Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Zhongguo Zhong Yao Za Zhi ; 49(8): 2138-2146, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38812229

ABSTRACT

In this study, four Atractylodes chinensis(A. chinensis) with different leaf shapes, such as the split leaf, long and narrow leaf, oval leaf, and large round leaf, were used as experimental materials to establish a method for simultaneously determining atractylodin, atractylenolide Ⅰ, ß-eudesmol, and atractylon in the rhizome of A. chinensis. The expression of key enzyme genes for biosynthesis of acetyl-CoA carboxylase(ACC), 3-hydroxy-3-methylglutaryl-CoA reductase(HMGR), and farnesyl pyrophosphate synthase(FPPS) was detected by real-time fluorescence quantitative polymerase chain reaction(qRT-PCR). High performance liquid chromatography(HPLC) was used to compare the difference in the content of four active components in A. chinensis with different leaf shapes, and the correlation between the content of active components and the expression of key enzyme genes in biosynthesis was discussed. The results show that there was good linearity among atractylodin, atractylenolide Ⅰ, ß-eudesmol, and atractylon in the range of 3.30-33.00 µg·mL~(-1)(r =0.999 7), 12.04-120.40 µg·mL~(-1)(r =0.999 5), 29.16-291.60 µg·mL~(-1)(r =0.999 5), and 14.20-142.00 µg·mL~(-1)(r =0.999 5), respectively. The average recoveries were 99.77%(RSD=2.1%), 98.56%(RSD=1.2%), 103.0%(RSD=1.2%), and 100.6%(RSD=1.5%), respectively. The method was accurate and had good reproducibility, which could be used to simultaneously detect atractylodin, atractylenolide Ⅰ, ß-eudesmol, and atractylon. The results showed that there were significant differences in the content of four active components in A. chinensis with different leaf shapes. The content of atractylodin, atractylenolide Ⅰ, and ß-eudesmol in A. chinensis with split leaves was the highest, which were 1.341 9, 5.237 2, and 12.084 3 mg·g~(-1), respectively. The content of atractylon in A. chinensis with long and narrow leaves was the highest(5.470 1 mg·g~(-1)). The content of atractylodin, atractylenolide Ⅰ, ß-eudesmol, and atractylon in A. chinensis with oval leaves was the lowest. The total content of the four effective components in descending order was A. chinensis with split leaves > A. chinensis with long and narrow leaves > A. chinensis with large round leaves > A. chinensis with oval leaves. The gene expression levels of key enzymes ACC, HMGR, and FPPS in A. chinensis with split leaves were the highest(P < 0.05), and the gene expression levels of key enzymes ACC and HMGR in A. chinensis with oval leaves were the lowest(P < 0.05). The gene expression level of key enzyme FPPS in A. chinensis with large round leaves was the lowest. In A. chinensis with different leaf shapes, the key enzyme gene ACC was significantly positively correlated with the polyacetylene component, namely atractylodin(P < 0.01), and the key enzyme genes HMGR and FPPS were positively correlated with the sesquiterpene components, namely atractylenolide Ⅰ, ß-eudesmol, and atractylon. In summary, the quality of A. chinensis with split leaves is the best, and the biosynthesis of atractylodin is significantly correlated with the gene expression of key enzyme ACC, which provides a theoretical basis for screening and optimizing the germplasm resources of A. chinensis and improving the quality of medicinal materials.


Subject(s)
Atractylodes , Lactones , Plant Leaves , Sesquiterpenes , Atractylodes/genetics , Atractylodes/chemistry , Atractylodes/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/chemistry , Sesquiterpenes/metabolism , Sesquiterpenes/analysis , Lactones/metabolism , Lactones/analysis , Plant Proteins/genetics , Plant Proteins/metabolism , Furans/metabolism , Drugs, Chinese Herbal , Gene Expression Regulation, Plant , Rhizome/genetics , Rhizome/chemistry , Rhizome/metabolism , Sesquiterpenes, Eudesmane
2.
BMC Plant Biol ; 24(1): 91, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38317086

ABSTRACT

BACKGROUND: Atractylodes chinensis (DC) Koidz., a dicotyledonous and hypogeal germination species, is an important medicinal plant because its rhizome is enriched in sesquiterpenes. The development and production of A. chinensis are negatively affected by drought stress, especially at the seedling stage. Understanding the molecular mechanism of A. chinensis drought stress response plays an important role in ensuring medicinal plant production and quality. In this study, A. chinensis seedlings were subjected to drought stress treatment for 0 (control), 3 (D3), and 9 days (D9). For the control, the sample was watered every two days and collected on the second morning after watering. The integration of physiological and transcriptomic analyses was carried out to investigate the effects of drought stress on A. chinensis seedlings and to reveal the molecular mechanism of its drought stress response. RESULTS: The malondialdehyde, proline, soluble sugar, and crude protein contents and antioxidative enzyme (superoxide dismutase, peroxidase, and catalase) activity were significantly increased under drought stress compared with the control. Transcriptomic analysis indicated a total of 215,665 unigenes with an average length of 759.09 bp and an N50 of 1140 bp. A total of 29,449 differentially expressed genes (DEGs) were detected between the control and D3, and 14,538 DEGs were detected between the control and D9. Under drought stress, terpenoid backbone biosynthesis had the highest number of unigenes in the metabolism of terpenoids and polyketides. To identify candidate genes involved in the sesquiterpenoid and triterpenoid biosynthetic pathways, we observed 22 unigene-encoding enzymes in the terpenoid backbone biosynthetic pathway and 15 unigene-encoding enzymes in the sesquiterpenoid and triterpenoid biosynthetic pathways under drought stress. CONCLUSION: Our study provides transcriptome profiles and candidate genes involved in sesquiterpenoid and triterpenoid biosynthesis in A. chinensis in response to drought stress. Our results improve our understanding of how drought stress might affect sesquiterpenoid and triterpenoid biosynthetic pathways in A. chinensis.


Subject(s)
Atractylodes , Sesquiterpenes , Triterpenes , Transcriptome , Atractylodes/genetics , Droughts , Gene Expression Profiling , Terpenes , Water , Stress, Physiological/genetics , Gene Expression Regulation, Plant
3.
Bioorg Chem ; 144: 107111, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38218068

ABSTRACT

To mine fascinating molecules from the rhizomes of Atractylodes chinensis, the known molecular formula of atrachinenin A was used as a bait to search LC-HRMS data in different subfractions. Sixteen new meroterpenoids, atrachinenins D-S (1-16) including three unprecedented carbon skeletons (1-5) and eleven new oxygen-bridged hybrids (6-16) were obtained by the targeted isolation. Their structures and absolute configurations were elucidated by the spectroscopic data and electronic circular dichroism (ECD) calculations. The isolated compounds were evaluated for their inhibitory activity of NO production and compounds 1, 4, 8, and 13 showed moderate anti-inflammatory activity. The proposed biosynthetic pathways of 1-5 were also discussed.


Subject(s)
Atractylodes , Atractylodes/chemistry , Hydroquinones , Anti-Inflammatory Agents , Circular Dichroism , Molecular Structure
4.
Microb Pathog ; 187: 106517, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38159617

ABSTRACT

Atractylodes chinensis is one of the most commonly used bulk herbs in East Asia; however, root rot can seriously affect its quality and yields. In contrast to chemical pesticides, biological control strategies are environmentally compatible and safe. For this study, 68 antagonistic bacterial strains were isolated from the rhizospheres of healthy Atractylodes chinensis. Strain SY42 exhibited the most potent fungicidal activities, with inhibition rates against F. oxysporum, F. solani, and F. redolens of 67.07 %, 63.40 % and 68.45 %, respectively. Through morphological observation and molecular characterization, strain SY42 was identified as Paenibacillus polymyxa. The volatile organic components (VOCs) produced by SY42 effectively inhibited the mycelial growth of pathogenic fungi through diffusion. SY42 significantly inhibited the germination of pathogenic fungal spores. Following co-culturing with SY42, the mycelium of the pathogenic fungus was deformed, folded, and even ruptured. SY42 could produce cellulases and proteases to degrade fungal cell walls. Pot experiments demonstrated the excellent biocontrol efficacy of SY42. This study revealed that P. polymyxa SY42 inhibited pathogenic fungi through multiple mechanisms, which verified its utility as a biocontrol agent for the control of A. chinensis root rot.


Subject(s)
Atractylodes , Fusarium , Paenibacillus polymyxa , Plant Diseases/prevention & control , Plant Diseases/microbiology , Mycelium
5.
Chinese Pharmacological Bulletin ; (12): 181-188, 2024.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1013613

ABSTRACT

Aim To analyze the differences in plasma biomarkers and metabolic pathways between Atractylodes chinensis and Atractylodes coreana after intervention in spleen deficiency rats, and discuss the spleen strengthening mechanism of the two from a non targeted metabolomics perspective. Methods A spleen deficiency model was established in SD rats using a composite factor method of improper diet, excessive fatigue, and bitter cold diarrhea. To determine the content of gastrointestinal and immunological indicators, UHPLC-QE-MS technology was used, combined with principal component analysis (PC A) and orthogonal projections to latent structures-discriminant analysis (OPLS-DA) methods to search for biomarkers in plasma of spleen deficiency rats, and metabolic pathways were induced using the Pathway database. Results After administration of Atractylodes chinensis and Atractylodes coreana, various indicators in plasma of spleen deficiency rats showed varying degrees of regression. Metabolomics analysis showed that Atractylodes chinensis and Atractylodes coreana respectively recalled 70 and 82 plasma differential metabolites. Atractylodes chinensis mainly regulated two metabolic pathways : "Glycine, serine, and threonine metabolism, and "Thiamine metabolism". Atractylodes coreana mainly regulated five metabolic pathways, "Glycine, serine, and threonine metabolism", "Thiamine metabolism, "Pyrimidine metabolism", "Butanoate metabolism", and "Riboflavin metabolism". Conclusions Both Atractylodes chinensis and Atractylodes coreana have certain regulatory effects on spleen deficiency rats, and their mechanism of action may be related to regulating metabolic pathways such as "Glycine, serine, and threonine metabolism, and "Thiamine metabolism"in spleen deficiency.

6.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1011457

ABSTRACT

ObjectiveTo clarify the differences in the efficacy and mechanism of different processed products of Atractylodes chinensis rhizoma by the pharmacodynamics and metabolomics studies of raw, bran-fried and rice water-processed products on rats with spleen deficiency. MethodSixty male SD rats were randomly divided into blank group, model group, raw product group(3.75 g·kg-1), bran-fried product group(3.75 g·kg-1), rice water-processed product group(3.75 g·kg-1) and Shenling Baizhusan group(6.7 g·kg-1), with 10 rats in each group. The method of excessive fatigue+improper diet was used to establish a spleen deficiency model in rats. After the end of modeling, except for the blank and model groups, each dosing group was given the corresponding drug suspension, the immune organ coefficients of each group of rats were examined, the levels of interleukin-6(IL-6), tumor necrosis factor-α(TNF-α), immunoglobulin G(IgG), amylase(AMS), motilin(MTL), gastrin(GAS), Na+-K+-adenosine triphosphatase(ATPase), aquaporin 2(AQP2), AQP3 and AQP8 in rats were measured by enzyme-linked immunosorbent assay(ELISA). Ultra high performance liquid chromatography-quadrupole-time-of-flight tandem mass spectrometry(UPLC-Q-TOF-MS) combined with orthogonal partial least squares-discriminant analysis(OPLS-DA) were used to search for biomarkers in the plasma samples of spleen-deficient rats by using two criteria[P<0.05 and variable importance in the projection(VIP) value>1], and to compare the different modulatory effects of the three decoction pieces on the splenic-deficient biomarkers, and metabolic pathway analysis was conducted through the Kyoto Encyclopedia of Genes and Genomes(KEGG) database. ResultCompared with the blank group, the thymus index and spleen index of rats in the model group were significantly decreased(P<0.05), the levels of IL-6, TNF-α, IgG and AQP2 were significantly increased(P<0.05), the levels of AMS, GAS, MTL, AQP3, AQP8 and Na+-K+-ATPase were significantly decreased(P<0.05). Compared with the model group, raw products, bran-fried products and rice water-processed products all increased thymus index and spleen index(P<0.05), decreased IL-6, TNF-α, IgG and AQP2 levels(P<0.05), and increased AMS, GAS, MTL, AQP3, AQP8 and Na+-K+-ATPase levels to different degrees. A total of 176 differential metabolites were screened in the model group compared with the blank group, of which 75, 72 and 84 biomarkers were called back by the raw products, bran-fried products and rice water-processed products, respectively(P<0.05, P<0.01). Raw products of A. chinensis rhizoma mainly affected glycine, serine and threonine metabolism. Bran-fried products mainly affected alanine, aspartate and glutamate metabolism, D-arginine and D-ornithine metabolism. Rice water-processed products mainly affected glycine, serine and threonine metabolism, alanine, aspartate and glutamate metabolism, citrate cycle, thiamine metabolism, D-arginine and D-ornithine metabolism. ConclusionRaw products, bran-fried products and rice water-processed products of A. chinensis rhizoma all have good spleen strengthening effects, among which the effects of bran-fried products and rice water-processed products were stronger. Meanwhile, raw products has the strongest dryness, followed by bran-fried products, and the weakest dryness of rice water-processed products. The three decoction pieces are able to significantly modulate metabolic abnormalities in spleen-deficient rats, and the mechanism may be related to amino acid metabolism such as glycine, serine and threonine metabolism as well as alanine, aspartate and glutamate metabolism.

7.
Microorganisms ; 11(10)2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37894042

ABSTRACT

Fusarium root rot (FRR) seriously affects the growth and productivity of A. chinensis. Therefore, protecting A. chinensis from FRR has become an important task, especially for increasing A. chinensis production. The purpose of this study was to screen FRR control strains from the A. chinensis rhizosphere soil. Eighty-four bacterial strains and seven fungal strains were isolated, and five strains were identified with high inhibitory effects against Fusarium oxysporum (FO): Trichoderma harzianum (MH), Bacillus amyloliquefaciens (CJ5, CJ7, and CJ8), and Bacillus subtilis (CJ9). All five strains had high antagonistic effects in vitro. Results showed that MH and CJ5, as biological control agents, had high control potential, with antagonistic rates of 86.01% and 82.78%, respectively. In the pot experiment, the growth levels of roots and stems of A. chinensis seedlings treated with MH+CJ were significantly higher than those of control plants. The total nitrogen, total phosphorus, total potassium, indoleacetic acid, and chlorophyll contents in A. chinensis leaves were also significantly increased. In the biocontrol test, the combined MH + CJ application significantly decreased the malondialdehyde content in A. chinensis roots and significantly increased the polyphenol oxidase, phenylalanine ammonolyase, and peroxidase ability, indicating a high biocontrol effect. In addition, the application of Bacillus spp. and T. harzianum increased the abundance and diversity of the soil fungal population, improved the soil microbial community structure, and significantly increased the abundance of beneficial strains, such as Holtermanniella and Metarhizium. The abundance of Fusarium, Volutella, and other pathogenic strains was significantly reduced, and the biocontrol potential of A. chinensis root rot was increased. Thus, Bacillus spp. and T. harzianum complex bacteria can be considered potential future biocontrol agents for FRR.

8.
Int J Biol Macromol ; 253(Pt 3): 126860, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37716665

ABSTRACT

Atractylodes chinensis (DC.) Koidz. polysaccharide (AKP) has been shown to have hypoglycemic activity. In this study, the effects of AKP on fecal microbiota and metabolites in healthy subjects and patients with type 2 diabetes mellitus (T2DM) were investigated using an in vitro simulated digestive fermentation model. AKP were isolated and purified from Atractylodes chinensis (DC.) Koidz. Its main component AKP1 (AKP-0 M, about 78 % of AKP) has an average molecular weight of 3.25 kDa with monosaccharide composition of rhamnose, arabinose, and galactosamine in a molar ratio of 1: 1.25: 2.88. Notably, AKP fermentation might improve the intestinal microbiota of T2DM patients by the enrichment of some specific bacteria rather than the increase of microbial diversity. The addition of AKP specifically enriched Bifidobacteriaceae and weakened the proportion of Escherichia-Shigella. Moreover, AKP also increased the levels of short-chain fatty acids without affecting total gut gas production, suggesting that AKP could have beneficial effects while avoiding flatulence. Metabolomic analysis revealed that ARP fermentation caused changes in some metabolites, which were mainly related to energy metabolism and amino acid metabolism. Importantly, ARP fermentation significantly increased the level of myo-inositol, an insulin sensitizer. In addition, a significant correlation was observed between specific microbiota and differential metabolites. This study has laid a theoretical foundation for AKP application in functional foods.


Subject(s)
Atractylodes , Diabetes Mellitus, Type 2 , Microbiota , Humans , Atractylodes/chemistry , Fermentation , Diabetes Mellitus, Type 2/drug therapy , Polysaccharides/chemistry
9.
Metabolites ; 13(8)2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37623832

ABSTRACT

Atractylodes chinensis (DC.) Koidez. (AC) is a type of Atractylodis Rhizoma that is widely used in China to treat diarrhea and arthritis, as well as a nutritional supplement. The objective of this study was to investigate and identify the phytochemicals in the aqueous extract of AC using an ultra-high-performance liquid chromatography (UHPLC)-Orbitrap-HRMS platform based on a non-targeted metabolomic approach. There were 76 compounds in the AC, the majority of which were phenylpropanoids (16) and terpenoids (15). The hierarchical clustering analysis (HCA) and principal component analysis (PCA) results revealed variations across eight AC samples and classified them into four groups. Using Pareto modeling, the orthogonal partial least squares-discriminant analysis (OPLS-DA) identified 11 distinct AC compounds. Furthermore, the antioxidant activity of eight AC samples was assessed using ABTS, DPPH, and OH· methods. The AC samples with concentrations ranging from 0 to 25 mg/mL had no toxic effects on A549 cells. They have a strong therapeutic potential against oxidation-related diseases, and further research on AC is warranted.

10.
Foods ; 12(15)2023 Jul 30.
Article in English | MEDLINE | ID: mdl-37569173

ABSTRACT

Atractylodis rhizoma (AR) is an herb and food source with great economic, medicinal, and ecological value. Atractylodes chinensis (DC.) Koidz. (AC) and Atractylodes lancea (Thunb.) DC. (AL) are its two botanical sources. The commercial fraud of AR adulterated with Atractylodes japonica Koidz. ex Kitam (AJ) frequently occurs in pursuit of higher profit. To quickly determine the content of adulteration in AC and AL powder, two spectroscopic techniques, near-infrared spectroscopy (NIRS) and hyperspectral imaging (HSI), were introduced. The partial least squares regression (PLSR) algorithm was selected for predictive modeling of AR adulteration levels. Preprocessing and feature variable extraction were used to optimize the prediction model. Then data and image feature fusions were developed to obtain the best predictive model. The results showed that if only single-spectral techniques were considered, NIRS was more suitable for both tasks than HSI techniques. In addition, by comparing the models built after the data fusion of NIRS and HSI with those built by the single spectrum, we found that the mid-level fusion strategy obtained the best models in both tasks. On this basis, combined with the color-texture features, the prediction ability of the model was further optimized. Among them, for the adulteration level prediction task of AC, the best strategy was combining MLF data (at CARS level) and color-texture features (C-TF), at which time the R2T, RMSET, R2P, and RMSEP were 99.85%, 1.25%, 98.61%, and 5.06%, respectively. For AL, the best approach was combining MLF data (at SPA level) and C-TF, with the highest R2T (99.92%) and R2P (99.00%), as well as the lowest RMSET (1.16%) and RMSEP (2.16%). Therefore, combining data and image features from NIRS and HSI is a potential strategy to predict the adulteration content quickly, non-destructively, and accurately.

11.
Zhongguo Zhong Yao Za Zhi ; 48(8): 2086-2091, 2023 Apr.
Article in Chinese | MEDLINE | ID: mdl-37282897

ABSTRACT

We explored the correlations between the color difference values [ΔL~*(lightness), Δa~*(red-green), Δb~*(yellow-blue)] and the content of four active components(including sesquiterpenoids and polyacetylenes) in the powder of Atractylodes lancea and A. chinensis, aiming to provide reference for the quality evaluation of Atractylodis Rhizoma and establish a qualitative model that can distinguish between A. lancea and A. chinensis based on the chromatic values. The tristimulus values(L~*, a~*, and b~*) of 23 batches of A. lancea and A. chinensis were measured by a color difference meter. The content of atractylenolide Ⅱ, ß-eudesmol, atractylodin, and atractylone in the 23 batches of samples were measured by high performance liquid chromatography(HPLC). Principal component analysis(PCA) and partial least squares-discriminant analysis(PLS-DA) were performed to establish the qualitative models for distinguishing between A. lancea and A. chinensis. SPSS was employed to analyze the correlations between the tristimulus values and the content of the four index components. The results showed that the established PCA and PLS-DA models can divide the A. lancea and A. chinensis samples into two regions, and the tristimulus values of A. lancea and A. chinensis were positively correlated with the content of ß-eudesmol and atractylodin. Therefore, the PCA and PLS-DA models can successfully identify A. lancea and A. chinensis, and the appearance color can be used to quickly predict the internal quality of Atractylodis Rhizoma. This study provides a reference for the quality evaluation of Atractylodis Rhizoma and the modern research on the color of Chinese medicinal materials.


Subject(s)
Atractylodes , Drugs, Chinese Herbal , Sesquiterpenes, Eudesmane , Rhizome
12.
Phytochem Anal ; 34(3): 317-328, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36691258

ABSTRACT

INTRODUCTION: Atractylodes chinensis is a Chinese herb that is used in traditional medicine; it contains volatile components that have enormous potential for pharmaceutical, food, and cosmetic applications. The destruction of wild resources demands significant improvement in the quality of artificial cultivation of Atractylodes chinensis. However, little is known about the compositional differences in the volatile substances derived from the wild and cultivated varieties of Atractylodes chinensis. OBJECTIVES: We aimed to evaluate the specific components of Atractylodes chinensis and analyse the similarities and differences between the volatile components and metabolic pathways in the wild and cultivated varieties. MATERIAL AND METHODS: Metabolomic analysis using gas chromatography-mass spectrometry (GC-MS) was employed following the extraction of volatile components from Atractylodes chinensis using headspace solid-phase microextraction (HS-SPME). RESULTS: A total of 167 volatile metabolites were extracted, and 137 substances were matched with NIST and Wiley databases. Among them, 76 compounds exhibited significant differences between the two sources; these mainly included terpenes, aromatics, and esters. KEGG enrichment analysis indicated that the differential metabolites were primarily involved in the biosynthesis of secondary metabolites, terpene biosynthesis, and limonene and pinene degradation; all these pathways have geranyl diphosphate (GDP) as the common link. CONCLUSION: The total content of volatile substances extracted from wild Atractylodes chinensis was 2.5 times higher than that from the cultured variety; however, each source had different dominant metabolites. This study underscores the necessity for protecting wild Atractylodes chinensis resources, while enhancing the quality of cultivated Atractylodes chinensis.


Subject(s)
Atractylodes , Volatile Organic Compounds , Gas Chromatography-Mass Spectrometry/methods , Solid Phase Microextraction/methods , Terpenes , Limonene/analysis , Volatile Organic Compounds/analysis
13.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-973760

ABSTRACT

ObjectiveTo explore the biological mechanism of drought improving the quality of Rhizoma Atractylodis Chinensis and establish a new method for the production of high-quality medicinal materials. MethodThe fresh roots of Atractylodes chinensis were soaked in 0 (control), 5%, 10%, and 20% PEG-6000 solutions. The changes in reactive oxygen species (ROS) level, antioxidant enzyme activity, activities of key enzymes in primary metabolism and secondary metabolism, and content of secondary metabolites were compared. ResultCompared with the control group, the treatment with 20% PEG for 2 days elevated the levels of superoxide anion radicals (O2-·), hydrogen peroxide (H2O2), and malondialdehyde (MDA) by 172.5%, 56.9%, and 14.7%, respectively. The treatment did not change the activity of superoxide dismutase (SOD), reduced the peroxidase (POD) activity, and increased the catalase (CAT) activity by 10.8%. It increased the activities of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), phosphoenolpyruvate carboxylase (PEPC), and acetyl-CoA carboxylase (ACC) by 49.9%, 12.1%, and 19.0%, respectively. Furthermore, the content of atractylodin, β-eudesmol, atractylone, and atractylenolide Ⅱ was increased by 51.0%, 36.9%, 47.1%, and 91.5%, respectively. The simulated drought stress can cause the burst of ROS in the fresh roots of A. chinensis, induce the physiological state of plants under drought, change the antioxidant system, and promote the massive synthesis of secondary metabolites in a short time. ConclusionPEG-6000-simulated drought stress can greatly improve the quality of A. chinensis in cultivation.

14.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-981340

ABSTRACT

We explored the correlations between the color difference values [ΔL~*(lightness), Δa~*(red-green), Δb~*(yellow-blue)] and the content of four active components(including sesquiterpenoids and polyacetylenes) in the powder of Atractylodes lancea and A. chinensis, aiming to provide reference for the quality evaluation of Atractylodis Rhizoma and establish a qualitative model that can distinguish between A. lancea and A. chinensis based on the chromatic values. The tristimulus values(L~*, a~*, and b~*) of 23 batches of A. lancea and A. chinensis were measured by a color difference meter. The content of atractylenolide Ⅱ, β-eudesmol, atractylodin, and atractylone in the 23 batches of samples were measured by high performance liquid chromatography(HPLC). Principal component analysis(PCA) and partial least squares-discriminant analysis(PLS-DA) were performed to establish the qualitative models for distinguishing between A. lancea and A. chinensis. SPSS was employed to analyze the correlations between the tristimulus values and the content of the four index components. The results showed that the established PCA and PLS-DA models can divide the A. lancea and A. chinensis samples into two regions, and the tristimulus values of A. lancea and A. chinensis were positively correlated with the content of β-eudesmol and atractylodin. Therefore, the PCA and PLS-DA models can successfully identify A. lancea and A. chinensis, and the appearance color can be used to quickly predict the internal quality of Atractylodis Rhizoma. This study provides a reference for the quality evaluation of Atractylodis Rhizoma and the modern research on the color of Chinese medicinal materials.


Subject(s)
Atractylodes , Sesquiterpenes, Eudesmane , Drugs, Chinese Herbal , Rhizome , Excipients
15.
Acta Pharmaceutica Sinica ; (12): 1693-1704, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-978713

ABSTRACT

italic>Atractylodes chinensis has important medicinal and economic values. In this study, the chloroplast genome sequences of four A. chinensis samples from different producing areas were sequenced using the Illumina platform. The specific DNA barcodes were screened and the germplasm resources of A. chinensis samples from different producing areas and the genetic diversity of the population were analyzed basing on the specific barcodes. The whole chloroplast genomes of the four A. chinensis samples had a typical cyclic tetrad structure, with 112 genes annotated. The comparative genomics results indicated that ccsA and trnC-GCA_petN were potential specific DNA barcodes for intraspecific identification of A. chinensis. Polymerase chain reaction (PCR) analysis of ccsA and trnC-GCA_petN was performed on 256 samples from 14 areas in 9 provinces, and the amplification efficiency was 100%. Sequence analysis showed that ccsA and trnC-GCA_petN had 11 and 22 variant positions, which could identify 16 and 22 haplotypes, respectively. The combined sequence analysis identified 39 haplotypes, named Hap1-Hap39, of which the most abundant and widely distributed genotype was Hap9. Haplotype diversity (Hd) = 0.896 and nucleotide diversity (Pi) = 0.002 22 indicated high genetic diversity at the species level in A. chinensis. The genetic distances of the haplotypes were 0.000 00-0.004 88, indicating that there were small genetic differences among the haplotypes. The results of phylogenetic tree analysis showed that 39 haplotypes had very close genetic relationship, and formed two obvious branches with other groups of the same genus except Atractylodes macrocephala. This study plays an important role in the identification of the origin of A. chinensis and the protection and breeding of germplasm resources.

16.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-961700

ABSTRACT

ObjectiveTo investigate the effect of exogenous H2O2 on secondary metabolism in Atractylodes chinensis and its mechanism. MethodFresh rhizomes of A. chinensis were treated with 5.0, 1.0, 0.2, 0.04 mmol·L-1 H2O2 solution and clean water, and the relationships between the contents of reactive oxygen species, activities of antioxidant enzymes, activities of key enzymes of secondary metabolites, and contents of secondary metabolites in A. chinensis were compared. ResultUnder treatment with exogenous H2O2, the content of reactive oxygen species and malondialdehyde (MDA) in the fresh rhizomes of A. chinensis were significantly elevated on the 4th day, and returned to normal level on the 6th-8th day. The activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) were all increased first and then decreased, and reached the peak on the 4th, 4th-6th and 2th-4th day, respectively. The activities of 3-hydroxy-3-methyl glutaryl coenzyme A reductase (HMGR) and acetyl CoA carboxylase (ACC), key enzymes of the secondary metabolites, were remarkably enhanced, and under treatments with different concentrations of H2O2, the activities of key synthetic enzymes of the secondary metabolites in 0.2 mmol·L-1 H2O2 group were increased most, with the highest biosynthesis of secondary metabolites. The contents of atractylodin, β-eudesmol, atractylone, atractylenolide Ⅱ, and atractylenolide Ⅲ on the 6th day of 0.2 mmol·L-1 H2O2 treatment were 89.5%, 108.7%, 308.8%, 64.7% and 9.3%, respectively higher than those in the control. ConclusionThe antioxidant enzymes and secondary metabolites in A. chinensis synergistically maintain the balance of reactive oxygen species, and exogenous H2O2 can improve the medicinal quality of A. chinensis remarkably.

17.
Chem Biodivers ; 19(12): e202200812, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36328982

ABSTRACT

Four new sesquiterpenoids named atrchiterpenes A-D (1-4), a new natural product (5), and twelve known compounds (6-17) were isolated from Atractylodes chinensis (DC.) Koidz. Compound 1 was a rare N-containing eudesmane-type sesquiterpenoid. Structure elucidation was performed by spectroscopic techniques, including 1D, 2D NMR spectra, and HR-ESI-MS. Compounds 6-11, 14, and 17 were reported from Atractylodes for the first time. All the isolated compounds were evaluated for cytotoxicity activity. Compound 16 showed moderate cytotoxicity against HepG2 cells with an IC50 value of 5.81±0.47.


Subject(s)
Antineoplastic Agents , Atractylodes , Sesquiterpenes , Humans , Atractylodes/chemistry , Molecular Structure , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry , Hep G2 Cells
18.
Appl Microbiol Biotechnol ; 106(21): 7027-7037, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36171502

ABSTRACT

Atractylodes chinensis is a medicinal plant widely used for the treatment of gastric disorders, and its main bioactive compounds are atractylon and ß-eudesmol. This study was purposed to establish the adventitious root culture system of A. chinensis for in vitro production of atractylon and ß-eudesmol. The main parameters in the adventitious root induction and suspension cultures were optimized to maximize the culture efficiency. Adventitious roots were induced most efficiently from leaf explants on Murashige and Skoog (MS) solid medium containing 1.5 mg/L naphthaleneacetic acid (NAA) and 30 g/L sucrose with the highest root induction rate of approximately 92% and 12.9 roots per explant. During the adventitious root suspension culture, the root biomass and the accumulated content of the target compounds simultaneously increased to reach the maximum values after 8 weeks of culture. The maximum yield of the target compounds (total concentration 3.38 mg/g DW, total yield 2.66 mg) was achieved in the roots cultured in ½ MS liquid medium supplemented with 2.0 mg/L IBA, 3.2 mg/L NAA, and 40 g/L sucrose with the inoculum density of 8 g/L. Through the central composite design experiment, it was found that the combined use of different types of auxins in the suspension culture could further improve root growth and metabolite accumulation than the application of only one type of auxin. This work provides a new possibility to have a promising candidate for the industrial production of A. chinensis pharmaceuticals without relying on wild resources or field cultivation. KEY POINTS: • The induction culture was optimized for efficient root induction. • Suspension culture was optimized for the atractylon and ß-eudesmol production. • Combined use of different auxins improves root growth and metabolite accumulation.


Subject(s)
Atractylodes , Plant Roots/metabolism , Indoleacetic Acids/metabolism , Sucrose/metabolism , Pharmaceutical Preparations/metabolism
19.
Biomed Pharmacother ; 154: 113633, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36063647

ABSTRACT

There are 27 million cases of Salmonella Typhimurium (STM) reported worldwide annually, which have resulted in 217,000 deaths to date. Thus, there is an urgent requirement to develop novel antibacterial agents to target the multidrug-resistant strains of STM. We evaluated the inhibitory effect of the chloroform extracts of Atractylodes chinensis (Ac-CE) on the virulence of STM in vitro and develop it as a potential antibacterial agent. First, we determined the in vitro effects of Ac-CE on STM biofilm formation, and swimming, swarming, and adhesion to mucin. Further, we evaluated the effect of Ac-CE on the adhesion and invasion of STM at the gene level. Lastly, we evaluated the inhibitory effect of Ac-CE on STM infectivity at the cellular level. Ac-CE could attenuate both the adhesion and invasion abilities of STM in vitro. At the gene level, it could inhibit the expression of flagella, pilus, biofilm, SPI-1, and SPI-2 genes, which are related to the adhesion and invasion ability of STM in cells. Ac-CE significantly downregulated the expression of inflammatory cytokines and the TLR4/MyD88/NF-κB pathway in an STM infection cell model. It also significantly recovered the expression of intestinal barrier-related genes and proteins in intestinal cells that are damaged during STM infection. Ac-CE is effective as an antivirulence agent in alleviating STM infection. Although the main components of Ac-CE were analyzed.We have not demonstrated the antivirulence effect of the active ingredients in Ac-CE. And the antivirulence effect of Ac-CE and its active ingredients warrant further in vivo studies.


Subject(s)
Atractylodes , Salmonella typhimurium , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Atractylodes/metabolism , Chloroform/metabolism , Chloroform/pharmacology , NF-kappa B/metabolism , Virulence
20.
Zhongguo Zhong Yao Za Zhi ; 47(16): 4395-4402, 2022 Aug.
Article in Chinese | MEDLINE | ID: mdl-36046868

ABSTRACT

This study established the fingerprint and combined it with chemical pattern recognition to evaluate the quality of Atractylodes chinensis samples from different producing areas and then employed the quantitative analysis of multi-components by single marker(QAMS) method to verify the feasibility and applicability of the established method in the quality evaluation of A. chinensis. The fingerprints of A. chinensis samples were constructed via high performance liquid chromatography(HPLC) to evaluate the inter-batch consistency. With the quality control component atractylodin as the internal reference, the relative correction factors(RCFs) were established for atractylenolide Ⅰ, atractylenolide Ⅲ, and ß-eudesmol and the content of the four components was calculated. The external standard method was used to verify the accuracy of QAMS method. The quality of A. chinensis was further evaluated by similarity analysis, clustering analysis, and principal component analysis. The fingerprints of 13 batches of samples were calibrated with 21 common peaks, and 4 common peaks were identified with the similarities all above 0.9. The RCFs established with atractylodin as the internal reference represented good reproducibility under different experimental conditions. Specifically, the RCFs of atractylenolide Ⅰ, atractylenolide Ⅲ, and ß-eudesmol in A. chinensis were 2.091, 4.253, and 6.010, respectively. QAMS and ESM showed no significant difference in the results, indicating that the QAMS method established in this study was stable and reliable. Thus, HPLC fingerprint combined with QAMS can be used for the quality evaluation of A. chinensis, providing a basis for comprehensive and rapid quality evaluation of A. chinensis.


Subject(s)
Atractylodes , Drugs, Chinese Herbal , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/chemistry , Quality Control , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...