Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37.958
Filter
1.
Front Endocrinol (Lausanne) ; 15: 1404697, 2024.
Article in English | MEDLINE | ID: mdl-38982993

ABSTRACT

Adipose tissue, an indispensable organ, fulfils the pivotal role of energy storage and metabolism and is instrumental in maintaining the dynamic equilibrium of energy and health of the organism. Adipocyte hypertrophy and adipocyte hyperplasia (adipogenesis) are the two primary mechanisms of fat deposition. Mature adipocytes are obtained by differentiating mesenchymal stem cells into preadipocytes and redifferentiation. However, the mechanisms orchestrating adipogenesis remain unclear. Autophagy, an alternative cell death pathway that sustains intracellular energy homeostasis through the degradation of cellular components, is implicated in regulating adipogenesis. Furthermore, adipose tissue functions as an endocrine organ, producing various cytokines, and certain inflammatory factors, in turn, modulate autophagy and adipogenesis. Additionally, autophagy influences intracellular redox homeostasis by regulating reactive oxygen species, which play pivotal roles in adipogenesis. There is a growing interest in exploring the involvement of autophagy, inflammation, and oxidative stress in adipogenesis. The present manuscript reviews the impact of autophagy, oxidative stress, and inflammation on the regulation of adipogenesis and, for the first time, discusses their interactions during adipogenesis. An integrated analysis of the role of autophagy, inflammation and oxidative stress will contribute to elucidating the mechanisms of adipogenesis and expediting the exploration of molecular targets for treating obesity-related metabolic disorders.


Subject(s)
Adipogenesis , Autophagy , Inflammation , Oxidative Stress , Adipogenesis/physiology , Humans , Autophagy/physiology , Oxidative Stress/physiology , Inflammation/metabolism , Inflammation/pathology , Animals , Adipocytes/metabolism , Adipocytes/pathology , Obesity/metabolism , Obesity/pathology , Adipose Tissue/metabolism , Adipose Tissue/pathology
2.
Front Pharmacol ; 15: 1408031, 2024.
Article in English | MEDLINE | ID: mdl-38983916

ABSTRACT

Introduction: Alzheimer's disease (AD) represents a critical global health challenge with limited therapeutic options, prompting the exploration of alternative strategies. A key pathology in AD involves amyloid beta (Aß) aggregation, and targeting both Aß aggregation and oxidative stress is crucial for effective intervention. Natural compounds from medicinal and food sources have emerged as potential preventive and therapeutic agents, with Nelumbo nucifera leaf extract (NLE) showing promising properties. Methods: In this study, we utilized transgenic Caenorhabditis elegans (C. elegans) models to investigate the potential of NLE in countering AD and to elucidate the underlying mechanisms. Various assays were employed to assess paralysis rates, food-searching capabilities, Aß aggregate accumulation, oxidative stress, lifespan under stress conditions, and the expression of stress-resistance-related proteins. Additionally, autophagy induction was evaluated by measuring P62 levels and the formation of LGG-1+ structures, with RNAi-mediated inhibition of autophagy-related genes to confirm the mechanisms involved. Results: The results demonstrated that NLE significantly reduced paralysis rates in CL4176 and CL2006 worms while enhancing food-searching capabilities in CL2355 worms. NLE also attenuated Aß aggregate accumulation and mitigated Aß-induced oxidative stress in C. elegans. Furthermore, NLE extended the lifespan of worms under oxidative and thermal stress conditions, while concurrently increasing the expression of stress-resistance-related proteins, including SOD-3, GST-4, HSP-4, and HSP-6. Moreover, NLE induced autophagy in C. elegans, as evidenced by reduced P62 levels in BC12921 worms and the formation of LGG-1+ structures in DA2123 worms. The RNAi-mediated inhibition of autophagy-related genes, such as bec-1 and vps-34, negated the protective effects of NLE against Aß-induced paralysis and aggregate accumulation. Discussion: These findings suggest that NLE ameliorates Aß-induced toxicity by activating autophagy in C. elegans. The study underscores the potential of NLE as a promising candidate for further investigation in AD management, offering multifaceted approaches to mitigate AD-related pathology and stress-related challenges.

3.
Biofactors ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38994725

ABSTRACT

Although the epidermal growth factor receptor 2 (ErbB2) and Notch1 signaling pathways have both significant roles in regulating cardiac biology, their interplay in the heart remains poorly investigated. Here, we present evidence of a crosstalk between ErbB2 and Notch1 in cardiac cells, with effects on autophagy and proliferation. Overexpression of ErbB2 in H9c2 cardiomyoblasts induced Notch1 activation in a post-transcriptional, p38-dependent manner, while ErbB2 inhibition with the specific inhibitor, lapatinib, reduced Notch1 activation. Moreover, incubation of H9c2 cells with lapatinib resulted in stalled autophagic flux and decreased proliferation, consistent with the established cardiotoxicity of this and other ErbB2-targeting drugs. Confirming the findings in H9c2 cells, exposure of primary neonatal mouse cardiomyocytes to exogenous neuregulin-1, which engages ErbB2, stimulated proliferation, and this effect was abrogated by concomitant inhibition of the enzyme responsible for Notch1 activation. Furthermore, the hearts of transgenic mice specifically overexpressing ErbB2 in cardiomyocytes had increased levels of active Notch1 and of Notch-related genes. These data expand the knowledge of ErbB2 and Notch1 functions in the heart and may allow better understanding the mechanisms of the cardiotoxicity of ErbB2-targeting cancer treatments.

4.
Int J Mol Med ; 54(3)2024 Sep.
Article in English | MEDLINE | ID: mdl-38994772

ABSTRACT

It is considered that the etiology of endometriosis is retrograde menstruation of endometrial tissue. Although shed endometrial cells are constantly exposed to a challenging environment with iron overload, oxidative stress and hypoxia, a few cells are able to survive and continue to proliferate and invade. Ferroptosis, an iron­dependent form of non­apoptotic cell death, is known to play a major role in the development and course of endometriosis. However, few papers have concentrated on the dynamic interaction between autophagy and ferroptosis throughout the progression of diseases. The present review summarized the current understanding of the mechanisms underlying autophagy and ferroptosis in endometriosis and discuss their role in disease development and progression. For the present narrative review electronic databases including PubMed and Google Scholar were searched for literature published up to the October 31, 2023. Autophagy and ferroptosis may be activated at early stages in endometriosis development. On the other hand, excessive activation of intrinsic pathways (e.g., estrogen and mechanistic target of rapamycin) may promote disease progression through autophagy inhibition. Furthermore, suppression of ferroptosis may cause further progression of endometriotic lesions. In conclusion, the autophagy and ferroptosis pathways may play a dual role in disease initiation and progression. The present review discussed the temporal transition of non­apoptotic cell death regulation during disease progression from retrograde endometrium to early lesions to established lesions.


Subject(s)
Autophagy , Endometriosis , Ferroptosis , Humans , Endometriosis/metabolism , Endometriosis/pathology , Autophagy/physiology , Female , Animals , Cysts/pathology , Cysts/metabolism , Endometrium/metabolism , Endometrium/pathology
5.
J Cell Mol Med ; 28(10): e18402, 2024 May.
Article in English | MEDLINE | ID: mdl-39008328

ABSTRACT

Syntaxin 17 (STX17) has been identified as a crucial factor in mediating the fusion of autophagosomes and lysosomes. However, its specific involvement in the context of atherosclerosis (AS) remains unclear. This study sought to elucidate the role and mechanistic contributions of STX17 in the initiation and progression of AS. Utilizing both in vivo and in vitro AS model systems, we employed ApoE knockout (KO) mice subjected to a high-fat diet and human umbilical vein endothelial cells (HUVECs) treated with oxidized low-density lipoprotein (ox-LDL) to assess STX17 expression. To investigate underlying mechanisms, we employed shRNA-STX17 lentivirus to knock down STX17 expression, followed by evaluating autophagy and inflammation in HUVECs. In both in vivo and in vitro AS models, STX17 expression was significantly upregulated. Knockdown of STX17 exacerbated HUVEC damage, both with and without ox-LDL treatment. Additionally, we observed that STX17 knockdown impaired autophagosome degradation, impeded autophagy flux and also resulted in the accumulation of dysfunctional lysosomes in HUVECs. Moreover, STX17 knockdown intensified the inflammatory response following ox-LDL treatment in HUVECs. Further mechanistic exploration revealed an association between STX17 and STING; reducing STX17 expression increased STING levels. Further knockdown of STING enhanced autophagy flux. In summary, our findings suggest that STX17 knockdown worsens AS by impeding autophagy flux and amplifying the inflammatory response. Additionally, the interaction between STX17 and STING may play a crucial role in STX17-mediated autophagy.


Subject(s)
Atherosclerosis , Autophagy , Human Umbilical Vein Endothelial Cells , Inflammation , Lipoproteins, LDL , Qa-SNARE Proteins , Autophagy/genetics , Animals , Humans , Atherosclerosis/metabolism , Atherosclerosis/genetics , Atherosclerosis/pathology , Human Umbilical Vein Endothelial Cells/metabolism , Inflammation/metabolism , Inflammation/pathology , Inflammation/genetics , Qa-SNARE Proteins/metabolism , Qa-SNARE Proteins/genetics , Mice , Lipoproteins, LDL/metabolism , Gene Knockdown Techniques , Lysosomes/metabolism , Mice, Knockout , Male , Mice, Inbred C57BL , Disease Models, Animal , Diet, High-Fat/adverse effects , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Apolipoproteins E/deficiency
6.
Mol Carcinog ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980215

ABSTRACT

γ-Tocotrienol (γ-T3) is a major subtype of vitamin E, mainly extracted from palm trees, barley, walnuts, and other plants. γ-T3 has effects on anti-inflammation, anti-oxidation, and potential chemoprevention against malignancies. It is still uncompleted to understand the effect of γ-T3 on the inhibitory mechanism of cancer. This study aimed to investigate whether γ-T3 enhanced autophagy in gastric cancer and the underlying molecular mechanism. The results showed that γ-T3 (0-90 µmol/L) inhibited the proliferation of gastric cancer MKN45 cells and AGS cells, and arrested the cell cycle at the G0/G1 phase in a dose-dependent manner. Autophagy was increased in MKN45 cells treated with γ-T3 (0-45 µmol/L), especially at a dose of 30 µmol/L for 24 h. These effects were reversed by 3-methyladenine pretreatment. Furthermore, γ-T3 (30 µmol/L) also significantly downregulated the expression of pGSK-3ß (ser9) and ß-catenin protein in MKN45 cells, and γ-T3 (20 mg/kg b.w.) effectively decreased the growth of MKN45 cell xenografts in BABL/c mice. GSK-3ß inhibitor-CHIR-99021 reversed the negative regulation of GSK-3ß/ß-Catenin signaling and autophagy. Our findings indicated that γ-T3 enhances autophagy in gastric cancer cells mediated by GSK-3ß/ß-Catenin signaling, which provides new insights into the role of γ-T3 enhancing autophagy in gastric cancer.

7.
Protein J ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980535

ABSTRACT

In the realm of parasitology, autophagy has emerged as a critical focal point, particularly in combating Leishmaniasis. Central to this endeavour is the recognition of the protein ATG8 as pivotal for the survival and infectivity of the parasitic organism Leishmania major, thereby making it a potential target for therapeutic intervention. Consequently, there is a pressing need to delve into the structural characteristics of ATG8 to facilitate the design of effective drugs. In this study, our efforts centered on the purification of ATG8 from Leishmania major, which enabled novel insights into its structural features through meticulous spectroscopic analysis. We aimed to comprehensively assess the stability and behaviour of ATG8 in the presence of various denaturants, including urea, guanidinium chloride, and SDS-based chemicals. Methodically, our approach included secondary structural analysis utilizing CD spectroscopy, which not only validated but also augmented computationally predicted structures of ATG8 reported in previous investigations. Remarkably, our findings unveiled that the purified ATG8 protein retained its folded conformation, exhibiting the anticipated secondary structure. Moreover, our exploration extended to the influence of lipids on ATG8 stability, yielding intriguing revelations. We uncovered a nuanced perspective suggesting that targeting both the lipid composition of Leishmania major and ATG8 could offer a promising strategy for future therapeutic approaches in combating leishmaniasis. Collectively, our study underscores the importance of understanding the structural intricacies of ATG8 in driving advancements towards the development of targeted therapies against Leishmaniasis, thereby providing a foundation for future investigations in this field.

8.
Adv Protein Chem Struct Biol ; 141: 331-360, 2024.
Article in English | MEDLINE | ID: mdl-38960479

ABSTRACT

We recently identified TMEM230 as a master regulator of the endomembrane system of cells. TMEM230 expression is necessary for promoting motor protein dependent intracellular trafficking of metalloproteins for cellular energy production in mitochondria. TMEM230 is also required for transport and secretion of metalloproteinases for autophagy and phagosome dependent clearance of misfolded proteins, defective RNAs and damaged cells, activities that decline with aging. This suggests that aberrant levels of TMEM230 may contribute to aging and regain of proper levels may have therapeutic applications. The components of the endomembrane system include the Golgi complex, other membrane bound organelles, and secreted vesicles and factors. Secreted cellular components modulate immune response and tissue regeneration in aging. Upregulation of intracellular packaging, trafficking and secretion of endosome components while necessary for tissue homeostasis and normal wound healing, also promote secretion of pro-inflammatory and pro-senescence factors. We recently determined that TMEM230 is co-regulated with trafficked cargo of the endomembrane system, including lysosome factors such as RNASET2. Normal tissue regeneration (in aging), repair (following injury) and aberrant destructive tissue remodeling (in cancer or autoimmunity) likely are regulated by TMEM230 activities of the endomembrane system, mitochondria and autophagosomes. The role of TMEM230 in aging is supported by its ability to regulate the pro-inflammatory secretome and senescence-associated secretory phenotype in tissue cells of patients with advanced age and chronic disease. Identifying secreted factors regulated by TMEM230 in young patients and patients of advanced age will facilitate identification of aging associated targets that aberrantly promote, inhibit or reverse aging. Ex situ culture of patient derived cells for identifying secreted factors in tissue regeneration and aging provides opportunities in developing therapeutic and personalized medicine strategies. Identification and validation of human secreted factors in tissue regeneration requires long-term stabile scaffold culture conditions that are different from those previously reported for cell lines used as cell models for aging. We describe a 3 dimensional (3D) platform utilizing non-biogenic and non-labile poly ε-caprolactone scaffolds that supports maintenance of long-term continuous cultures of human stem cells, in vitro generated 3D organoids and patient derived tissue. Combined with animal component free culture media, non-biogenic scaffolds are suitable for proteomic and glycobiological analyses to identify human factors in aging. Applications of electrospun nanofiber technologies in 3D cell culture allow for ex situ screening and the development of patient personalized therapeutic strategies and predicting their effectiveness in mitigating or promoting aging.


Subject(s)
Aging , Organoids , Humans , Organoids/metabolism , Aging/metabolism , Membrane Proteins/metabolism , Cellular Senescence , Female , Tissue Scaffolds/chemistry , Mammary Glands, Human/metabolism , Mammary Glands, Human/cytology
9.
CNS Neurosci Ther ; 30(7): e14835, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39004783

ABSTRACT

AIMS: Necroptosis is one of programmed death that may aggravate spinal cord injury (SCI). We aimed to investigate the effect and mechanism of exendin-4 (EX-4) on the recovery of motor function and necroptosis after SCI. METHODS: The SD rats with left hemisection in the T10 spinal cord as SCI model were used. The behavior tests were measured within 4 weeks. The effects of EX-4 on necroptosis-associated proteins and autophagy flux were explored. In addition, the SHSY5Y cell model was introduced to explore the direct effect of EX-4 on neurons. The effect of lysosome was explored using mTOR activator and AO staining. RESULTS: EX-4 could improve motor function and limb strength, promote the recovery of autophagy flux, and accelerate the degradation of necroptosis-related protein at 3 d after injury in rats. EX-4 reduced lysosome membrane permeability, promoted the recovery of lysosome function and autophagy flux, and accelerated the degradation of necroptosis-related proteins by inhibiting the phosphorylation level of mTOR in the SHSY5Y cell model. CONCLUSION: Our results demonstrated that EX-4 may improve motor function after SCI via inhibiting mTOR phosphorylation level and accelerating the degradation of necroptosis-related proteins in neurons. Our findings may provide new therapeutic targets for clinical treatment after SCI.


Subject(s)
Autophagy , Exenatide , Necroptosis , Neurons , Rats, Sprague-Dawley , Spinal Cord Injuries , Animals , Autophagy/drug effects , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/pathology , Rats , Neurons/drug effects , Neurons/metabolism , Exenatide/pharmacology , Exenatide/therapeutic use , Necroptosis/drug effects , Humans , Recovery of Function/drug effects , Recovery of Function/physiology , TOR Serine-Threonine Kinases/metabolism , Cell Line, Tumor , Neuroprotective Agents/pharmacology , Male
10.
J Appl Toxicol ; 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39004823

ABSTRACT

The aim of this study was to evaluate the anticancer effects of piceatannol, a natural stilbenoid, on human neuroblastoma cells. In order to accomplish this goal, we performed various cellular assays, including the XTT cell proliferation assay for cell viability, colony formation assay for colony formation capacity, FITC Annexin V and cell death detection kit for apoptosis, matrigel invasion assay for invasion capacity, intracellular reactive oxygen species (ROS) red dye for intracellular ROS levels, TMRM staining method for mitochondrial membrane potential (MMP), and the CYTO-ID autophagy detection kit for autophagy. Furthermore, we analyzed the expression levels of genes associated with apoptosis and autophagy using RT-qPCR. Based on our findings, piceatannol exhibited cytotoxic effects on neuroblastoma cells. Besides, treatment with piceatannol at both 50 and 100 µM concentrations for 72 h decreased colony formation, induced apoptosis and autophagy, inhibited cell invasion, decreased MMP, and increased ROS levels in SH-SY5Y cells. In addition, we observed significant upregulation in the expression levels of CASP8, BECLIN, ATG5, ATG7, and MAPILC3A genes between the two doses. These results suggest that piceatannol enhances autophagic activity and induces caspase-dependent apoptosis, indicating its potential as a therapeutic agent against neuroblastoma cells.

11.
Zool Res ; 45(4): 857-874, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39004863

ABSTRACT

Emerging evidence indicates that sleep deprivation (SD) can lead to Alzheimer's disease (AD)-related pathological changes and cognitive decline. However, the underlying mechanisms remain obscure. In the present study, we identified the existence of a microbiota-gut-brain axis in cognitive deficits resulting from chronic SD and revealed a potential pathway by which gut microbiota affects cognitive functioning in chronic SD. Our findings demonstrated that chronic SD in mice not only led to cognitive decline but also induced gut microbiota dysbiosis, elevated NLRP3 inflammasome expression, GSK-3ß activation, autophagy dysfunction, and tau hyperphosphorylation in the hippocampus. Colonization with the "SD microbiota" replicated the pathological and behavioral abnormalities observed in chronic sleep-deprived mice. Remarkably, both the deletion of NLRP3 in NLRP3 -/- mice and specific knockdown of NLRP3 in the hippocampus restored autophagic flux, suppressed tau hyperphosphorylation, and ameliorated cognitive deficits induced by chronic SD, while GSK-3ß activity was not regulated by the NLRP3 inflammasome in chronic SD. Notably, deletion of NLRP3 reversed NLRP3 inflammasome activation, autophagy deficits, and tau hyperphosphorylation induced by GSK-3ß activation in primary hippocampal neurons, suggesting that GSK-3ß, as a regulator of NLRP3-mediated autophagy dysfunction, plays a significant role in promoting tau hyperphosphorylation. Thus, gut microbiota dysbiosis was identified as a contributor to chronic SD-induced tau pathology via NLRP3-mediated autophagy dysfunction, ultimately leading to cognitive deficits. Overall, these findings highlight GSK-3ß as a regulator of NLRP3-mediated autophagy dysfunction, playing a critical role in promoting tau hyperphosphorylation.


Subject(s)
Autophagy , Dysbiosis , Gastrointestinal Microbiome , NLR Family, Pyrin Domain-Containing 3 Protein , Sleep Deprivation , tau Proteins , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Gastrointestinal Microbiome/physiology , Sleep Deprivation/metabolism , Sleep Deprivation/physiopathology , Sleep Deprivation/complications , Mice , Autophagy/physiology , tau Proteins/metabolism , tau Proteins/genetics , Male , Hippocampus/metabolism , Mice, Inbred C57BL , Mice, Knockout , Inflammasomes/metabolism
12.
Am J Cancer Res ; 14(6): 2695-2713, 2024.
Article in English | MEDLINE | ID: mdl-39005683

ABSTRACT

Pancreatic cancer is one of the gastrointestinal tumors with the lowest survival rate and the worst prognosis. At the time of diagnosis, the majority of patients have missed the opportunity for radical surgical resection and opt for chemotherapy as their primary treatment choice. And drug resistance emerges during the application of the most widely used chemotherapeutic regimens such as modified FOLFIRINOX regimen, gemcitabine monotherapy or 5-Fluorouracil combination therapy, which further reduces the therapeutic efficacy. Therefore, it is urgent to explore better treatment strategies for pancreatic cancer. In recent years, more and more studies have found that natural products have significant anti-pancreatic cancer properties. In this paper, we reviewed the possible mechanisms by which natural products inhibit the proliferation and invasion of pancreatic cancer cells, including the possible mechanisms of targeting the inhibition of the growth and proliferation regulatory pathways of pancreatic cancer cells, inducing apoptosis and autophagy of pancreatic cancer cells, inhibiting the EMT process of pancreatic cancer cells, and inhibiting the angiogenesis of pancreatic cancer. Meanwhile, natural products have also hindered the progress of their basic and clinical research due to the complexity of their composition and the limitation of biological extraction technology. Further exploration of the specific molecular mechanisms of natural products to inhibit the proliferation and invasion of pancreatic cancer cells, optimization of purification and preparation techniques, and enrichment of basic and clinical trials to verify their efficacy and safety may be the future direction of natural products in the field of anti-pancreatic cancer research.

13.
Am J Cancer Res ; 14(6): 2770-2789, 2024.
Article in English | MEDLINE | ID: mdl-39005688

ABSTRACT

Chronic myeloid leukemia (CML) is a common hematopoietic malignancy in adults. Great progress has been made in CML therapy with imatinib. However, resistance to imatinib may occur during treatment. BCR::ABL1 dependent imatinib resistance has been well resolved with more potent tyrosine kinase inhibitors, but BCR::ABL1 independent resistance still remains to be resolved. This study is devoted to find novel targets for BCR::ABL1 independent imatinib-resistant patients. It is reported BCR::ABL1 independent resistance is mainly related to the activation of alternative survival pathway, and mTOR is an important regulator for cell growth especially in tumor cells. Hence, we explored the role of mTOR in BCR::ABL1 independent resistance, the possibility of mTOR to be a therapeutic target for imatinib resistant patients and the related mechanism. We found mTOR was upregulated in imatinib-resistant cells. mTOR inhibition by AZD2014 led to growth inhibition and synergized with imatinib in apoptosis induction in K562/G01. AZD2014 exerted its anti-leukemia effect through enhancing autophagy. mTOR signal pathway is poorly inhibited by imatinib and AZD2014 shows little effect on BCR::ABL1 signal pathway, which indicates that mTOR is involved in imatinib resistance via a BCR::ABL1 independent manner. Taken together, mTOR represents a potential target to overcome BCR::ABL1 independent imatinib resistance.

14.
Autophagy Rep ; 3(1)2024 Dec 31.
Article in English | MEDLINE | ID: mdl-39006309

ABSTRACT

Breast cancer is a heterogeneous disease, with a subpopulation of tumor cells known as breast cancer stem cells (BCSCs) with self-renewal and differentiation abilities that play a critical role in tumor initiation, progression, and therapy resistance. The tumor microenvironment (TME) is a complex area where diverse cancer cells reside creating a highly interactive environment with secreted factors, and the extracellular matrix. Autophagy, a cellular self-digestion process, influences dynamic cellular processes in the tumor TME integrating diverse signals that regulate tumor development and heterogeneity. Autophagy acts as a double-edged sword in the breast TME, with both tumor-promoting and tumor-suppressing roles. Autophagy promotes breast tumorigenesis by regulating tumor cell survival, migration and invasion, metabolic reprogramming, and epithelial-mesenchymal transition (EMT). BCSCs harness autophagy to maintain stemness properties, evade immune surveillance, and resist therapeutic interventions. Conversely, excessive, or dysregulated autophagy may lead to BCSC differentiation or cell death, offering a potential avenue for therapeutic exploration. The molecular mechanisms that regulate autophagy in BCSCs including the mammalian target of rapamycin (mTOR), AMPK, and Beclin-1 signaling pathways may be potential targets for pharmacological intervention in breast cancer. This review provides a comprehensive overview of the relationship between autophagy and BCSCs, highlighting recent advancements in our understanding of their interplay. We also discuss the current state of autophagy-targeting agents and their preclinical and clinical development in BCSCs.

15.
Biol Aujourdhui ; 218(1-2): 41-54, 2024.
Article in French | MEDLINE | ID: mdl-39007776

ABSTRACT

The review is focused on recent drug discovery advances based on targeted protein degradation strategies. This new area of research has exploded leading to the development of potential drugs useful in a large variety of human diseases. They first target disease relevant proteins difficult to counteract with other classical strategies and extend now to aggregates, organelles, nucleic acids or lipidic droplets. These degraders engaged either the ubiquitin-proteasome system for PROTACs and molecular glues (first generation), or the lysosomal system via endosome-lysosome degradation (LYTACs) and autophagy-lysosome degradation (ATTEC, AUTAC, AUTOTAC) (following generations of degraders). PROTACs have expanded from the orthodox heterobifunctional ones to new derivatives such as homo-PROTACs, pro-PROTACs, CLIPTACs, HaloPROTACs, PHOTOTACs, Bac-PROTACs, AbTACs, ARN-PROTACs. The small molecular-weight molecular glues induce the formation of new ternary complexes which implicate the targeted protein and an ubiquitin ligase E3 allowing the protein ubiquinitation followed by its proteasomal degradation. Lysosomal degraders (LYTAC, ATTEC, AUTAC, AUTOTAC) specifically recognize extracellular and membrane proteins or dysfunctional organelles and transport them into lysosomes where they are degraded. They overcome the limitations observed with proteasomal degradations induced by PROTAC and molecular glues and demonstrate their potential to treat human diseases, especially neurodegenerative ones. Pharmaceutical companies are engaged at the world level to develop these new potential drugs targeting cancers, immuno-inflammatory and neurodegenerative diseases as well as a variety of other ones. Efficiency and risks for these novel therapeutic strategies are discussed.


Title: Induction de proximité et dégradation de cibles thérapeutiques par les nouveaux dégradeurs : quels concepts, quels développements, quel futur ? Abstract: La recherche dans le domaine de la dégradation ciblée des protéines s'est considérablement développée conduisant à l'élaboration de nouveaux outils chimiques à visée thérapeutique, les dégradeurs, potentiellement utiles dans diverses pathologies. Une grande variété d'objets à dégrader appartenant à divers compartiments intra- ou extracellulaires (protéines, complexes ou agrégats, organelles, acides nucléiques, gouttelettes lipidiques) a été ciblée à l'aide de ligands déjà existants, d'autres restent à découvrir. Les molécules de première génération, PROTAC et colles moléculaires, utilisent le système ubiquitine-protéasome pour détruire spécifiquement des protéines pathogéniques, certaines considérées jusqu'à présent comme inaccessibles en tant que cibles thérapeutiques. Au cours des cinq dernières années, ont été développés de nouveaux types de PROTAC hétéro-bifonctionnels comme les homo-PROTAC, pro-PROTAC, CLIPTAC, HaloPROTAC, PHOTOTAC, Bac-PROTAC, mais aussi des PROTAC macromoléculaires comme les AbTAC et ARN-PROTAC. Du fait de la grande diversité des substrats dégradés par les lysosomes, de nouveaux dégradeurs impliquant deux voies distinctes ont été ensuite produits : les chimères LYTAC pour la voie endosome-lysosome et les chimères ATTEC, AUTAC et AUTOTAC pour la voie autophagie-lysosome, augmentant ainsi considérablement le champ d'action des dégradeurs. Ces nouvelles molécules reconnaissent spécifiquement des protéines et/ou des organelles et permettent leur transport dans les lysosomes où ils sont dégradés. Les succès obtenus, que ce soit par dégradation protéasomale ou lysosomale pour plusieurs dizaines de dégradeurs (preuves de concepts et études cliniques en cours), expliquent l'intérêt quasi mondial des industries pharmaceutiques pour ces nouvelles molécules. Les challenges posés par leur développement et leur utilisation en clinique sont discutés.


Subject(s)
Lysosomes , Proteolysis , Humans , Proteolysis/drug effects , Lysosomes/metabolism , Animals , Proteins/metabolism , Drug Discovery/trends , Drug Discovery/methods , Proteasome Endopeptidase Complex/metabolism , Proteasome Endopeptidase Complex/physiology , Molecular Targeted Therapy/methods , Molecular Targeted Therapy/trends , Autophagy/physiology
16.
Autophagy ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39007889

ABSTRACT

Professor Richard (Rick) Morimoto is the Bill and Gayle Cook Professor of Biology and Director of the Rice Institute for Biomedical Research at Northwestern University. He has made foundational contributions to our understanding of how cells respond to various stresses, and the role played in those responses by chaperones. Working across a variety of experimental models, from C. elegans to human neuronal cells, he has identified a number of important molecular components that sense and respond to stress, and he has dissected how stress alters cellular and organismal physiology. Together with colleagues, Professor Morimoto has coined the term "proteostasis" to signify the homeostatic control of protein expression and function, and in recent years he has been one of the leaders of a consortium trying to understand proteostasis in healthy and disease states. I took the opportunity to talk with Professor Morimoto about proteostasis in general, the aims of the consortium, and how autophagy is playing an important role in their research effort.

17.
Neurotox Res ; 42(4): 35, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39008165

ABSTRACT

This study elucidates the molecular mechanisms by which FABP3 regulates neuronal apoptosis via mitochondrial autophagy in the context of cerebral ischemia-reperfusion (I/R). Employing a transient mouse model of middle cerebral artery occlusion (MCAO) established using the filament method, brain tissue samples were procured from I/R mice. High-throughput transcriptome sequencing on the Illumina CN500 platform was performed to identify differentially expressed mRNAs. Critical genes were selected by intersecting I/R-related genes from the GeneCards database with the differentially expressed mRNAs. The in vivo mechanism was explored by infecting I/R mice with lentivirus. Brain tissue injury, infarct volume ratio in the ischemic penumbra, neurologic deficits, behavioral abilities, neuronal apoptosis, apoptotic factors, inflammatory factors, and lipid peroxidation markers were assessed using H&E staining, TTC staining, Longa scoring, rotation experiments, immunofluorescence staining, and Western blot. For in vitro validation, an OGD/R model was established using primary neuron cells. Cell viability, apoptosis rate, mitochondrial oxidative stress, morphology, autophagosome formation, membrane potential, LC3 protein levels, and colocalization of autophagosomes and mitochondria were evaluated using MTT assay, LDH release assay, flow cytometry, ROS/MDA/GSH-Px measurement, transmission electron microscopy, MitoTracker staining, JC-1 method, Western blot, and immunofluorescence staining. FABP3 was identified as a critical gene in I/R through integrated transcriptome sequencing and bioinformatics analysis. In vivo experiments revealed that FABP3 silencing mitigated brain tissue damage, reduced infarct volume ratio, improved neurologic deficits, restored behavioral abilities, and attenuated neuronal apoptosis, inflammation, and mitochondrial oxidative stress in I/R mice. In vitro experiments demonstrated that FABP3 silencing restored OGD/R cell viability, reduced neuronal apoptosis, and decreased mitochondrial oxidative stress. Moreover, FABP3 induced mitochondrial autophagy through ROS, which was inhibited by the free radical scavenger NAC. Blocking mitochondrial autophagy with sh-ATG5 lentivirus confirmed that FABP3 induces mitochondrial dysfunction and neuronal apoptosis by activating mitochondrial autophagy. In conclusion, FABP3 activates mitochondrial autophagy through ROS, leading to mitochondrial dysfunction and neuronal apoptosis, thereby promoting cerebral ischemia-reperfusion injury.


Subject(s)
Apoptosis , Autophagy , Fatty Acid Binding Protein 3 , Mitochondria , Neurons , Reperfusion Injury , Animals , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Apoptosis/physiology , Autophagy/physiology , Neurons/metabolism , Neurons/pathology , Mice , Mitochondria/metabolism , Male , Fatty Acid Binding Protein 3/metabolism , Fatty Acid Binding Protein 3/genetics , Mice, Inbred C57BL , Infarction, Middle Cerebral Artery/pathology , Infarction, Middle Cerebral Artery/metabolism , Brain Ischemia/metabolism , Brain Ischemia/pathology , Oxidative Stress/physiology
18.
Poult Sci ; 103(9): 104011, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38991386

ABSTRACT

Exposure to copper (Cu) has been associated with metabolic disorders in animals and humans, but the underlying mechanism remains unclear. One-day-old broiler chickens, numbering a total of 192, were nourished with dietary intakes that contained varying concentrations of Cu, specifically 11, 110, 220, and 330 mg/kg of Cu, for a period extending over a duration of 7 wk. As a result of the study, Cu exposure resulted in vacuolization, fragmentation of mitochondria cristae, and the increase of autophagosomes in hepatocytes. Metabolomics analysis illustrated that Cu caused a total of 59 different metabolites in liver, predominantly associated with the glycerophospholipid metabolic pathway, leading to metabolic disruption. Moreover, high-Cu diet markedly reduced the levels of AMPKα1, p-AMPKα1, mTOR, and p-mTOR and enhanced the expression levels of the autophagy-related factors (Atg5, Dynein, Beclin1, and LC3-II). Overall, Cu exposure caused chicken liver injury and resulted in disturbed metabolic processes and mediated autophagy primarily through the AMPK-mTOR axis.

19.
Autophagy ; : 1-2, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38991544

ABSTRACT

In the budding yeast Saccharomyces cerevisiae, macroautophagy/autophagy can be induced by various types of starvation. It is thought that potential autophagic substrates vary to meet specific nutritional demands under different starvation conditions. In a recent study, Gross et al. found that autophagy induced by phosphate starvation includes many selective aspects. For example, this work identified Pho81 as a regulator of pexophagy under conditions of phosphate starvation. Pho81 senses phosphate metabolites and directly interacts with Atg11 to promote Atg1-mediated Atg11 phosphorylation. This finding provides an example of how modulation of the Atg1/ULK kinase complex can convey specific metabolic information to regulate autophagic substrates.Abbreviation: AKC: Atg1/ULK kinase complex.

20.
Int Immunopharmacol ; 138: 112623, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38991630

ABSTRACT

OBJECTIVE: Bladder cancer (BCa) is a highly lethal urological malignancy characterized by its notable histological heterogeneity. Autophagy has swiftly emerged as a diagnostic and prognostic biomarker in diverse cancer types. Nonetheless, the currently accessible autophagy-related signature specific to BCa remains limited. METHODS: A refined autophagy-related signature was developed through a 10-fold cross-validation framework, incorporating 101 combinations of machine learning algorithms. The performance of this signature in predicting prognosis and response to immunotherapy was thoroughly evaluated, along with an exploration of potential drug targets and compounds. In vitro and in vivo experiments were conducted to verify the regulatory mechanism of hub gene. RESULTS: The autophagy-related prognostic signature (ARPS) has exhibited superior performance in predicting the prognosis of BCa compared to the majority of clinical features and other developed markers. Higher ARPS is associated with poorer prognosis and reduced sensitivity to immunotherapy. Four potential targets and five therapeutic agents were screened for patients in the high-ARPS group. In vitro and vivo experiments have confirmed that FKBP9 promotes the proliferation, invasion, and metastasis of BCa. CONCLUSIONS: Overall, our study developed a valuable tool to optimize risk stratification and decision-making for BCa patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...