Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 611
Filter
1.
Mol Pharm ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39008899

ABSTRACT

Fatty acid binding protein 3 (FABP3) is expressed both in tumor cells and in the tumor vasculature, making it a potential target for medical imaging and therapy. In this study, we aimed to radiolabel a CooP peptide with a free amino and thiol group, and evaluate the radiolabeled product [18F]FNA-N-CooP for imaging FABP3 expression in breast cancer brain metastases by positron emission tomography. [18F]FNA-N-CooP was prepared by highly chemoselective N-acylation and characterized using different chemical approaches. We validated its binding to the target using in vitro tissue section autoradiography and performed stability tests in vitro and in vivo. [18F]FNA-N-CooP was successfully synthesized in 16.8% decay-corrected radiochemical yield with high radiochemical purity (98.5%). It exhibited heterogeneous binding on brain metastasis tissue sections from a patient with breast cancer, with foci of radioactivity binding corresponding to FABP3 positivity. Furthermore, the tracer binding was reduced by 55% in the presence of nonradioactive FNA-N-CooP a blocker, indicating specific tracer binding and that FABP3 is a viable target for [18F]FNA-N-CooP. Favorably, the tracer did not bind to necrotic tumor tissue. However, [18F]FNA-N-CooP displayed limited stability both in vitro in mouse plasma or human serum and in vivo in mouse, therefore further studies are needed to improve the stability [18F]FNA-N-CooP to be used for in vivo applications.

2.
Neuroinformatics ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976151

ABSTRACT

Neurotransmitter receptor densities are relevant for understanding the molecular architecture of brain regions. Quantitative in vitro receptor autoradiography, has been introduced to map neurotransmitter receptor distributions of brain areas. However, it is very time and cost-intensive, which makes it challenging to obtain whole-brain distributions. At the same time, high-throughput light microscopy and 3D reconstructions have enabled high-resolution brain maps capturing measures of cell density across the whole human brain. Aiming to bridge gaps in receptor measurements for building detailed whole-brain atlases, we study the feasibility of predicting realistic neurotransmitter density distributions from cell-body stainings. Specifically, we utilize conditional Generative Adversarial Networks (cGANs) to predict the density distributions of the M2 receptor of acetylcholine and the kainate receptor for glutamate in the macaque monkey's primary visual (V1) and motor cortex (M1), based on light microscopic scans of cell-body stained sections. Our model is trained on corresponding patches from aligned consecutive sections that display cell-body and receptor distributions, ensuring a mapping between the two modalities. Evaluations of our cGANs, both qualitative and quantitative, show their capability to predict receptor densities from cell-body stained sections while maintaining cortical features such as laminar thickness and curvature. Our work underscores the feasibility of cross-modality image translation problems to address data gaps in multi-modal brain atlases.

3.
Biochim Biophys Acta Mol Cell Res ; 1871(7): 119791, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38925478

ABSTRACT

Iron­sulfur (Fe-S) clusters, inorganic cofactors composed of iron and sulfide, participate in numerous essential redox, non-redox, structural, and regulatory biological processes within the cell. Though structurally and functionally diverse, the list of all proteins in an organism capable of binding one or more Fe-S clusters is referred to as its Fe-S proteome. Importantly, the Fe-S proteome is highly dynamic, with continuous cluster synthesis and delivery by complex Fe-S cluster biogenesis pathways. This cluster delivery is balanced out by processes that can result in loss of Fe-S cluster binding, such as redox state changes, iron availability, and oxygen sensitivity. Despite continued expansion of the Fe-S protein catalogue, it remains a challenge to reliably identify novel Fe-S proteins. As such, high-throughput techniques that can report on native Fe-S cluster binding are required to both identify new Fe-S proteins, as well as characterize the in vivo dynamics of Fe-S cluster binding. Due to the recent rapid growth in mass spectrometry, proteomics, and chemical biology, there has been a host of techniques developed that are applicable to the study of native Fe-S proteins. This review will detail both the current understanding of the Fe-S proteome and Fe-S cluster biology as well as describing state-of-the-art proteomic strategies for the study of Fe-S clusters within the context of a native proteome.

4.
Neurosci Lett ; 836: 137862, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38851448

ABSTRACT

The endocannabinoid system has been shown to be a powerful mediator of anxiety, learning and memory, as well as nociception behaviors. Exogenous cannabinoids like delta-9-tetrahydrocannabinol mimic the naturally occurring endogenous cannabinoids found in the mammalian central and peripheral nervous system. The hydrophobic properties of endocannabinoids mean that these psychoactive compounds require help with cellular transport. A family of lipid intracellular carriers called fatty acid-binding proteins (FABPs) can bind to endocannabinoids. Pharmacological inhibition or genetic deletion of FABP subtypes 5 and 7 elevates whole-brain anandamide (AEA) levels, a type of endocannabinoid. This study examined locomotor behavior, anxiety-like behavior, and social behavior in FABP5-/- and FABP7-/- mice. Furthermore, we measured N-methyl-D-aspartate (NMDA) receptor levels in the brain to help identify potential underlying mechanisms related to the behavioral findings. Results showed that both male and female FABP5-/- mice exhibited significantly lower activity when compared with both FABP5/7+/+ (control) and FABP7-/-. For social behavior, male, but not female, FABP5-/- mice spent more time interacting with novel mice compared with controls (FABP5/7+/+) and FABP7-/- mice. No significant difference was found for anxiety-like behavior. Results from the NMDA autoradiography revealed [3H] MK-801 binding to be significantly increased within sub-regions of the striatum in FABP7-/- compared with control. In summary, these results show that FABP5 deficiency plays a significant role in locomotion activity, exploratory behavior, as well as social interaction. Furthermore, FABP7 deficiency is shown to play an important role in NMDA receptor expression, while FABP5 does not.

5.
Front Endocrinol (Lausanne) ; 15: 1390203, 2024.
Article in English | MEDLINE | ID: mdl-38803478

ABSTRACT

Vasopressin and oxytocin are well known and evolutionarily ancient modulators of social behavior. The distribution and relative densities of vasopressin and oxytocin receptors are known to modulate the sensitivity to these signaling molecules. Comparative work is needed to determine which neural networks have been conserved and modified over evolutionary time, and which social behaviors are commonly modulated by nonapeptide signaling. To this end, we used receptor autoradiography to determine the distribution of vasopressin 1a and oxytocin receptors in the Southern giant pouched rat (Cricetomys ansorgei) brain, and to assess the relative densities of these receptors in specific brain regions. We then compared the relative receptor pattern to 23 other species of rodents using a multivariate ANOVA. Pouched rat receptor patterns were strikingly similar to hamsters and voles overall, despite the variation in social organization among species. Uniquely, the pouched rat had dense vasopressin 1a receptor binding in the caudate-putamen (i.e., striatum), an area that might impact affiliative behavior in this species. In contrast, the pouched rat had relatively little oxytocin receptor binding in much of the anterior forebrain. Notably, however, oxytocin receptor binding demonstrated extremely dense binding in the bed nucleus of the stria terminalis, which is associated with the modulation of several social behaviors and a central hub of the social decision-making network. Examination of the nonapeptide system has the potential to reveal insights into species-specific behaviors and general themes in the modulation of social behavior.


Subject(s)
Brain , Receptors, Oxytocin , Receptors, Vasopressin , Animals , Receptors, Oxytocin/metabolism , Receptors, Vasopressin/metabolism , Male , Brain/metabolism , Rodentia/metabolism , Rats , Species Specificity , Autoradiography , Arvicolinae/metabolism , Oxytocin/metabolism , Cricetinae , Social Behavior , Female
6.
Neuropharmacology ; 256: 110018, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38810925

ABSTRACT

Diets high in sucrose and fat are becoming more prevalent the world over, accompanied by a raised prevalence of cardiovascular diseases, cancers, diabetes, obesity, and metabolic syndrome. Clinical studies link unhealthy diets with the development of mental health disorders, particularly depression. Here, we investigate the effects of 12 days of sucrose consumption administered as 2 L of 25% sucrose solution daily for 12 days in Göttingen minipigs on the function of brain receptors involved in reward and motivation, regulating feeding, and pre- and post-synaptic mechanisms. Through quantitative autoradiography of cryostat sections containing limbic brain regions, we investigated the effects of sucrose restricted to a 1-h period each morning, on the specific binding of [3H]raclopride on dopamine D2/3 receptors, [3H]UCB-J at synaptic vesicle glycoprotein 2A (SV2A), [3H]MPEPγ at metabotropic glutamate receptor subtype 5 (mGluR5) and [3H]SR141716A at the cannabinoid receptor 1 (CB1). Compared to control diet animals, the sucrose group showed significantly lower [3H]UCB-J and [3H]MPEPγ binding in the prefrontal cortex. The sucrose-consuming minipigs showed higher hippocampal CB1 binding, but unaltered dopamine D2/3 binding compared to the control group. We found that the sucrose diet reduced the synaptic density marker while increasing CB1 binding in limbic brain structures, which may subserve maladaptive changes in appetite regulation and feeding. Further studies of the effects of diets and lifestyle habits on brain neuroreceptor and synaptic density markers are warranted.


Subject(s)
Sucrose , Swine, Miniature , Animals , Swine , Sucrose/administration & dosage , Male , Receptor, Metabotropic Glutamate 5/metabolism , Receptors, Cannabinoid/metabolism , Synapses/metabolism , Synapses/drug effects , Receptor, Cannabinoid, CB1/metabolism , Receptors, Dopamine D2/metabolism , Brain/metabolism , Brain/drug effects , Female , Receptors, Dopamine D3/metabolism
7.
Cancers (Basel) ; 16(10)2024 May 20.
Article in English | MEDLINE | ID: mdl-38792017

ABSTRACT

This work describes a comprehensive study of the vascular tree and perfusion characteristics of normal kidney and renal cell carcinoma. Methods: Nephrectomy specimens were perfused ex-vivo, and the regional blood flow was determined by infusion of radioactive microspheres. The vascular architecture was characterized by micronized barium sulphate infusion. Kidneys were subsequently sagitally sectioned, and autoradiograms were obtained to show the perfusate flow in relation to adjacent contact X-ray angiograms. Vascular resistance in defined tissue compartments was quantified, and finally, the tumor vasculature was 3D reconstructed via the micro-CT technique. Results show that the vascular tree of the kidney could be distinctly defined, and autoradiograms disclosed a high cortical flow. The peripheral resistance unit of the whole perfused specimen was 0.78 ± 0.40 (n = 26), while that of the renal cortex was 0.17 ± 0.07 (n = 15 with 114 samples). Micro-CT images from both cortex and medulla defined the vascular architecture. Angiograms from the renal tumors demonstrated a significant vascular heterogeneity within and between different tumors. A dense and irregular capillary network characterized peripheral tumor areas, whereas central parts of the tumors were less vascularized. Despite the dense capillarity, low perfusion through vessels with a diameter below 15 µm was seen on the autoradiograms. We conclude that micronized barium sulphate infusion may be used to demonstrate the vascular architecture in a complex organ. The vascular resistance was low, with little variation in the cortex of the normal kidney. Tumor tissue showed a considerable vascular structural heterogeneity with low perfusion through the peripheral nutritive capillaries and very poor perfusion of the central tumor, indicating intratumoral pressure exceeding the perfusion pressure. The merits and shortcomings of the various techniques used are discussed.

8.
J Chem Neuroanat ; 138: 102422, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38657828

ABSTRACT

L-3,4-dihydroxyphenylalanine (L-DOPA) is the treatment of choice for Parkinson's disease (PD) motor symptoms, but its chronic use is hindered by complications such as dyskinesia. Pre-clinical studies discovered that activation of metabotropic glutamate type 2 and 3 (mGlu2/3) receptors alleviates L-DOPA-induced dyskinesia. To gain mechanistic insight into the anti-dyskinetic activity of mGlu2/3 activation, we performed autoradiographic binding with [3H]-LY-341,495 in brain sections from L-DOPA-treated 6-hydroxydopamine (6-OHDA)-lesioned rats that developed mild or severe dyskinesia, as well as L-DOPA-untreated 6-OHDA-lesioned and sham-lesioned animals. In the ipsilateral hemisphere, mildly dyskinetic 6-OHDA-lesioned rats showed a decrease in [3H]-LY-341,495 binding in the entopeduncular nucleus (EPN, 30 % vs sham-lesioned rats, P<0.05), globus pallidus (GP, 28 % vs sham-lesioned rats, P<0.05; 23 % vs L-DOPA-untreated 6-OHDA-lesioned rats, P<0.001), and primary motor cortex (49 % vs sham-lesioned rats, P<0.05; 45 % vs L-DOPA-untreated 6-OHDA-lesioned rats, P<0.001). Severely dyskinetic 6-OHDA-lesioned rats exhibited an increase in binding in the primary motor cortex (43 % vs mildly dyskinetic 6-OHDA-lesioned rats, P<0.05). In the contralateral hemisphere, mildly dyskinetic 6-OHDA-lesioned rats harboured a decrease in binding in the EPN (30 % vs sham-lesioned rats; 24 % vs L-DOPA-untreated 6-OHDA-lesioned rats, both P<0.05), GP (34 % vs sham-lesioned rats, P<0.05; 23 % vs L-DOPA-untreated 6-OHDA-lesioned rats, P<0.001), and primary motor cortex (50 % vs sham-lesioned rats; 44 % vs L-DOPA-untreated 6-OHDA-lesioned rats, both P<0.05). Severely dyskinetic 6-OHDA-lesioned rats presented a decrease in binding in the GP (30 % vs sham-lesioned rats; 19 % vs L-DOPA-untreated 6-OHDA-lesioned rats, both P<0.05). Abnormal involuntary movements scores of 6-OHDA-lesioned animals were positively correlated with [3H]-LY-341,495 binding in the ipsilateral striatum, ipsilateral EPN, ipsilateral primary motor cortex and contralateral primary motor cortex (all P<0.05). These results suggest that alterations in mGlu2/3 receptor levels may be part of an endogenous compensatory mechanism to alleviate dyskinesia.


Subject(s)
Autoradiography , Brain , Levodopa , Oxidopamine , Receptors, Metabotropic Glutamate , Animals , Rats , Receptors, Metabotropic Glutamate/metabolism , Brain/metabolism , Brain/drug effects , Male , Oxidopamine/toxicity , Parkinsonian Disorders/metabolism , Parkinsonian Disorders/chemically induced , Rats, Sprague-Dawley , Dyskinesia, Drug-Induced/metabolism
9.
Front Neuroimaging ; 3: 1358221, 2024.
Article in English | MEDLINE | ID: mdl-38601007

ABSTRACT

The alpha7 nicotinic acetylcholine receptor (α7-nAChR) has has long been considered a promising therapeutic target for addressing cognitive impairments associated with a spectrum of neurological and psychiatric disorders, including Alzheimer's disease and schizophrenia. However, despite this potential, clinical trials employing α7-nAChR (partial) agonists such as TC-5619 and encenicline (EVP-6124) have fallen short in demonstrating sufficient efficacy. We here investigate the target engagement of TC-5619 and encenicline in the pig brain by use of the α7-nAChR radioligand 11C-NS14492 to characterize binding both with in vitro autoradiography and in vivo occupancy using positron emission tomography (PET). In vitro autoradiography demonstrates significant concentration-dependent binding of 11C-NS14492, and both TC-5619 and encenicline can block this binding. Of particular significance, our in vivo investigations demonstrate that TC-5619 achieves substantial α7-nAChR occupancy, effectively blocking approximately 40% of α7-nAChR binding, whereas encenicline exhibits more limited α7-nAChR occupancy. This study underscores the importance of preclinical PET imaging and target engagement analysis in informing clinical trial strategies, including dosing decisions.

10.
Front Neurosci ; 18: 1380009, 2024.
Article in English | MEDLINE | ID: mdl-38655111

ABSTRACT

Introduction: Dopamine D3 receptor (D3R) ligands have been studied for the possible treatment of neurological and neuropsychiatric disorders. However, selective D3R radioligands for in vitro binding studies have been challenging to identify due to the high structural similarity between the D2R and D3R. In a prior study, we reported a new conformationally-flexible benzamide scaffold having a high affinity for D3R and excellent selectivity vs. D2R. In the current study, we characterized the in vitro binding properties of a new radioiodinated ligand, [125I]HY-3-24. Methods: In vitro binding studies were conducted in cell lines expressing D3 receptors, rat striatal homogenates, and rat and non-human primate (NHP) brain tissues to measure regional brain distribution of this radioligand. Results: HY-3-24 showed high potency at D3R (Ki = 0.67 ± 0.11 nM, IC50 = 1.5 ± 0.58 nM) compared to other D2-like dopamine receptor subtypes (D2R Ki = 86.7 ± 11.9 nM and D4R Ki > 1,000). The Kd (0.34 ± 0.22 nM) and Bmax (38.91 ± 2.39 fmol/mg) values of [125I]HY-3-24 were determined. In vitro binding studies in rat striatal homogenates using selective D2R and D3R antagonists confirmed the D3R selectivity of [125I]HY-3-24. Autoradiography results demonstrated that [125I]HY-3-24 specifically binds to D3Rs in the nucleus accumbens, islands of Calleja, and caudate putamen in rat and NHP brain sections. Conclusion: These results suggest that [125I]HY-3-24 appears to be a novel radioligand that exhibits high affinity binding at D3R, with low binding to other D2-like dopamine receptors. It is anticipated that [125I]HY-3-24 can be used as the specific D3R radioligand.

11.
Neurol Int ; 16(2): 419-431, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38668128

ABSTRACT

Therapeutic antibodies for reducing Aß plaque load in Alzheimer's disease (AD) is currently making rapid progress. The diagnostic imaging of Aß plaque load in AD has been underway and is now used in clinical studies. Here, we report our preliminary findings on imaging a therapeutic antibody, Lecanemab, in a postmortem AD brain anterior cingulate. [125I]5-iodo-3-pyridinecarboxamido-Lecanemab ([125I]IPC-Lecanemab) was prepared by coupling N-succinimidyl-5-([125I]iodo)-3-pyridinecarboxylate with Lecanemab in modest yields. The distinct binding of [125I]IPC-Lecanemab to Aß-rich regions in postmortem human AD brains was higher in grey matter (GM) containing Aß plaques compared to white matter (WM) (GM/WM was 1.6). Anti-Aß immunostaining was correlated with [125I]IPC-Lecanemab regional binding in the postmortem AD human brains. [125I]IPC-Lecanemab binding was consistent with the binding of Aß small molecules, [18F]flotaza and [125I]IBETA, in the same subjects. [18F]Flotaza and [125I]IBETA, however, exhibited significantly higher GM/WM ratios (>20) compared to [125I]IPC-Lecanemab. Our results suggest that radiolabeled [125I]IPC-Lecanemab retains the ability to bind to Aß in human AD and may therefore be useful as a PET imaging radiotracer when labeled as [124I]IPC-Lecanemab. The ability to directly visualize in vivo a promising therapeutic antibody for AD may be useful in treatment planning and dosing and could be complimentary to small-molecule diagnostic imaging to assess outcomes of therapeutic interventions.

12.
Free Radic Biol Med ; 218: 57-67, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38574976

ABSTRACT

Understanding the tumor redox status is important for efficient cancer treatment. Here, we noninvasively detected changes in the redox environment of tumors before and after cancer treatment in the same individuals using a novel compact and portable electron paramagnetic resonance imaging (EPRI) device and compared the results with glycolytic information obtained through autoradiography using 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG). Human colon cancer HCT116 xenografts were used in the mice. We used 3-carbamoyl-PROXYL (3CP) as a paramagnetic and redox status probe for the EPRI of tumors. The first EPRI was followed by the intraperitoneal administration of buthionine sulfoximine (BSO), an inhibitor of glutathione synthesis, or X-ray irradiation of the tumor. A second EPRI was performed on the following day. Autoradiography was performed after the second EPRI. After imaging, the tumor sections were evaluated by histological analysis and the amount of reducing substances in the tumor was measured. BSO treatment and X-ray irradiation significantly decreased the rate of 3CP reduction in tumors. Redox maps of tumors obtained from EPRI can be compared with tissue sections of approximately the same cross section. BSO treatment reduced glutathione levels in tumors, whereas X-ray irradiation did not alter the levels of any of the reducing substances. Comparison of the redox map with the autoradiography of [18F]FDG revealed that regions with high reducing power in the tumor were active in glucose metabolism; however, this correlation disappeared after X-ray irradiation. These results suggest that the novel compact and portable EPRI device is suitable for multimodal imaging, which can be used to study tumor redox status and therapeutic efficacy in cancer, and for combined analysis with other imaging modalities.


Subject(s)
Feasibility Studies , Fluorodeoxyglucose F18 , Glucose , Multimodal Imaging , Oxidation-Reduction , Animals , Humans , Mice , Fluorodeoxyglucose F18/metabolism , Glucose/metabolism , Multimodal Imaging/methods , Electron Spin Resonance Spectroscopy/methods , Buthionine Sulfoximine/pharmacology , Autoradiography , HCT116 Cells , Colonic Neoplasms/metabolism , Colonic Neoplasms/diagnostic imaging , Colonic Neoplasms/pathology , Radiopharmaceuticals/metabolism , Positron-Emission Tomography/methods , Xenograft Model Antitumor Assays , Glutathione/metabolism , Mice, Nude
13.
J Alzheimers Dis ; 98(4): 1515-1532, 2024.
Article in English | MEDLINE | ID: mdl-38578893

ABSTRACT

Background: Although sporadic Alzheimer's disease (AD) is a neurodegenerative disorder of unknown etiology, familial AD is associated with specific gene mutations. A commonality between these forms of AD is that both display multiple pathogenic events including cholinergic and lipid dysregulation. Objective: We aimed to identify the relevant lipids and the activity of their related receptors in the frontal cortex and correlating them with cognition during the progression of AD. Methods: MALDI-mass spectrometry imaging (MSI) and functional autoradiography was used to evaluate the distribution of phospholipids/sphingolipids and the activity of cannabinoid 1 (CB1), sphingosine 1-phosphate 1 (S1P1), and muscarinic M2/M4 receptors in the frontal cortex (FC) of people that come to autopsy with premortem clinical diagnosis of AD, mild cognitive impairment (MCI), and no cognitive impairment (NCI). Results: MALDI-MSI revealed an increase in myelin-related lipids, such as diacylglycerol (DG) 36:1, DG 38:5, and phosphatidic acid (PA) 40:6 in the white matter (WM) in MCI compared to NCI, and a downregulation of WM phosphatidylinositol (PI) 38:4 and PI 38:5 levels in AD compared to NCI. Elevated levels of phosphatidylcholine (PC) 32:1, PC 34:0, and sphingomyelin 38:1 were observed in discrete lipid accumulations in the FC supragranular layers during disease progression. Muscarinic M2/M4 receptor activation in layers V-VI decreased in AD compared to MCI. CB1 receptor activity was upregulated in layers V-VI, while S1P1 was downregulated within WM in AD relative to NCI. Conclusions: FC WM lipidomic alterations are associated with myelin dyshomeostasis in prodromal AD, suggesting WM lipid maintenance as a potential therapeutic target for dementia.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/pathology , Cognitive Dysfunction/pathology , Receptor, Muscarinic M4 , Frontal Lobe/diagnostic imaging , Frontal Lobe/pathology , Cholinergic Agents , Lipids
14.
In Vivo ; 38(3): 1064-1073, 2024.
Article in English | MEDLINE | ID: mdl-38688644

ABSTRACT

BACKGROUND/AIM: Since acute myeloid leukemias still represent the most aggressive type of adult acute leukemias, the profound understanding of disease pathology is of paramount importance for diagnostic and therapeutic purposes. Hence, this study aimed to explore the real-time disease fate with the establishment of an experimental myelomonoblastic leukemia (My1/De) rat model using preclinical positron emission tomography (PET) and whole-body autoradiography. MATERIALS AND METHODS: In vitro [18F]F-FDG uptake studies were performed to compare the tracer accumulation in the newly cultured My1/De tumor cell line (blasts) with that in healthy control and My1/De bone marrow suspensions. Post transplantation of My1/De cells under the left renal capsule of Long-Evans rats, primary My1/De tumorigenesis, and metastatic propagation were investigated using [18F]F-FDG PET imaging, whole-body autoradiography and phosphorimage analyses. To assess the organ uptake profile of the tumor-carrying animals we accomplished ex vivo biodistribution studies. RESULTS: The tracer accumulation in the My1/De culture cells exceeded that of both the tumorous and the healthy bone marrow suspensions (p<0.01). Based on in vivo imaging, the subrenally transplanted My1/De cells resulted in the development of leukemia in the abdominal organs, and metastasized to the mesenterial and thoracic parathymic lymph nodes (PTLNs). The lymphatic spread of metastasis was further confirmed by the significantly higher %ID/g values of the metastatic PTLNs (4.25±0.28) compared to the control (0.94±0.34). Cytochemical staining of the peripheral blood, autopsy findings, and wright-Giemsa-stained post-mortem histological sections proved the leukemic involvement of the assessed tissues/organs. CONCLUSION: The currently established My1/De model appears to be well-suited for further leukemia-related therapeutic and diagnostic investigations.


Subject(s)
Autoradiography , Disease Models, Animal , Fluorodeoxyglucose F18 , Positron-Emission Tomography , Animals , Rats , Cell Line, Tumor , Tissue Distribution , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/diagnostic imaging , Radiopharmaceuticals , Male , Humans
15.
Eur J Med Chem ; 271: 116380, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38615410

ABSTRACT

Imaging of the A1 adenosine receptor (A1R) by positron emission tomography (PET) with 8-cyclopentyl-3-(3-[18F]fluoropropyl)-1-propyl-xanthine ([18F]CPFPX) has been widely used in preclinical and clinical studies. However, this radioligand suffers from rapid peripheral metabolism and subsequent accumulation of radiometabolites in the vascular compartment. In the present work, we prepared four derivatives of CPFPX by replacement of the cyclopentyl group with norbornane moieties. These derivatives were evaluated by competition binding studies, microsomal stability assays and LC-MS analysis of microsomal metabolites. In addition, the 18F-labeled isotopologue of 8-(1-norbornyl)-3-(3-fluoropropyl)-1-propylxanthine (1-NBX) as the most promising candidate was prepared by radiofluorination of the corresponding tosylate precursor and the resulting radioligand ([18F]1-NBX) was evaluated by permeability assays with Caco-2 cells and in vitro autoradiography in rat brain slices. Our results demonstrate that 1-NBX exhibits significantly improved A1R affinity and selectivity when compared to CPFPX and that it does not give rise to lipophilic metabolites expected to cross the blood-brain-barrier in microsomal assays. Furthermore, [18F]1-NBX showed a high passive permeability (Pc = 6.9 ± 2.9 × 10-5 cm/s) and in vitro autoradiography with this radioligand resulted in a distribution pattern matching A1R expression in the brain. Moreover, a low degree of non-specific binding (5%) was observed. Taken together, these findings identify [18F]1-NBX as a promising candidate for further preclinical evaluation as potential PET tracer for A1R imaging.


Subject(s)
Positron-Emission Tomography , Receptor, Adenosine A1 , Xanthines , Receptor, Adenosine A1/metabolism , Humans , Animals , Xanthines/chemistry , Xanthines/chemical synthesis , Rats , Caco-2 Cells , Male , Molecular Structure , Structure-Activity Relationship , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/chemical synthesis , Dose-Response Relationship, Drug , Fluorine Radioisotopes/chemistry
16.
Am J Nucl Med Mol Imaging ; 14(1): 78-81, 2024.
Article in English | MEDLINE | ID: mdl-38500741

ABSTRACT

In the current issue of American Journal of Nuclear Medicine and Molecular Imaging, Vasdev et al. presented a work entitled "In Vitro Evaluation of PET Radiotracers for Imaging Synaptic Density, the Acetylcholine Transporter, AMPA-tarp-γ8 and Muscarinic M4 receptors in Alzheimer's disease". In which, in vitro autoradiography studies using radioligands were employed as a valuable tool to gain more insights for potential clinical translation. In this invited perspective, we would like to briefly introduce the current state of AD diagnosis, especially PET imaging on synapse, and highlight the advances of PET imaging in pre-clinic and clinic that might assist on precise therapy in the future.

17.
Am J Nucl Med Mol Imaging ; 14(1): 1-12, 2024.
Article in English | MEDLINE | ID: mdl-38500748

ABSTRACT

Several therapeutics and biomarkers that target Alzheimer's disease (AD) are under development. Our clinical positron emission tomography (PET) research programs are interested in six radiopharmaceuticals to image patients with AD and related dementias, specifically [11C]UCB-J and [18F]SynVesT-1 for synaptic vesicle glycoprotein 2A as a marker of synaptic density, two vesicular acetylcholine transporter PET radiotracers: [18F]FEOBV and [18F]VAT, as well as the transmembrane AMPA receptor regulatory protein (TARP)-γ8 tracer, [18F]JNJ-64511070, and the muscarinic acetylcholine receptor (mAChR) M4 tracer [11C]MK-6884. The goal of this study was to compare all six radiotracers (labeled with tritium or 18F) by measuring their density variability in pathologically diagnosed cases of AD, mild cognitive impairment (MCI) and normal healthy volunteer (NHV) human brains, using thin-section in vitro autoradiography (ARG). Region of interest analysis was used to quantify radioligand binding density and determine whether the radioligands provide a signal-to-noise ratio optimal for showing changes in binding. Our preliminary study confirmed that all six radiotracers show specific binding in MCI and AD. An expected decrease in their respective target density in human AD hippocampus tissues compared to NHV was observed with [3H]UCB-J, [3H]SynVesT-1, [3H]JNJ-64511070, and [3H]MK-6884. This preliminary study will be used to guide human PET imaging of SV2A, TARP-γ8 and the mAChR M4 subtype for imaging in AD and related dementias.

18.
Nucl Med Biol ; 130-131: 108891, 2024.
Article in English | MEDLINE | ID: mdl-38458074

ABSTRACT

Alzheimer's disease (AD) and non-AD tauopathies such as chronic traumatic encephalopathy (CTE), progressive supranuclear palsy (PSP), and corticobasal degeneration (CBD) are characterized by the abnormal aggregation of three-repeat (3R) and/or four-repeat (4R) tau isoforms. Several tau-PET tracers have been applied for human imaging of AD and non-AD tauopathies including [18F]PI-2620. Our objective is to evaluate [3H]PI-2620 and two promising structural derivatives, [3H]PI-2014 and [3H]F-4, using in vitro saturation assays and competitive binding assays against new chemical entities based on this scaffold in human AD tissues for comparison with PSP, CBD and CTE tissues. Thin section autoradiography was employed to assess specific binding and distribution of [3H]PI-2620 and [3H]F-4 in fresh-frozen human post-mortem AD, PSP, CBD and CTE tissues. Immunohistochemistry was performed for phospho-tau (AT8) and 4R-tau (RD4). Homogenate filtration binding assays were performed for saturation analysis and competitive binding studies against [3H]PI-2620. All compounds bound with high affinity in AD tissue. In PSP tissue [3H]PI-2620 demonstrated the highest affinity (5.3 nM) and in CBD tissue [3H]F-4 bound with the highest affinity (9.4 nM). Over 40 fluorinated derivatives based on PI-2620 and F-4 were screened in AD and PSP tissue. Notably, compound 2 was the most potent derivative in PSP tissue (Ki = 7.3 nM). By autoradiography, [3H]PI-2620 and [3H]F-4 demonstrated positive signals similar in intensity in AD, PSP and CTE tissues that were displaced by homologous blockade. Binding of both radiotracers aligned with immunostaining for 4R-tau. This work demonstrates that [3H]PI-2620 and [3H]F-4 show promise for imaging 4R-tau aggregates in non-AD tauopathies. PI-2620 continues to serve as a structural scaffold for PET radiotracers with higher affinity for non-AD tau over AD tau.


Subject(s)
Alzheimer Disease , Nitroimidazoles , Pyridines , Tauopathies , Humans , tau Proteins/metabolism , Tauopathies/diagnostic imaging , Tauopathies/metabolism , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Brain/metabolism
19.
Exp Brain Res ; 242(5): 1203-1214, 2024 May.
Article in English | MEDLINE | ID: mdl-38526743

ABSTRACT

L-3,4-dihydroxyphenylalanine (L-DOPA) is the main treatment for Parkinson's disease (PD) but with long term administration, motor complications such as dyskinesia are induced. Glycine transporter 1 (GlyT1) inhibition was shown to produce an anti-dyskinetic effect in parkinsonian rats and primates, coupled with an improvement in the anti-parkinsonian action of L-DOPA. The expression of GlyT1 in the brain in the dyskinetic state remains to be investigated. Here, we quantified the levels of GlyT1 across different brain regions using [3H]-NFPS in the presence of Org-25,935. Brain sections were chosen from sham-lesioned rats, L-DOPA-naïve 6-hydroxydopamine (6-OHDA)-lesioned rats and 6-OHDA-lesioned rats exhibiting mild or severe abnormal involuntary movements (AIMs). [3H]-NFPS binding decreased in the ipsilateral and contralateral thalamus, by 28% and 41%, in 6-OHDA-lesioned rats with severe AIMs compared to sham-lesioned animals (P < 0.01 and 0.001). [3H]-NFPS binding increased by 21% in the ipsilateral substantia nigra of 6-OHDA-lesioned rats with severe AIMs compared to 6-OHDA-lesioned rats with mild AIMs (P < 0.05). [3H]-NFPS binding was lower by 19% in the contralateral primary motor cortex and by 20% in the contralateral subthalamic nucleus of 6-OHDA-lesioned rats with mild AIMs animals compared to rats with severe AIMs (both P < 0.05). The severity of AIMs scores positively correlated with [3H]-NFPS binding in the ipsilateral substantia nigra (P < 0.05), ipsilateral entopeduncular nucleus (P < 0.05) and contralateral primary motor cortex (P < 0.05). These data provide an anatomical basis to explain the efficacy of GlyT1 inhibitors in dyskinesia in PD.


Subject(s)
Brain , Glycine Plasma Membrane Transport Proteins , Oxidopamine , Sarcosine/analogs & derivatives , Animals , Glycine Plasma Membrane Transport Proteins/metabolism , Glycine Plasma Membrane Transport Proteins/antagonists & inhibitors , Rats , Male , Oxidopamine/pharmacology , Brain/metabolism , Brain/drug effects , Parkinsonian Disorders/metabolism , Rats, Sprague-Dawley , Disease Models, Animal , Tritium , Functional Laterality/physiology
20.
Chembiochem ; 25(7): e202300819, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38441502

ABSTRACT

Monoacylglycerol lipase (MAGL) plays a crucial role in the degradation of 2-arachidonoylglycerol (2-AG), one of the major endocannabinoids in the brain. Inhibiting MAGL could lead to increased levels of 2-AG, which showed beneficial effects on pain management, anxiety, inflammation, and neuroprotection. In the current study, we report the characterization of an enantiomerically pure (R)-[11C]YH132 as a novel MAGL PET tracer. It demonstrates an improved pharmacokinetic profile compared to its racemate. High in vitro MAGL specificity of (R)-[11C]YH132 was confirmed by autoradiography studies using mouse and rat brain sections. In vivo, (R)-[11C]YH132 displayed a high brain penetration, and high specificity and selectivity toward MAGL by dynamic PET imaging using MAGL knockout and wild-type mice. Pretreatment with a MAGL drug candidate revealed a dose-dependent reduction of (R)-[11C]YH132 accumulation in WT mouse brains. This result validates its utility as a PET probe to assist drug development. Moreover, its potential application in neurodegenerative diseases was explored by in vitro autoradiography using brain sections from animal models of Alzheimer's disease and Parkinson's disease.


Subject(s)
Monoacylglycerol Lipases , Neurodegenerative Diseases , Rats , Mice , Animals , Monoacylglycerol Lipases/metabolism , Neurodegenerative Diseases/diagnostic imaging , Neurodegenerative Diseases/drug therapy , Positron-Emission Tomography/methods , Inflammation , Drug Development , Enzyme Inhibitors/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...