Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.355
Filter
1.
J Neurol Surg B Skull Base ; 85(4): 363-369, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38966300

ABSTRACT

Objective The aim of this work was the development of an augmented reality system including the functionality of conventional surgical navigation systems. Methods An application software for the Augmented Reality System HoloLens 2 from Microsoft was developed. It detects the position of the patient as well as position of surgical instruments in real time and displays it within the two-dimensional (2D) magnetic resonance imaging or computed tomography (CT) images. The surgical pointer instrument, including a pattern that is recognized by the HoloLens 2 sensors, was created with three-dimensional (3D) printing. The technical concept was demonstrated at a cadaver skull to identify anatomical landmarks. Results With the help of the HoloLens 2 and its sensors, the real-time position of the surgical pointer instrument could be shown. The position of the 3D-printed pointer with colored pattern could be recognized within 2D-CT images when stationary and in motion at a cadaver skull. Feasibility could be demonstrated for the clinical application of transsphenoidal pituitary surgery. Conclusion The HoloLens 2 has a high potential for use as a surgical navigation system. With subsequent studies, a further accuracy evaluation will be performed receiving valid data for comparison with conventional surgical navigation systems. In addition to transsphenoidal pituitary surgery, it could be also applied for other surgical disciplines.

3.
Physiol Behav ; 283: 114623, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38959990

ABSTRACT

BACKGROUND: Exercise has positive effects on psychological well-being, with team sports often associated with superior mental health compared to individual sports. Augmented reality (AR) technology has the potential to convert solitary exercise into multi-person exercise. Given the role of oxytocin in mediating the psychological benefits of exercise and sports, this study aimed to investigate the impact of AR-based multi-person exercise on mood and salivary oxytocin levels. METHODS: Fourteen participants underwent three distinct regimens: non-exercise (Rest), standard solitary cycling exercise (Ex), and AR-based multi-person cycling exercise (Ex+AR). In both Ex and Ex+AR conditions, participants engaged in cycling at a self-regulated pace to maintain a Rating of Perceived Exertion of 10. In the Ex+AR condition, participants' avatars were projected onto a tablet screen, allowing them to cycle alongside ten other virtual avatars in an AR environment. Mood states and saliva samples were collected before and immediately after each 10-minute regimen. Subsequently, salivary oxytocin levels were measured. RESULTS: Notably, only the Ex+AR condition significantly improved mood states associated with depression-dejection and exhibited a non-significant trend toward suppressing anger-hostility in participants. Moreover, the Ex+AR condition led to a significant elevation in salivary oxytocin levels, while the Ex condition showed a non-significant trend toward an increase. However, changes in salivary oxytocin did not show a significant correlation with changes in mood states. CONCLUSIONS: These findings suggest that Ex+AR enhances mood states and promotes oxytocin release. AR-based multi-person exercise may offer greater psychological benefits compared to standard solitary exercise, although the relationship between oxytocin and mood changes remains inconclusive.

4.
Appl Ergon ; 120: 104340, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38964218

ABSTRACT

Augmented reality (AR) environments are emerging as prominent user interfaces and gathering significant attention. However, the associated physical strain on the users presents a considerable challenge. Within this background, this study explores the impact of movement distance (MD) and target-to-user distance (TTU) on the physical load during drag-and-drop (DND) tasks in an AR environment. To address this objective, a user experiment was conducted utilizing a 5× 5 within-subject design with MD (16, 32, 48, 64, and 80 cm) and TTU (40, 80, 120, 160, and 200 cm) as the variables. Physical load was assessed using normalized electromyography (NEMG) (%MVC) indicators of the upper extremity muscles and the physical item of NASA-Task load index (TLX). The results revealed significant variations in the physical load based on MD and TTU. Specifically, both the NEMG and subjective physical workload values increased with increasing MD. Moreover, NEMG increased with decreasing TTU, whereas the subjective physical workload scores increased with increasing TTU. Interaction effects of MD and TTU on NEMG were also significantly observed. These findings suggest that considering the MD and TTU when developing content for interacting with AR objects in AR environments could potentially alleviate user load.

5.
Article in English | MEDLINE | ID: mdl-38960934

ABSTRACT

PURPOSE: Patients with total knee arthroplasty (TKA) often suffer from severe postoperative pain, which seriously hinders postoperative rehabilitation. Extended reality (XR), including virtual reality, augmented reality, and mixed reality, has been increasingly used to relieve pain after TKA. The purpose of this study was to evaluate the effectiveness of XR on relieving pain after TKA. METHODS: The electronic databases including PubMed, Embase, Web of Science, Cochrane Central Register of Controlled Trials (CENTRAL), and clinicaltrials.gov were searched for studies from inception to July 20, 2023. The outcomes were pain score, anxiety score, and physiological parameters related to pain. Meta-analysis was performed using the Review Manager 5.4 software. RESULTS: Overall, 11 randomized control trials (RCTs) with 887 patients were included. The pooled results showed XR had lower pain scores (SMD = - 0.31, 95% CI [- 0.46 to - 0.16], P < 0.0001) and anxiety scores (MD = - 3.95, 95% CI [- 7.76 to - 0.13], P = 0.04) than conventional methods. The subgroup analysis revealed XR had lower pain scores within 2 weeks postoperatively (SMD = - 0.49, 95% CI [- 0.76 to - 0.22], P = 0.0004) and XR had lower pain scores when applying XR combined with conventional methods (SMD = - 0.43, 95% CI [- 0.65 to - 0.20], P = 0.0002). CONCLUSION: This systematic review and meta-analysis found applying XR could significantly reduce postoperative pain and anxiety after TKA. When XR was combined with conventional methods, postoperative pain can be effectively relieved, especially within 2 weeks after the operation. XR is an effective non-pharmacological analgesia scheme.

6.
ACS Nano ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958405

ABSTRACT

Facing the challenge of information security in the current era of information technology, optical encryption based on metasurfaces presents a promising solution to this issue. However, most metasurface-based encryption techniques rely on limited decoding keys and struggle to achieve multidimensional complex encryption. It hinders the progress of optical storage capacity and puts encryption security at a disclosing risk. Here, we propose and experimentally demonstrate a multidimensional encryption system based on chip-integrated metasurfaces that successfully incorporates the simultaneous manipulation of three-dimensional optical parameters, including wavelength, direction, and polarization. Hence, up to eight-channel augmented reality (AR) holograms are concealed by near- and far-field fused encryption, which can only be extracted by correctly providing the three-dimensional decoding keys and then vividly exhibit to the authorizer with low crosstalk, high definition, and no zero-order speckle noise. We envision that the miniature chip-integrated metasurface strategy for multidimensional encryption functionalities promises a feasible route toward the encryption capacity and information security enhancement of the anticounterfeiting performance and optically cryptographic storage.

7.
Heliyon ; 10(12): e32852, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38975124

ABSTRACT

Nowadays with the increase of high-rise buildings, emergency evacuation is an indispensable part of urban environment management. Due to various disaster incidents occurred in indoor environments, research has concentrated on ways to deal with the different difficulties of indoor emergency evacuation. Although global navigation satellite systems (GNSSs) such as global positioning system (GPS) come in handy in outdoor spaces, they are not of much use in enclosed places, where satellite signals cannot penetrate easily. Therefore, other approaches must be considered for pedestrian navigation to cope with the indoor positioning problem. Another problem in such environments is the information of the building indoor space. The majority of the studies has used prepared maps of the building, which limits their methodology to that specific study area. However, in this study we have proposed an end-to-end method that takes advantage of BIM model of the building, thereby applicable to every structure that has an equivalent building information model (BIM). Moreover, we have used a mixture of Wi-Fi fingerprinting and pedestrian dead reckoning (PDR) method with relatively higher accuracy compared to other similar methods for navigating the user to the exit point. For implementing PDR, we used the sensors in smartphones to calculate user steps and direction. In addition, the navigational information was superimposed on the smartphone screen using augmented reality (AR) technology, thus communicating the direction information in a user-friendly manner. Finally, the AR mobile emergency evacuation application developed was assessed with a sample audience. After an experience with the app, they filled out a questionnaire which was designed in the system usability scale test (SUS) format. The evaluation results showed that the app achieved an acceptable suitability for usage.

8.
Comput Struct Biotechnol J ; 24: 451-463, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38975288

ABSTRACT

This report summarises the SMARTCLAP research project, which employs a user-centred design approach to develop a revolutionary smart product service system. The system offers personalised motivation to encourage children with cerebral palsy to actively participate more during their occupational therapy sessions, while providing paediatric occupational therapists with an optimal tool to monitor children's progress from one session to another. The product service system developed includes of a smart wearable device called DigiClap used to interact with a serious game in an Augmented Reality environment. The report highlights the research methodology used to advance the technology readiness level from 4 to 6, acknowledging the contribution of the consortium team and funding source. As part of the technology's maturity process, DigiClap and the respective serious game were evaluated with target users, to identify the system's impact in supporting the children's overall participation and hand function, and to gather feedback from occupational therapists and caregivers on this novel technology. The outcomes of this study are discussed, highlighting limitations and lessons learned. The report also outlines future work and further funding for the sustainability of the project and to reach other individuals who have upper limb limitations. Ultimately, the potential of DigiClap and the overall achievements of this project are discussed.

9.
Appl Neuropsychol Adult ; : 1-4, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976768

ABSTRACT

The integration of virtual, mixed, and augmented reality technologies in cognitive neuroscience and neuropsychology represents a transformative frontier. In this Commentary, we conducted a meta-analysis of studies that explored the impact of Virtual Reality (VR), Mixed Reality (MR), and Augmented Reality (AR) on cognitive neuroscience and neuropsychology. Our review highlights the versatile applications of VR, ranging from spatial cognition assessments to rehabilitation for Traumatic Brain Injury. We found that MR and AR offer innovative avenues for cognitive training, particularly in memory-related disorders. The applications extend to addressing social cognition disorders and serving as therapeutic interventions for mental health issues. Collaborative efforts between neuroscientists and technology developers are crucial, with reinforcement learning and neuroimaging studies enhancing the potential for improved outcomes. Ethical considerations, including informed consent, privacy, and accessibility, demand careful attention. Our review identified common aspects of the meta-analysis, including the potential of VR technologies in cognitive neuroscience and neuropsychology, the use of MR and AR in memory research, and the role of VR in neurorehabilitation and therapy.

10.
BMC Med Educ ; 24(1): 730, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38970090

ABSTRACT

BACKGROUND: Virtual reality (VR) and augmented reality (AR) are emerging technologies that can be used for cardiopulmonary resuscitation (CPR) training. Compared to traditional face-to-face training, VR/AR-based training has the potential to reach a wider audience, but there is debate regarding its effectiveness in improving CPR quality. Therefore, we conducted a meta-analysis to assess the effectiveness of VR/AR training compared with face-to-face training. METHODS: We searched PubMed, Embase, Cochrane Library, Web of Science, CINAHL, China National Knowledge Infrastructure, and Wanfang databases from the inception of these databases up until December 1, 2023, for randomized controlled trials (RCTs) comparing VR- and AR-based CPR training to traditional face-to-face training. Cochrane's tool for assessing bias in RCTs was used to assess the methodological quality of the included studies. We pooled the data using a random-effects model with Review Manager 5.4, and assessed publication bias with Stata 11.0. RESULTS: Nine RCTs (involving 855 participants) were included, of which three were of low risk of bias. Meta-analyses showed no significant differences between VR/AR-based CPR training and face-to-face CPR training in terms of chest compression depth (mean difference [MD], -0.66 mm; 95% confidence interval [CI], -6.34 to 5.02 mm; P = 0.82), chest compression rate (MD, 3.60 compressions per minute; 95% CI, -1.21 to 8.41 compressions per minute; P = 0.14), overall CPR performance score (standardized mean difference, -0.05; 95% CI, -0.93 to 0.83; P = 0.91), as well as the proportion of participants meeting CPR depth criteria (risk ratio [RR], 0.79; 95% CI, 0.53 to 1.18; P = 0.26) and rate criteria (RR, 0.99; 95% CI, 0.72 to 1.35; P = 0.93). The Egger regression test showed no evidence of publication bias. CONCLUSIONS: Our study showed evidence that VR/AR-based training was as effective as traditional face-to-face CPR training. Nevertheless, there was substantial heterogeneity among the included studies, which reduced confidence in the findings. Future studies need to establish standardized VR/AR-based CPR training protocols, evaluate the cost-effectiveness of this approach, and assess its impact on actual CPR performance in real-life scenarios and patient outcomes. TRIAL REGISTRATION: CRD42023482286.


Subject(s)
Augmented Reality , Cardiopulmonary Resuscitation , Virtual Reality , Cardiopulmonary Resuscitation/education , Humans , Randomized Controlled Trials as Topic
11.
Curr Opin Psychol ; 58: 101842, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38986168

ABSTRACT

By blurring the boundaries between digital and physical realities, Augmented Reality (AR) is transforming consumers' perceptions of themselves and their environments. This review demonstrates AR's capacity to influence psychology and behavior in profound ways. We begin by providing a concise introduction to AR, considering its technical, practical, and theoretical properties. Next, we showcase a multi-disciplinary set of recent studies that explore AR's impact on psychological processes and behavioral outcomes. We conclude by offering a selection of potential future research directions designed to deepen our understanding of the psychological and behavioral implications of AR experiences.

12.
Clin Neurol Neurosurg ; 244: 108412, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38986364

ABSTRACT

BACKGROUND: Catheter shaping is vital in cerebral aneurysm coil embolization; however, understanding three-dimensional (3D) vascular structures on two-dimensional screens is challenging. Although 3D-printed vascular models are helpful, they demand time, effort, and sterility. This study explores whether mixed-reality (MR) devices displaying 3D computer graphics (3D-CG) can address these issues. METHODS: This study focused on magnetic resonance imaging (MRI) of seven cases of cerebral aneurysms. Head-mounted display (HMD) and spatial reality display (SRD) MR devices were used, and applications for 3D-CG display at a 1:1 scale and a 3D-CG control panel were developed. Catheters shaped using a 3D printer, HMD, and SRD were inserted into hollow models to assess their accessibility and positioning. RESULTS: The concordance rate of the 3D printer and HMD groups in terms of accessibility to the aneurysm was 71.4 %, while that of the 3D printer and SRD group was 85.7 %, and that of the HMD and SRD group was 85.7 %. The concordance rates of positioning in the 3D printer and HMD groups, 3D printer and SRD groups, and HMD and SRD groups were 85.7 %, 85.7 %, and 100 %, respectively. CONCLUSIONS: MR devices facilitate catheter shaping in cerebral aneurysm coil embolization and offer a time-efficient, precise, and sterile alternative to traditional 3D printing methods.

13.
Pan Afr Med J ; 47: 157, 2024.
Article in English | MEDLINE | ID: mdl-38974699

ABSTRACT

The integration of virtual reality (VR) and augmented reality (AR) into the telerehabilitation initiates a major change in the healthcare practice particularly in neurological and also orthopedic rehabilitation. This essay reflects the potential of the VR and AR in their capacity to create immersive, interactive environments that facilitate the recovery. The recent developments have illustrated the ability to enhance the patient engagement and outcomes, especially in tackling the complex motor and cognitive rehabilitation needs. The combination of artificial intelligence (AI) with VR and AR will bring the rehabilitation to the next level by enabling adaptive and responsive treatment programs provided through real-time feedback and predictive analytics. Nevertheless, the issues such as availability, cost, and digital gap among many others present huge obstacles to the mass adoption. This essay provides a very thorough review of the existing level of virtual reality and augmented reality in rehabilitation and examines the many potential gains, drawbacks, and future directions from a different perspective.


Subject(s)
Artificial Intelligence , Augmented Reality , Telerehabilitation , Virtual Reality , Humans , Neurological Rehabilitation/methods
14.
Neurospine ; 21(2): 432-439, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38955520

ABSTRACT

OBJECTIVE: Spine surgeons are often at risk of radiation exposure due to intraoperative fluoroscopy, leading to health concerns such as carcinogenesis. This is due to the increasing use of percutaneous pedicle screw (PPS) in spinal surgeries, resulting from the widespread adoption of minimally invasive spine stabilization. This study aimed to elucidate the effectiveness of smart glasses (SG) in PPS insertion under fluoroscopy. METHODS: SG were used as an alternative screen for fluoroscopic images. Operators A (2-year experience in spine surgery) and B (9-year experience) inserted the PPS into the bilateral L1-5 pedicles of the lumbar model bone under fluoroscopic guidance, repeating this procedure twice with and without SG (groups SG and N-SG, respectively). Each vertebral body's insertion time, radiation dose, and radiation exposure time were measured, and the deviation in screw trajectories was evaluated. RESULTS: The groups SG and N-SG showed no significant difference in insertion time for the overall procedure and each operator. However, group SG had a significantly shorter radiation exposure time than group N-SG for the overall procedure (109.1 ± 43.5 seconds vs. 150.9 ± 38.7 seconds; p = 0.003) and operator A (100.0 ± 29.0 seconds vs. 157.9 ± 42.8 seconds; p = 0.003). The radiation dose was also significantly lower in group SG than in group N-SG for the overall procedure (1.3 ± 0.6 mGy vs. 1.7 ± 0.5 mGy; p = 0.023) and operator A (1.2 ± 0.4 mGy vs. 1.8 ± 0.5 mGy; p = 0.013). The 2 groups showed no significant difference in screw deviation. CONCLUSION: The application of SG in fluoroscopic imaging for PPS insertion holds potential as a useful method for reducing radiation exposure.

15.
Sci Rep ; 14(1): 15458, 2024 07 04.
Article in English | MEDLINE | ID: mdl-38965266

ABSTRACT

In total hip arthroplasty (THA), determining the center of rotation (COR) and diameter of the hip joint (acetabulum and femoral head) is essential to restore patient biomechanics. This study investigates on-the-fly determination of hip COR and size, using off-the-shelf augmented reality (AR) hardware. An AR head-mounted device (HMD) was configured with inside-out infrared tracking enabling the determination of surface coordinates using a handheld stylus. Two investigators examined 10 prosthetic femoral heads and cups, and 10 human femurs. The HMD calculated the diameter and COR through sphere fitting. Results were compared to data obtained from either verified prosthetic geometry or post-hoc CT analysis. Repeated single-observer measurements showed a mean diameter error of 0.63 mm ± 0.48 mm for the prosthetic heads and 0.54 mm ± 0.39 mm for the cups. Inter-observer comparison yielded mean diameter errors of 0.28 mm ± 0.71 mm and 1.82 mm ± 1.42 mm for the heads and cups, respectively. Cadaver testing found a mean COR error of 3.09 mm ± 1.18 mm and a diameter error of 1.10 mm ± 0.90 mm. Intra- and inter-observer reliability averaged below 2 mm. AR-based surface mapping using HMD proved accurate and reliable in determining the diameter of THA components with promise in identifying COR and diameter of osteoarthritic femoral heads.


Subject(s)
Arthroplasty, Replacement, Hip , Augmented Reality , Femur Head , Hip Prosthesis , Humans , Femur Head/surgery , Femur Head/diagnostic imaging , Arthroplasty, Replacement, Hip/instrumentation , Arthroplasty, Replacement, Hip/methods , Tomography, X-Ray Computed , Rotation , Male , Hip Joint/surgery , Hip Joint/diagnostic imaging , Female
16.
BMC Med Educ ; 24(1): 701, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937764

ABSTRACT

BACKGROUND: Clinical teaching during encounters with real patients lies at the heart of medical education. Mixed reality (MR) using a Microsoft HoloLens 2 (HL2) offers the potential to address several challenges: including enabling remote learning; decreasing infection control risks; facilitating greater access to medical specialties; and enhancing learning by vertical integration of basic principles to clinical application. We aimed to assess the feasibility and usability of MR using the HL2 for teaching in a busy, tertiary referral university hospital. METHODS: This prospective observational study examined the use of the HL2 to facilitate a live two-way broadcast of a clinician-patient encounter, to remotely situated third and fourth year medical students. System Usability Scale (SUS) Scores were elicited from participating medical students, clinician, and technician. Feedback was also elicited from participating patients. A modified Evaluation of Technology-Enhanced Learning Materials: Learner Perceptions Questionnaire (mETELM) was completed by medical students and patients. RESULTS: This was a mixed methods prospective, observational study, undertaken in the Day of Surgery Assessment Unit. Forty-seven medical students participated. The mean SUS score for medical students was 71.4 (SD 15.4), clinician (SUS = 75) and technician (SUS = 70) indicating good usability. The mETELM Questionnaire using a 7-point Likert Scale demonstrated MR was perceived to be more beneficial than a PowerPoint presentation (Median = 7, Range 6-7). Opinion amongst the student cohort was divided as to whether the MR tutorial was as beneficial for learning as a live patient encounter would have been (Median = 5, Range 3-6). Students were positive about the prospect of incorporating of MR in future tutorials (Median = 7, Range 5-7). The patients' mETELM results indicate the HL2 did not affect communication with the clinician (Median = 7, Range 7-7). The MR tutorial was preferred to a format based on small group teaching at the bedside (Median = 6, Range 4-7). CONCLUSIONS: Our study findings indicate that MR teaching using the HL2 demonstrates good usability characteristics for providing education to medical students at least in a clinical setting and under conditions similar to those of our study. Also, it is feasible to deliver to remotely located students, although certain practical constraints apply including Wi-Fi and audio quality.


Subject(s)
Feasibility Studies , Students, Medical , Humans , Prospective Studies , Students, Medical/psychology , Female , Male , Self Report , Education, Medical, Undergraduate/methods , Adult , Young Adult , Augmented Reality , Education, Distance , Surveys and Questionnaires
17.
JACC Adv ; 3(3): 100839, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38938839

ABSTRACT

Background: Augmented reality (AR) guidance holds potential to improve transcatheter interventions by enabling visualization of and interaction with patient-specific 3-dimensional virtual content. Positioning of cerebral embolic protection devices (CEP) during transcatheter aortic valve replacement (TAVR) increases patient exposure to radiation and iodinated contrast, and increases procedure time. AR may enhance procedural guidance and facilitate a safer intervention. Objectives: The purpose of this study was to develop and test a novel AR guidance system with a custom user interface that displays virtual, patient-specific 3-dimensional anatomic models, and assess its intraprocedural impact during CEP placement in TAVR. Methods: Patients undergoing CEP during TAVR were prospectively enrolled and assigned to either AR guidance or control groups. Primary endpoints were contrast volume used prior to filter placement, times to filter placement, and fluoroscopy time. Postprocedure questionnaires were administered to assess intraprocedural physician experience with AR guidance. Results: A total of 24 patients presenting for TAVR were enrolled in the study (12 with AR guidance and 12 controls). AR guidance eliminated the need for aortic arch angiograms prior to device placement thus reducing contrast volume (0 mL vs 15 mL, P < 0.0001). There was no significant difference in the time required for filter placement or fluoroscopy time. Postprocedure questionnaires indicated that AR guidance increased confidence in wiring of the aortic arch and facilitated easier device placement. Conclusions: We developed a novel AR guidance system that eliminated the need for additional intraprocedural angiograms prior to device placement without any significant difference in time to intervention and offered a subjective improvement in performance of the intervention.

18.
Medicina (Kaunas) ; 60(6)2024 May 27.
Article in English | MEDLINE | ID: mdl-38929491

ABSTRACT

Despite advancement in surgical innovation, C1-C2 fixation remains challenging due to risks of screw malposition and vertebral artery (VA) injuries. Traditional image-based navigation, while useful, often demands that surgeons frequently shift their attention to external monitors, potentially causing distractions. In this article, we introduce a microscope-based augmented reality (AR) navigation system that projects both anatomical information and real-time navigation images directly onto the surgical field. In the present case report, we discuss a 37-year-old female who suffered from os odontoideum with C1-C2 subluxation. Employing AR-assisted navigation, the patient underwent the successful posterior instrumentation of C1-C2. The integrated AR system offers direct visualization, potentially minimizing surgical distractions. In our opinion, as AR technology advances, its adoption in surgical practices and education is anticipated to expand.


Subject(s)
Augmented Reality , Humans , Female , Adult , Atlanto-Axial Joint/surgery , Atlanto-Axial Joint/injuries , Spinal Fusion/methods , Spinal Fusion/instrumentation , Odontoid Process/surgery , Odontoid Process/injuries , Odontoid Process/diagnostic imaging , Surgery, Computer-Assisted/methods
19.
Medicina (Kaunas) ; 60(6)2024 May 28.
Article in English | MEDLINE | ID: mdl-38929504

ABSTRACT

Background and Objectives: The aim of this study is to present our experience in the surgical treatment of calcified thoracic herniated disc disease via a transthoracic approach in the lateral position with the use of intraoperative computed tomography (iCT) and augmented reality (AR). Materials and Methods: All patients who underwent surgery for calcified thoracic herniated disc via a transthoracic transpleural approach at our Department using iCT and microscope-based AR were included in the study. Results: Six consecutive patients (five female, median age 53.2 ± 6.4 years) with calcified herniated thoracic discs (two patients Th 10-11 level, two patients Th 7-8, one patient Th 9-10, one patient Th 11-12) were included in this case series. Indication for surgery included evidence of a calcified thoracic disc on magnet resonance imaging (MRI) and CT with spinal canal stenosis of >50% of diameter, intractable pain, and neurological deficits, as well as MRI-signs of myelopathy. Five patients had paraparesis and ataxia, and one patient had no deficit. All surgeries were performed in the lateral position via a transthoracic transpleural approach (Five from left side). CT for automatic registration was performed following the placement of the reference array, with a high registration accuracy. Microscope-based AR was used, with segmented structures of interest such as vertebral bodies, disc space, herniated disc, and dural sac. Mean operative time was 277.5 ± 156 min. The use of AR improved orientation in the operative field for identification, and tailored the resection of the herniated disc and the identification of the course of dural sac. A control-iCT scan confirmed the complete resection in five patients and incomplete resection of the herniated disc in one patient. In one patient, complications occurred, such as postoperative hematoma, and wound healing deficit occurred. Mean follow-up was 22.9 ± 16.5 months. Five patients improved following surgery, and one patient who had no deficits remained unchanged. Conclusions: Optimal surgical therapy in patients with calcified thoracic disc disease with compression of dural sac and myelopathy was resectioned via a transthoracic transpleural approach. The use of iCT-based registration and microscope-based AR significantly improved orientation in the operative field and facilitated safe resection of these lesions.


Subject(s)
Augmented Reality , Intervertebral Disc Displacement , Thoracic Vertebrae , Tomography, X-Ray Computed , Humans , Female , Middle Aged , Intervertebral Disc Displacement/surgery , Intervertebral Disc Displacement/diagnostic imaging , Male , Tomography, X-Ray Computed/methods , Thoracic Vertebrae/surgery , Thoracic Vertebrae/diagnostic imaging , Calcinosis/surgery , Calcinosis/diagnostic imaging , Adult , Microscopy/methods , Treatment Outcome , Magnetic Resonance Imaging/methods , Intervertebral Disc Degeneration
20.
SELECTION OF CITATIONS
SEARCH DETAIL
...