Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 135
Filter
1.
Talanta ; 274: 126037, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38604046

ABSTRACT

Antimony (Sb) is a toxic and potentially carcinogenic element in the environment. The toxicity of Sb(III) is ten times that of Sb(V). Therefore, on-site monitoring technique for dissolved Sb species is crucial for the study of Sb environmental processes. In this study, an automated, portable, and cost-effective system was developed for field simultaneous analysis of Sb(III) and Sb(III + V) in natural waters. The system comprised a portable atomic fluorescence spectrometer equipped with a built-in electrochemical H2 generator to reduce the consumption of acid/borohydride solution and make the atomizer more stable for on-site analysis. Flow injection technique was also used to achieve on-line pretreatment of water samples, including filtration, acidification, pre-reduction, and hydride generation procedures. Under the optimal conditions, the limits of detection (3σ, n = 11) of the developed method were 0.015 µg/L and the linear ranges were 0.05-5.0 µg/L for both Sb(III) and Sb(III + V). The relative standard deviations (n = 11) of the spiked samples of Sb(V) were 3.2% (0.05 µg/L), 3.3% (0.2 µg/L), and 1.7% (0.5 µg/L), respectively. The spiked recoveries of lake water, treated wastewater, and seawater ranged from 97.0% to 108.5%. The novel system of flow injection coupled with hydride generation atomic fluorescence spectrometer (FI-HG-AFS) was applied to carry out an 18-h fixed-point monitoring at a secondary settling tank of a wastewater treatment facility in Xiamen University, and a 6-h real-time underway analysis in the surface seawater of Dongshan Bay, China, proving that the system was capable of long-term monitoring in the field.

2.
Anal Sci ; 40(6): 1071-1080, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38483788

ABSTRACT

In this paper, we optimized a method for fast and accurate determination of five impurity elements (As, Sb, Bi, Se, and Ge) in graphite samples to overcome the shortcomings of existing methods, such as complicated equipment, cumbersome process, multiple-time preparation, separate determination, and large error in results. Graphite samples were digested with HNO3-H2SO4-HClO4-HF in a high-temperature and high-pressure microwave digestion apparatus, and the elements were extracted and determined separately by AFS (atomic fluorescence spectrometry). There is no element loss during the processing and analysis of this method. The spike recoveries (As: 90.30%-102.3%, Sb: 90.73%-110.0%, Bi: 90.00%-99.67%, Se: 93.33%-110.0%, Ge: 92.26%-104.2%) and precision (RSD%; As: 1.34%-8.96%, Sb: 2.67%-7.10%, Bi: 1.83%-4.58%, Se: 0.36%-3.25%, Ge: 4.41%-8.65%) meet the requirements of the corresponding quality specifications. The method has some advantages (such as no elemental loss, fast testing, strong element targeting, and accurate results), and thus can achieve batch determination of graphite samples. The optimized method for graphite sample and final solution preparations can be used for diverse spectrometric technologies, and that for spectrometer conditions have reference value for HG-AFS instruments.

3.
Anal Chim Acta ; 1269: 341427, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37290860

ABSTRACT

The mechanisms controlling the generation of PbH4 by reaction of inorganic Pb(II) with aqueous NaBH4 were investigated both in the presence and in the absence of the additive K3Fe(CN)6. For the first time PbH4 has been identified in analytical chemical vapor generation (CVG) by using gas chromatographic mass spectrometry (GC-MS), which allows the use of deuterium labelled experiments. In the absence of the additive, under reaction conditions typically employed for trace lead determination by CVG, Pb(II) is converted to solid species and no volatile lead species can be detected by either atomic or mass spectrometry for Pb(II) concentration up to 100 mg L-1. In alkaline conditions Pb(II) substrates are unreactive towards NaBH4. In the presence of K3Fe(CN)6, deuterium labelled experiments clearly indicated that the generated PbH4 is formed by the direct transfer of hydride from borane to lead atoms. Kinetic experiments were carried out to evaluate the rate of reduction of K3Fe(CN)6 by NaBH4, the rate of hydrolysis of NaBH4 both in the presence and in the absence of K3Fe(CN)6, and the rate of dihydrogen evolution following NaBH4 hydrolysis. The effect of delayed addition of Pb(II) to NaBH4-HCl- K3Fe(CN)6, and K3Fe(CN)6 to NaBH4-HCl-Pb(II) reaction mixtures on the efficiency of plumbane generation was investigated by continuous flow CVG coupled with atomic fluorescence spectrometry. The collected evidences, complemented with thermodynamic considerations and literature data, have made it possible to clarify long-standing controversial aspects related to the mechanism of plumbane generation and the role of K3Fe(CN)6 additive.


Subject(s)
Boranes , Lead , Deuterium , Mass Spectrometry/methods , Spectrometry, Fluorescence/methods , Gases
4.
Toxicol Rep ; 10: 647-658, 2023.
Article in English | MEDLINE | ID: mdl-37250532

ABSTRACT

Total mercury and fatty acids contents were determined in muscles of croaker, snapper, dolphinfish, blue marlin, and shark, from different markets in the Metropolitan District of Quito, Ecuador. Fifty-five samples were collected and analyzed for total mercury using cold vapor atomic fluorescence spectrometry, and the fatty acids were analyzed using gas chromatography equipped with a flame ionization detector. The lowest total mercury levels were found in snapper [0.041 µg·g-1 wet weight (ww)] while blue marlin showed the highest (5.883 µg·g-1 ww). EPA + DHA ranged from 1.0 mg·g-1 in snapper to 2.4 mg·g-1 in shark. A high omega-3/omega-6 ratio was found for all fish types; however, the HQEFA for the benefit-risk ratio was above 1, suggesting an evident risk to human health. Based on our results, consumption of croaker and dolphinfish is recommended up to one serving per week, considering the importance of EFAs intake and avoiding fish with elevated MeHg content. Therefore, Ecuadorian authorities could enhance public standards for seafood safety and develop consumer advice for pregnant women and young children to determine good fish choices or those to avoid.

5.
Anal Chim Acta ; 1247: 340859, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36781244

ABSTRACT

The determination of trace tellurium in real samples with complicated matrix can be rather challenging due to the low abundance and interferences. Herein, we report a new method for the highly sensitive detection of Te(IV) by photochemical vapor generation-atomic fluorescence spectrometry (PVG-AFS), utilizing Co-MOF-74 as an adsorbent and a precursor of Co2+ ion sensitizer for preconcentration and enhanced PVG efficiency. The synthesized Co-MOF-74 can completely adsorb Te(IV) within 10 min in a wide pH range. Following filtration and re-suspension in a dilute solution of formic and acetic acid, the adsorbed Te(IV) was converted to volatile compounds under the UV irradiation and swept to AFS for detection. A limit of detection of 0.08 ng/mL for Te(IV) was obtained after a 50-fold preconcentration. The proposed method was used for analysis of various natural water samples for trace Te(IV), with satisfactory spike recoveries achieved.

6.
Talanta ; 252: 123897, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36067699

ABSTRACT

This work proposes an automated strategy for the inorganic selenium speciation in infusion tea samples, employing an MSFIA-CVG-AFS system and sodium tetrahydroborate for chemical vapor generation. The selenium total is determined after an online prereduction step of selenium (VI) to selenium (IV) in alkaline media, using a UV reactor with a 15 W Hg lamp. Selenium (IV) is quantified directly on the sample, and selenium (VI) is determined by the difference between the total selenium and selenium (IV) concentrations. The optimization of the chemical parameters: hydrochloric acid - hydrobromide acid solution concentration, potassium iodide concentration, sodium hydroxide concentration, and sodium tetrahydroborate concentration was performed using a (24-1) two-level fractional factorial design. The validation parameters were determined for total selenium and selenium (IV), and the results found were: limits of detection and quantification of 0.05 and 0.18 µg L-1, respectively; a linear range of 0.18-5.0 µg L-1, precision expressed as the relative standard deviation of 2.1% for a sample number of 10, for both analytes. The system allows the speciation analysis with an injection throughput of 15 injections per hour. This analytical method was applied for inorganic selenium speciation in nine infusions of tea samples purchased commercially in supermarkets in Palma de Mallorca City, Spain. The concentrations of selenium (IV) and total selenium varied from 0.2 to 0.6 µg L-1 and 0.4-2.0 µg L-1, respectively. The accuracy method was evaluated using spike tests, and the recoveries achieved varied from 91 to 111%.


Subject(s)
Selenium , Selenium/analysis , Spectrometry, Fluorescence , Borohydrides , Tea , Spectrophotometry, Atomic/methods
7.
Chemosphere ; 312(Pt 1): 137206, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36370763

ABSTRACT

Along with the environmental protection policies becoming strict in China, the air pollution control devices (especially selective catalytic reduction (SCR)) are widely equipped in coal-fired power plants. The installation and run of these devices will inevitably affect mercury (Hg) species distribution in coal fired by-products such like fly ash (FA) and gypsum. In this work, a new on-line coupling system based on atomic fluorescence spectrometry (AFS) with a home-made chromatographic workstation was successfully developed to identify Hg species through thermal programmed desorption (TPD). The influences of matrix, furnace temperature, and carrier gas flow on analytical performance were investigated and the parameters were optimized. The FA and gypsum samples from coal-fired power plants equipped with SCR were collected and the mercury species were analyzed by the developed coupling system. HgCl2 and HgO were the main species in FA, while Hg2Cl2 and HgO were the main species in gypsum. All of Hg species in the studied FA and gypsum samples were released below 400 °C. A sequential extraction procedure was applied to further verify the operational Hg species including mobile and non-mobile fractions in FA and gypsum samples. This study demonstrated that AFS coupled with TPD procedure was an effective method to analyze Hg species in coal combustion by-products from power plants.


Subject(s)
Air Pollutants , Mercury , Coal/analysis , Mercury/analysis , Spectrometry, Fluorescence , Calcium Sulfate/chemistry , Air Pollutants/analysis , Power Plants , Coal Ash/chemistry
8.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-987669

ABSTRACT

@#Cinnabaris(α-HgS) is a mineral traditional Chinese material medica, as a tranquilizer and sedative, which is widely used in combination with herbs for the treatment of children high fever and convulsion.However, a large amount of mercury in Cinnabaris poses a potential risk to the immature central nervous system of children and probably causes severe memory disorders.Inthisstudy,three groups of juvenile rats were given low, medium, and high doses of Cinnabaris by oral gavage once a day for 14 continuous weeks, respectively.The blood mercury concentrations of the rats at different growth phases were monitored by atomic fluorescence spectrometry.The brain structural and functional changes related to the memory functions were investigated through HE staining and Morris water-maze test. Correlation analysis was conducted to clarify the dose- mercury exposure-toxic effect relationship of Cinnabaris and memory disorders.It was found thatthe blood mercury levels increased in both time- and dose-dependent manner.After the 14-week continuous administration of Cinnabaris, the pathological lesions in hippocampal neurons of rats in the high dose group were observed including pyknosis and disordered cell arrangement.In the Morris water-maze test, compared with the control group, rats in the high dose group exhibited the significantly prolonged latency to find the platform and the target quadrant, and the time spent in the target quadrant was obviously shortened. Thus, the significant correlations were established between Cinnabaris dose and mercury exposure,mercury exposure and memory disorders, respectively. In conclusion, the long-term and overdose administration of Cinnabaris in juvenile rats can increase the in-vivo mercury level, destroy the normal hippocampal morphological structure, and lead to memory disorders. This study provided scientific references for the potential mercury poisoning risks pharmacovigilance of Cinnabaris-containing paediatric formulations.

9.
Front Pharmacol ; 13: 967608, 2022.
Article in English | MEDLINE | ID: mdl-36110533

ABSTRACT

Realgar- and cinnabar-containing AnGongNiuHuang Pill (AGNHP) is widely used for treating encephalopathy syndrome. However, it raises great safety concerns due to the adverse effects reported by arsenic or mercury poisoning. Although AGNHP has been generally recognized, little is known about the metabolism of arsenic and mercury and their resulting potential health risk in vivo. Thus, comparative pharmacokinetics and urinary excretion of arsenic and mercury were conducted in rats after oral administration of realgar, cinnabar and AGNHP, respectively. The contents of arsenic and mercury in rat blood and urine were determined by hydride-generation atomic fluorescence spectrometry (HG-AFS) after wet digestion. AGNHP significantly reduced the absorption of arsenic in blood and promoted urinary arsenic excretion. Whereas, it increased the blood mercury absorption and reduced urinary mercury excretion. No significant toxicity was observed in the clinical dose range of AGNHP. However, excessive exposure to arsenic and mercury may still pose risks especially by long-term or excessive medication. The results are helpful for the rational clinical applications of realgar- and cinnabar-containing TCMs.

10.
Food Chem ; 379: 132116, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35063845

ABSTRACT

For the first time, Hg2+ and methylmercury speciation analysis was accomplished by in-line SPE-LC-AFS. After modification with 0.1 mL of 0.001% (m:v) sodium diethyldithiocarbamate, a C18 microcolumn retained Hg2+ and MetHg in rice extract within 3 min; the captured Hg species were separated within 12 min in 0.25% (v:v) 2-mercaptoethanol + 60 mmol L-1 (m:v) ammonium acetate + 4% (v:v) acetonitrile. Under optimized conditions, the detection limits were 0.3 ng L-1 for Hg2+ and 0.2 ng L-1 for MetHg, respectively, with 10 mL injection vs. 0.1 mL eluent; in-line SPE achieved âˆ¼ 100x enrichment. Method precision and accuracy were satisfactory at < 2% relative standard deviations (RSDs) for 20 ng L-1 of Hg2+ and MetHg and 95-102% recoveries for real rice samples. In-line SPE obviated human involvement and avoided invalid transportation between interfaces, rendering this SPE-LC-AFS method easy, compact, robust, yet sensitive in mercury speciation analysis to uphold food safety.


Subject(s)
Mercury , Oryza , Chromatography, High Pressure Liquid , Chromatography, Liquid , Humans , Solid Phase Extraction , Spectrometry, Fluorescence
11.
Anal Chim Acta ; 1191: 339361, 2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35033238

ABSTRACT

A method for highly sensitive determination of trace antimony was proposed by using cobalt ion enhanced photochemical vapor generation (PCVG) for sample introduction into atomic fluorescence spectrometry (AFS) or inductively coupled plasma-mass spectrometry (ICP-MS) for elemental detection. During the PCVG process, the sample introduction efficiency of Sb could be significantly improved by addition of 5 mg L-1 Co2+ in the mixed acid medium of 10% (v/v) formic acid and 20% (v/v) acetic acid, with a final 12-fold and 133-fold enhancement of AFS and ICP-MS intensity, respectively. The experimental conditions including enhancement ions, acid medium, UV irradiation, working gas as well as potential interference were investigated in detail. Under the optimal experimental conditions, the limit of detection (LOD) for Sb was 0.05 and 0.001 µg L-1 by using AFS and ICP-MS determination, respectively. The method was successfully used for analysis of real water samples, with satisfactory recoveries of 92-94%.


Subject(s)
Antimony , Cobalt , Ions , Spectrometry, Fluorescence , Water
12.
Heliyon ; 8(12): e12451, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36590516

ABSTRACT

This study aimed to quantify the amount of total mercury in bivalves Anadara tuberculosa supplied from Esmeraldas Province and sold in markets in the Metropolitan District of Quito, Ecuador. The determined total mercury concentration was compared to the permissible limits established by the European Commission and World Health Organization-Food and Agriculture Organization and health risk subsequently assessed. Sampling was conducted in five open markets and involved collecting fifteen specimens from each market. Total mercury was measured through cold vapor atomic fluorescence spectrophotometry. Results showed that samples did not exceed the total mercury threshold value (0.5 mg kg-1). However, samples of Anadara tuberculosa from the Ofelia market, which receives fresh products from Eloy Alfaro canton, contained the highest mean levels of mercury contamination, 0.055 mg kg-1. This result could be associated to the influence of illegal mining activity in this area. In addition, methylmercury potential non-carcinogenic risk for consumers exceeded the threshold limit (>1) established by the US Environmental Protection Agency. The daily consumption rate (Rclim) was determined to be 26.61-38.50 g for a child weight of 14.5 kg, and 128.44-185.84 g for an adult weight of 70 kg. Thus, consuming a higher amount of Anadara tuberculosa could negatively affect human health.

13.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-960431

ABSTRACT

Background Tin and its compounds can cause serious harm to human respiratory system and nervous system, but there is no corresponding national standard method for the determination of tin in PM2.5. Objective To establish a method for the determination of tin and its compounds in PM2.5 by atomic fluorescence spectrometry (AFS) after ultrasonic extraction with concentrated hydrochloric acid. Methods We extracted a fixed volume of air at a constant speed through a sampler with preset cutting characteristics to trap PM2.5 in the ambient air on quartz filter membranes. By selecting extraction solvent, comparing extraction temperature and time, and adjusting the acidity of solution to be measured, the sample pretreatment process was optimized, and a method for the determination of tin and its compounds in PM2.5 by AFS was proposed, and its performance indexes such as linearity, detection limit, and lower limit of quantification were obtained. The accuracy and precision of the method were evaluated by the standard addition recovery test with blank quartz filter membranes, and the interference test was carried out by adding standard urban particulate samples. The proposed method and the method recommended by the “Handbook on Monitoring and Protection of Air Pollution (Haze) Effects on Population Health (2020)” (the Handbook) were applied to actual samples, and the results were compared. Results This experiment used concentrated hydrochloric acid as the extraction solvent. The higher the reaction temperature and the longer the reaction time, the higher the recovery rate. Therefore, 70 ℃ water bath ultrasonic extraction for 3 h was selected. In terms of the proposed method, the linear range of detection was from 5.00 μg·L−1 to 50.00 μg·L−1, with a correlation coefficient ≥0.999 and a detection limit of 0.27 μg·L−1. When the quantitative detection of the lower limit was 0.90 μg·L−1,and the sampling volume was 144 m3, the limit of quantification was 1.25 ng·m−3. The recovery rate of standard addition of blank quartz filter membranes was 94.1%-97.5%, with a relative standard deviation ≤3.2%; the recovery rate of standard addition of standard urban particulate matter samples was 93.5%-103.0%, and the relative standard deviation was ≤2.1%, indicating that coexisting components in PM2.5 samples would not affect the determination of tin. For the 10 quartz filter membrane samples of PM2.5 monitoring, the results of tin by the established method (extraction with concentrated hydrochloric acid) were higher than those of the Handbook recommended method (extraction with nitric acid), and the difference is (3.61±0.54) ng·m−3(t=21.303, P<0.05). Conclusion The established method for the determination of tin and its compounds in PM2.5 by AFS after ultrasonic extraction with concentrated hydrochloric acid is simple, accurate, and suitable for laboratory determination of tin and its compounds in large quantities of PM2.5 samples.

14.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-965124

ABSTRACT

@#Abstract: Objective ( ) To compare the measured results of arsenic in urine by atomic fluorescence spectrometry AFS and - ( - ), Methods inductively coupled plasma mass spectroscopy ICP MS and analyze the reasons of the difference. The samples WS/T 474-2015 Determination of Arsenic in Urine by Hydride Generation Atomic Fluorescence were pretreated according to Spectrometry, ( ∶ ∶ ∶∶ ,V/V/V) and digested with mixed acid nitric acid sulfuric acid perchloric acid=3 1 1 and then determined by - - AFS and ICP MS. The samples were diluted with 0.50% nitric acid and determined by ICP MS. The samples included urine , , ( arsenic quality control samples inorganic arsenic supplemented samples and organic arsenic arsenic choline and arsenic ) - betaine supplemented samples. Standard curve method was used to compare the results of AFS method and ICP MS method. Results ( ) ( ) The results of quality control samples by AFS method digestion and ICP-MS method without digestion were , - within the range of reference values but the values obtained by AFS method were lower than those obtained by ICP MS method. - - - , The recovery of AFS and ICP MS was 97.79% 100.82% and 99.55% 99.98% respectively. In the middle and high , - ( P ) concentration groups the measured values of inorganic arsenic by AFS were lower than that by ICP MS all <0.01 . The ( ) - recovery of arsenic betaine and arsenic choline by AFS method digestion was only 2.17% 2.63%. The values of arsenic betaine ( ) - ( and arsenic choline measured by AFS method digestion were lower than those measured by ICP MS method without ) - ( )( P )Conclusion digestion and ICP MS method digestion all <0.01 . The result of urine arsenic measured by AFS method - , was lower than that measured by ICP MS method which may be related to the mixed acid digestion of AFS method. Keywords: ; - ; ; ; ; ;

15.
Chinese Journal of Endemiology ; (12): 585-590, 2022.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-955752

ABSTRACT

Objective:To establish a hydride generation atomic fluorescence method using ammonium persulfate as the digestion reagent for determination of arsenic in urine (hereinafter referred to as this method).Methods:The collected urine samples with ammonium persulfate were heated and digested on the tubular electric heating automatic control constant temperature digester (60 holes), with 5% hydrochloric acid solution as reaction medium and current carrier and 1.5% potassium borohydride solution as reducing agent. Arsenic content was determined with a four-channel atomic fluorescence spectrometer. The arsenic standard solution of 0 - 10 μg/L was prepared to determine the standard curve of this method, and the method was evaluated from the detection limit, linear range, correlation coefficient, precision, standard addition recovery experiment, and urine arsenic quality control sample detection. The standard method "Determination of Arsenic in Urine by Hydride Generation Atomic Fluorescence Spectrometry" (WS/T 474-2015, referred to as the standard method) was used for comparison experiments.Results:When the sampling volume was 1 ml, the detection limit of this method (digest with 1 ml 1.5 mol/L ammonium persulfate) was 0.03 μg/L. In the range of arsenic content from 0 - 10 μg/L, the linear relationship between arsenic content and fluorescence intensity was good, and the correlation coefficients ( r) were all 0.999 9. The relative standard deviations( RSD) of the three replicates of urine samples with different concentrations were 1.00%, 0.89% and 0.49%, respectively. Urine arsenic quality control samples were tested, and the test results were all within the range of public values; the overall average recovery was 102.29%, and the recovery range was 92.10% - 108.15%. Compared with the standard method in the determination results of 20 urine samples, the difference was not statistically significant ( t = - 0.40, P > 0.05). Conclusions:The hydride generation atomic fluorescence spectrometry using ammonium persulfate as digestion reagent for the determination of arsenic in urine has the advantages of low detection limit, good precision, high accuracy, small amount of sampling and digestion reagent, simple operation, and less harmful gas generation in sample pretreatment. It is suitable for rapid determination of arsenic in urine in large quantities.

16.
MethodsX ; 8: 101281, 2021.
Article in English | MEDLINE | ID: mdl-34434801

ABSTRACT

The objective of this work is the validation and implementation of an analytical method for the determination of arsenic chemical species in rice grain samples using High-performance liquid chromatography coupled to a hydride generator with atomic fluorescence detector (HPLC-HG-AFS). The extraction protocol developed was based on HNO3 0.28 M (90 °C, 2 h), microwave-assisted. The results showed recovery percentages of arsenite (As (III)) (99-101%), arsenate (As (V)) (91-96%), dimethylarsinic acid (DMA) (92-102%) and monomethylarsonic acid (MMA) (94-97%). The precision of the method presented coefficients of variation lower than 7% and 8% for repeatability and reproducibility respectively. The detection limits were 2.5, 3.75, 7.5 and 4.0 µg kg-1 for As (III), As (V), DMA and MMA respectively. The proposed methodology is reliable for the quantification of As species, because they are conserved during the extraction.•The extraction protocol developed was based on Microwave-assisted acid extraction.•This methodology offers good sensitivity, precision, accuracy, detection and quantification limits.•It was successfully applied to determination of arsenic chemical species in rice grains.

17.
Molecules ; 26(16)2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34443466

ABSTRACT

Bees and their products are useful bioindicators of anthropogenic activities and could overcome the deficiencies of air quality networks. Among the environmental contaminants, mercury (Hg) is a toxic metal that can accumulate in living organisms. The first aim of this study was to develop a simple analytical method to determine Hg in small mass samples of bees and beehive products by cold vapor atomic fluorescence spectrometry. The proposed method was optimized for about 0.02 g bee, pollen, propolis, and royal jelly, 0.05 g beeswax and honey, or 0.1 g honeydew with 0.5 mL HCl, 0.2 mL HNO3, and 0.1 mL H2O2 in a water bath (95 °C, 30 min); samples were made up to a final volume of 5 mL deionized water. The method limits sample manipulation and the reagent mixture volume used. Detection limits were lower than 3 µg kg-1 for a sample mass of 0.02 g, and recoveries and precision were within 20% of the expected value and less than 10%, respectively, for many matrices. The second aim of the present study was to evaluate the proposed method's performances on real samples collected in six areas of the Lazio region in Italy.


Subject(s)
Bees/chemistry , Biological Monitoring/methods , Mercury/analysis , Spectrometry, Fluorescence/methods , Animals , Cold Temperature , Cucumis melo/chemistry , Data Accuracy , Environmental Pollution/analysis , Fatty Acids/analysis , Honey/analysis , Italy , Pollen/chemistry , Propolis/analysis , Spectrophotometry, Atomic/methods , Waxes/analysis
18.
J Sep Sci ; 44(12): 2457-2464, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33857354

ABSTRACT

A method for simultaneous preconcentration and determination of mercury species in water and soil samples was established using high-performance liquid chromatography with hydride generation atomic fluorescence spectrometry after ultrasound-assisted dual-cloud point extraction. The extraction process was divided into two steps. In the first cloud point extraction, inorganic mercury and methylmercury formed chelates with sodium diethyldithiocarbamate and were extracted into Triton X-114 micelles. In the second stage, a displacement reaction between sodium diethyldithiocarbamate-inorganic mercury/methylmercury and l-cysteine occurred, and the analytes entered the l-cysteine aqueous solution under ultrasonication. This aqueous solution was directly introduced to the high-performance liquid chromatography with hydride generation atomic fluorescence spectrometry and the detection was completed within 6 min. Under the optimum experimental conditions, the linear range was 0.10-5.0 µg/L (r ≥0.9993) for inorganic mercury and methylmercury, and the enhancement factors were 15.7 for inorganic mercury and 6.35 for methylmercury. The limits of detection for inorganic mercury and methylmercury were 0.004 and 0.016 µg/L, respectively. The approach was successfully applied to the determination of trace inorganic mercury and methylmercury in water and soil samples with good recoveries (85.3-110%). This method solved the problem of peak fusion of the two analytes and was successfully applied to the speciation analysis of mercury.

19.
Food Chem ; 357: 129725, 2021 Apr 05.
Article in English | MEDLINE | ID: mdl-33865000

ABSTRACT

Arsenic speciation analysis in dried seaweeds was carried out using an on-line HPLC-UV-thermo-oxidation-HG-AFS system. Species separated and quantified were: arsenite [As(III)], arsenate [As(V)], monomethylarsonic acid (MMA), dimethylarsinic acid (DMA) and different arsenosugars. Extraction efficiency ranged between 38 and 83%. Chromatographic separation was achieved in gradient elution mode using (NH4)2CO3 as mobile phase in the pH range 9-10.3. Total As concentration was quantified by ICP-MS after microwave digestion. Limits of detection were in the range 3.0 to 6.0 ng g-1 for the species under study based on peak height and the relative standard deviation was <8% at 10 µg L-1 As. The accuracy of the procedure was verified by analyzing the CRM BCR-279 Ulva lactuca. Results for total As were in agreement with the certified values. The HPLC-(UV)-HG-AFS system resulted suitable for quantification of eight As compounds. Results showed that arsenosugars are the most abundant compounds in the investigated seaweeds.

20.
Anal Sci ; 37(9): 1235-1240, 2021 Sep 10.
Article in English | MEDLINE | ID: mdl-33518585

ABSTRACT

An efficient method based on high-performance liquid chromatography coupled with atomic fluorescence spectrometry (HPLC-AFS) was successfully developed for the simultaneous determination of four mercury species including Hg2+, methylmercury (MeHg), ethylmercury (EtHg), and phenylmercury (PhHg) in water. Samples were enriched and cleaned up with a solid-phase extraction (SPE) pretreatment using a thiol cartridge. Some key parameters including the selection of a SPE cartridge, eluent type, eluent volume, and interference factors were systematically investigated. Chromatographic separation was achieved on a C18 column using a mobile phase consisting of methanol and 60 mmol L-1 ammonium acetate with 10 mmol L-1 L-cysteine by gradient elution. Under the optimized conditions, good linearity (r ≥ 0.9991) was observed between 0.20 to 10.0 µg L-1. The limits of detection were in the range of 0.001 - 0.002 µg L-1. High recoveries (87.2 to 111%) and good reproducibility (1.1 - 6.5%) were obtained. Such a method is sensitive, selective and accurate, which can be applied to the quantification of mercury species in water samples.

SELECTION OF CITATIONS
SEARCH DETAIL
...