject(s)
Drugs, Chinese Herbal , Heart Failure , Male , Mice , Animals , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Stroke Volume , Complement Membrane Attack Complex , Mice, Inbred C57BL , Ventricular Function, Left , Heart Failure/drug therapy , Heart Failure/metabolism , Fibrosis , Immunoglobulin G/therapeutic use
16.
Zhongguo Zhong Yao Za Zhi ; 49(2): 294-303, 2024 Jan.
Article in Chinese | MEDLINE | ID: mdl-38403305

ABSTRACT

Lung cancer is the leading cause of cancer death, and its effective treatment is a difficult medical problem. Lung cancer belongs to the traditional Chinese medicine(TCM) disease categories of lung accumulation, lung amassment, and overstrain cough. Rich theoretical basis and practical experience have been accumulated in the TCM treatment of lung cancer. Astragali Radix is one of the representatives of Qi-tonifying drugs. It mainly treat the lung cancer with the syndrome of Qi deficiency and pathogen stagnation, following the principle of reinforcing healthy Qi and eliminating patgogenic Qi. Astragali Radix exerts a variety of pharmacological activities in the treatment of lung cancer, including inhibiting tumor cell proliferation and promoting tumor cell apoptosis, inhibiting tumor invasion and migration, regulating the tumor microenvironment, suppressing tumor angiogenesis, modulating autophagy, inducing macrophage polarization, enhancing immunity, inhibiting immune escape, and reversing cisplatin resistance. The active ingredients of Astragali Radix in treating lung cancer include polysaccharides, saponins, and flavonoids. This study reviewed the pharmacological activities and active ingredients of Astragali Radix in the treatment of lung cancer, providing a basis for the development and utilization of Astragali Radix resources and active ingredients and the research and development of anti-tumor drugs.


Subject(s)
Astragalus Plant , Drugs, Chinese Herbal , Lung Neoplasms , Humans , Drugs, Chinese Herbal/therapeutic use , Lung Neoplasms/drug therapy , Medicine, Chinese Traditional , Plant Roots , Tumor Microenvironment
17.
Transl Androl Urol ; 13(1): 91-103, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38404557

ABSTRACT

Background: Acute kidney injury (AKI) is a devastating clinical syndrome with high mortality rate attributed to lack of effective treatment. The herbal pair of Astragali Radix (AR) and Radix Angelica Sinensis (RAS) is a commonly prescribed herbal formula or is added to other traditional Chinese medicine (TCM) prescriptions for the treatment of kidney diseases. AR-RAS has certain protective effects on AKI in experiments, but the relevant mechanisms have yet to be clear. So this study aims to explore the mechanism of action of AR-RAS in AKI by combining network pharmacology and molecular docking methods. Methods: In Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), the major AR-RAS chemical components and associated action targets were found and screened. The DrugBank and GeneCards databases were used to find AKI-related targets. The targets that are in close relationship with AKI were obtained from Therapeutic Target database (TTD), Online Mendelian Inheritance in Man (OMIM), and PharmGKB databases. The "herb-active ingredient-target" network was drawn by Cytoscape 3.8.0 software. The Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database was used to build the protein-protein interaction network. Bioconductor/R was used to examine Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. AR-RAS components and critical targets were docked using the AutoDock Vina program. Results: A compound-target network, built by screening and analyzing the results, allowed to identify 19 active components and 101 possible therapeutic targets for AKI. The main ingredients were quercetin, kaempferol, 7-o-methylisocronulatol, formononetin and isorhamnetin. The key targets included AKT serine/threonine kinase 1 (AKT1), nuclear receptor coactivator 1 (NCOA1), JUN, estrogen receptor alpha (ESR1) and mitogen-activated protein kinase 8 (MAPK8). These molecules are targeted by pathways such as the calcium signaling route, the tumor necrosis factor (TNF) signaling pathway and the interleukin-17 (IL-17) signaling pathway, as well as the development of T helper 17 cells. Molecular docking demonstrated that AR-active RAS components exhibited strong binding activities to probable targets of AKI. Conclusions: We described here the potential active ingredients, possible targets responsible for the efficacy of AR-RAS in AKI treatment, providing a theoretical basis for further research.

18.
Curr Drug Targets ; 25(2): 135-148, 2024.
Article in English | MEDLINE | ID: mdl-38213165

ABSTRACT

BACKGROUND: Astragali Radix (AR) has a long history as a traditional Chinese medicine for anti-osteoporosis (OP) treatment. The aim of the study was to explore the effect and optimal regimens of AR and its main ingredients (IAR) in OP treatment. METHODS: Eligible animal studies were searched in seven databases (PubMed, Web of Science, MEDLINE, SciELO Citation Index, Cochrane Library, China National Knowledge Infrastructure and Wanfang). The primary outcomes were bone metabolic indices. The secondary outcome measure was the anti-OP mechanism of IAR. RESULTS: 21 studies were enrolled in the study. The primary findings of the present article illustrated that IAR could significantly increase the bone mineral density (BMD), bone volume over the total volume, trabecular number, trabecular thickness, bone maximum load and serum calcium, while trabecular separation and serum C-terminal telopeptide of type 1 collagen were remarkably decreased (P < 0.05). In subgroup analysis, the BMD in the long treatment group (≥ 10 weeks) showed better effect size than the short treatment group (< 10 weeks) (P < 0.05). Modeling methods and animal sex were factors affecting serum alkaline phosphatase and osteocalcin levels. CONCLUSION: The findings suggest the possibility of developing IAR as a drug for the treatment of OP. IAR with longer treatment time may achieve better effects regardless of animal strain and age.


Subject(s)
Osteoporosis , Animals , Osteoporosis/drug therapy , Bone Density , Collagen Type I/therapeutic use , Bone and Bones , Models, Animal
19.
J Med Food ; 27(1): 22-34, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38236693

ABSTRACT

Astragali Radix (AR) or its extract has been used as an herbal medicine and dietary supplement in China, Europe, and the United States. The gut microbiota could provide new insights for exploring dietary supplements' underlying mechanism on organisms. However, no reports have focused on the regulatory effect of AR on the gut microbiota as a dietary supplement. In this study, healthy ICR mice of either sex were divided into AR and control (CON) groups and given AR water extract (4.55 mg/kg·day-1) or saline by gavage for 14 days, respectively. Then 16S rRNA gene sequencing and ultra-high-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry-based fecal metabolomics were integrated to investigate the benefits of dietary AR. Weighted gene coexpression network analysis was also introduced to investigate the metabolites with highly synergistic changes. AR supplementation influenced the structure of intestinal microflora, especially enriching short-chain fatty acid-producing bacteria g_Coprobacillus, g_Prevotella, and g_Parabacteroides. AR also significantly altered the fecal metabolome, mainly related to amino acid metabolism, nucleotide metabolism, and bile acid (BA) metabolism. Moreover, the increased secondary BAs and BA-sulfates might closely relate to intestinal microflora. These findings provide valuable insights for future research of dietary AR as a functional food.


Subject(s)
Gastrointestinal Microbiome , Mice , Animals , RNA, Ribosomal, 16S/genetics , Mice, Inbred ICR , Metabolomics/methods , Metabolome
20.
Phytomedicine ; 123: 155196, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37952410

ABSTRACT

BACKGROUND: With the increasing prevalence of hypertension, diabetes, and obesity, the incidence of kidney diseases is also increasing, resulting in a serious public burden. Conventional treatments for kidney diseases have unsatisfactory effects and are associated with adverse reactions. Traditional Chinese medicines have good curative effects and advantages over conventional treatments for preventing and treating kidney diseases. Astragali Radix is a Chinese herbal medicine widely used to treat kidney diseases. PURPOSE: To review the potential applications and molecular mechanisms underlying the renal protective effects of Astragali Radix and its components and to provide direction and reference for new therapeutic strategies and future research and development of Astragali Radix. STUDY DESIGN AND METHODS: PubMed, Google Scholar, and Web of Science were searched using keywords, including "Astragali Radix," "Astragalus," "Astragaloside IV" (AS-IV), "Astragali Radix polysaccharide" (APS), and "kidney diseases." Reports on the effects of Astragali Radix and its components on kidney diseases were identified and reviewed. RESULTS: The main components of Astragali Radix with kidney-protective properties include AS-IV, APS, calycosin, formononetin, and hederagenin. Astragali Radix and its active components have potential pharmacological effects for the treatment of kidney diseases, including acute kidney injury, diabetic nephropathy, hypertensive renal damage, chronic glomerulonephritis, and kidney stones. The pharmacological effects of Astragali Radix are manifested through the inhibition of inflammation, oxidative stress, fibrosis, endoplasmic reticulum stress, apoptosis, and ferroptosis, as well as the regulation of autophagy. CONCLUSION: Astragali Radix is a promising drug candidate for treating kidney diseases. However, current research is limited to animal and cell studies, underscoring the need for further verifications using high-quality clinical data.


Subject(s)
Astragalus Plant , Drugs, Chinese Herbal , Kidney Diseases , Saponins , Triterpenes , Animals , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Medicine, Chinese Traditional , Plant Roots , Inflammation , Kidney Diseases/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL