Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 305
Filter
1.
Toxicon ; 245: 107780, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38821321

ABSTRACT

We reported thirteen cases of bilateral stringhalt associated with Hypochaeris radicata that occurred in horses in Uruguay during a severe drought in the summer of 2023. All horses were affected chronically and progressively by bilateral hyperflexion of hindlimbs. In two severely affected horses, the main histological lesions included neuronal chromatolysis and axonal spheroids in the ventral gray horn in the lumbar and sacral spinal cord and axonal degeneration and digestion chambers in ventral roots fibers and long peripheral nerves. We suggest that in addition to injuries to peripheral nerves, lesions in the spinal cord play an important role in the clinical signs of stringhalt in horses.


Subject(s)
Horse Diseases , Animals , Horses , Uruguay , Spinal Cord/pathology , Male , Female
2.
Brain ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38538210

ABSTRACT

Biallelic SORD mutations cause one of the most frequent forms of recessive hereditary neuropathy, estimated to affect approximately 10,000 patients in North America and Europe alone. Pathogenic SORD loss-of-function changes in the encoded enzyme sorbitol dehydrogenase result in abnormally high sorbitol levels in cells and serum. How sorbitol accumulation leads to peripheral neuropathy remains to be elucidated. A reproducible animal model for SORD neuropathy is essential to illuminate the pathogenesis of SORD deficiency and for preclinical studies of potential therapies. Therefore, we have generated a Sord knockout (KO), Sord-/-, Sprague Dawley rat, to model the human disease and to investigate the pathophysiology underlying SORD deficiency. We have characterized the phenotype in these rats with a battery of behavioral tests as well as biochemical, physiological, and comprehensive histological examinations. Sord-/- rats had remarkably increased levels of sorbitol in serum, cerebrospinal fluid (CSF), and peripheral nerve. Moreover, serum from Sord-/- rats contained significantly increased levels of neurofilament light chain, NfL, an established biomarker for axonal degeneration. Motor performance significantly declined in Sord-/- animals starting at ∼7 months of age. Gait analysis evaluated with video motion tracking confirmed abnormal gait patterns in the hindlimbs. Motor nerve conduction velocities of the tibial nerves were slowed. Light and electron microscopy of the peripheral nervous system revealed degenerating myelinated axons, de- and remyelinated axons, and a likely pathognomonic finding - enlarged "ballooned" myelin sheaths. These findings mainly affected myelinated motor axons; myelinated sensory axons were largely spared. In summary, Sord-/- rats develop a motor-predominant neuropathy that closely resembles the human phenotype. Our studies revealed novel significant aspects of SORD deficiency, and this model will lead to an improved understanding of the pathophysiology and the therapeutic options for SORD neuropathy.

3.
Acta Neuropathol Commun ; 12(1): 23, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38331947

ABSTRACT

Glaucoma is one of the leading causes of irreversible blindness worldwide and vision loss in the disease results from the deterioration of retinal ganglion cells (RGC) and their axons. Metabolic dysfunction of RGC plays a significant role in the onset and progression of the disease in both human patients and rodent models, highlighting the need to better define the mechanisms regulating cellular energy metabolism in glaucoma. This study sought to determine if Sarm1, a gene involved in axonal degeneration and NAD+ metabolism, contributes to glaucomatous RGC loss in a mouse model with chronic elevated intraocular pressure (IOP). Our data demonstrate that after 16 weeks of elevated IOP, Sarm1 knockout (KO) mice retain significantly more RGC than control animals. Sarm1 KO mice also performed significantly better when compared to control mice during optomotor testing, indicating that visual function is preserved in this group. Our findings also indicate that Sarm1 KO mice display mild ocular developmental abnormalities, including reduced optic nerve axon diameter and lower visual acuity than controls. Finally, we present data to indicate that SARM1 expression in the optic nerve is most prominently associated with oligodendrocytes. Taken together, these data suggest that attenuating Sarm1 activity through gene therapy, pharmacologic inhibition, or NAD+ supplementation, may be a novel therapeutic approach for patients with glaucoma.


Subject(s)
Glaucoma , Retinal Ganglion Cells , Humans , Mice , Animals , Retinal Ganglion Cells/metabolism , Intraocular Pressure , NAD/metabolism , Glaucoma/genetics , Optic Nerve/metabolism , Axons/metabolism , Mice, Knockout , Disease Models, Animal , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Armadillo Domain Proteins/genetics , Armadillo Domain Proteins/metabolism
5.
Muscle Nerve ; 69(4): 498-503, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38294129

ABSTRACT

INTRODUCTION/AIMS: Oxaliplatin is a platinum-based anti-cancer drug widely used in colorectal cancer patients, but it may cause peripheral neuropathy. As one of the main causes of oxaliplatin-induced peripheral neuropathy (OPN) is oxidative stress, which is also a key factor causing diabetic peripheral neuropathy (DPN), the aim of this study was to evaluate the preventive effects of alpha-lipoic acid (ALA) and epalrestat (EP), which are used for the treatment of DPN, in an OPN zebrafish model. METHODS: Tg(nbt:dsred) transgenic zebrafish, with sensory nerves in the peripheral lateral line, were treated with oxaliplatin, oxaliplatin/EP, and oxaliplatin/ALA for 4 days. A confocal microscope was used to visualize and quantify the number of axon bifurcations in the distal nerve ending. To analyze the formation of synapses on sensory nerve terminals, quantification of membrane-associated guanylate kinase (MAGUK) puncta was performed using immunohistochemistry. RESULTS: The number of axon bifurcations and intensity of MAGUK puncta were significantly reduced in the oxaliplatin-treated group compared with those in the embryo medium-treated group. In both the oxaliplatin/EP and oxaliplatin/ALA-treated groups, the number of axon bifurcations and intensity of MAGUK puncta were greater than those in the oxaliplatin-treated group (p < .0001), and no significant difference was observed between larvae treated with oxaliplatin/ALA 1 µM and oxaliplatin/EP 1 µM (p = .4292). DISCUSSION: ALA and EP have protective effects against OPN in zebrafish. Our findings show that ALA and EP can facilitate more beneficial treatment for OPN.


Subject(s)
Antineoplastic Agents , Peripheral Nervous System Diseases , Rhodanine/analogs & derivatives , Thiazolidines , Thioctic Acid , Animals , Humans , Thioctic Acid/pharmacology , Thioctic Acid/therapeutic use , Zebrafish , Oxaliplatin/toxicity , Peripheral Nervous System Diseases/chemically induced , Peripheral Nervous System Diseases/drug therapy , Peripheral Nervous System Diseases/prevention & control , Antineoplastic Agents/toxicity
6.
Eur J Neurol ; 31(4): e16192, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38189534

ABSTRACT

BACKGROUND AND PURPOSE: Diagnosing small fiber neuropathies can be challenging. To address this issue, whether serum neurofilament light chain (sNfL) could serve as a potential biomarker of damage to epidermal Aδ- and C-fibers was tested. METHODS: Serum NfL levels were assessed in 30 patients diagnosed with small fiber neuropathy and were compared to a control group of 19 healthy individuals. Electrophysiological studies, quantitative sensory testing and quantification of intraepidermal nerve fiber density after skin biopsy were performed in both the proximal and distal leg. RESULTS: Serum NfL levels were not increased in patients with small fiber neuropathy compared to healthy controls (9.1 ± 3.9 and 9.4 ± 3.8, p = 0.83) and did not correlate with intraepidermal nerve fiber density at the lateral calf or lateral thigh or with other parameters of small fiber impairment. CONCLUSION: Serum NfL levels cannot serve as a biomarker for small fiber damage.


Subject(s)
Peripheral Nervous System Diseases , Small Fiber Neuropathy , Humans , Small Fiber Neuropathy/pathology , Peripheral Nervous System Diseases/diagnosis , Intermediate Filaments , Nerve Fibers/pathology , Epidermis/innervation , Epidermis/pathology , Skin/pathology , Biopsy
7.
Mol Neurobiol ; 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37955806

ABSTRACT

Alzheimer's disease (AD) is the most prevalent form of neurodegeneration. Despite the well-established link between tau aggregation and clinical progression, the major pathways driven by this protein to intrinsically damage neurons are incompletely understood. To model AD-relevant neurodegeneration driven by tau, we overexpressed non-mutated human tau in primary mouse neurons and observed substantial axonal degeneration and cell death, a process accompanied by activated caspase 3. Mechanistically, we detected deformation of the nuclear envelope and increased DNA damage response in tau-expressing neurons. Gene profiling analysis further revealed significant alterations in the mitogen-activated protein kinase (MAPK) pathway; moreover, inhibitors of dual leucine zipper kinase (DLK) and c-Jun N-terminal kinase (JNK) were effective in alleviating wild-type human tau-induced neurodegeneration. In contrast, mutant P301L human tau was less toxic to neurons, despite causing comparable DNA damage. Axonal DLK activation induced by wild-type tau potentiated the impact of DNA damage response, resulting in overt neurotoxicity. In summary, we have established a cellular tauopathy model highly relevant to AD and identified a functional synergy between the DLK-MAPK axis and DNA damage response in the neuronal degenerative process.

8.
Cureus ; 15(10): e46732, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38022191

ABSTRACT

Methylene blue (MB) and its compounds are investigated for their potential benefits in the management of Alzheimer's disease (AD). AD is a widely seen neuropathological disorder characterized by the gradual decline of cognitive abilities, ultimately leading to the development of severe dementia. It is anticipated that there will be a significant increase in the prevalence of AD due to the aging population. Histopathologically, AD is distinguished by the presence of intracellular tangles of neurofibrillary tissues (NFTs) and extracellular amyloid plaques within the brain. MB is a thiophenazine dye with FDA approval for treating several illnesses. Its ease in crossing the blood-brain barrier and potential therapeutic use in central nervous system diseases have increased interest in its application for treating AD. The literature review includes randomized clinical trials investigating MB's potential benefits in treating AD. The findings of the studies indicate that the administration of MB has demonstrated enhancements in cognitive function, reductions in the accumulation of plaques containing beta-amyloid, improvements in memory and cognitive function in animal subjects, and possesses antioxidant properties that can mitigate oxidative stress and inflammation within the brain. This review evaluates the modern and latest research on the application of MB for treating AD.

9.
Life Sci ; 334: 122219, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37907151

ABSTRACT

AIMS: Chemotherapy induced peripheral neuropathy (CIPN) is a common side effect seen in patients who have undergone most chemotherapy treatments to which there are currently no treatment methods. CIPN has been shown to cause axonal degeneration leading to Peripheral Neuropathy (PN), which can lead to major dosage reduction and may prevent further chemotherapy treatment due to oftentimes debilitating pain. Previously, we have determined the site-specific action of Paclitaxel (PTX), a microtubule targeting agent, as well as the neuroprotective effect of Fluocinolone Acetonide (FA) against Paclitaxel Induced Peripheral Neuropathy (PIPN). MAIN METHODS: Mitochondrial trafficking analysis was determined for all sample sets, wherein FA showed enhanced anterograde (axonal) mitochondrial trafficking leading to neuroprotective effects for all samples. KEY FINDINGS: Using this system, we demonstrate that PTX, Monomethyl auristatin E (MMAE), and Vincristine (VCR), are toxic at clinically prescribed levels when treated focally to axons. However, Cisplatin (CDDP) was determined to have a higher toxicity when treated to cell bodies. Although having different targeting mechanisms, the administration of FA was determined to have a significant neuroprotective effect for against all chemotherapy drugs tested. SIGNIFICANCE: This study identifies key insights regarding site of action and neuroprotective strategies to further development as potential therapeutics against CIPN. FA was treated alongside each chemotherapy drug to identify the neuroprotective effect against CIPN, where FA was found to be neuroprotective for all drugs tested. This study found that treatment with FA led to an enhancement in the anterograde movement of mitochondria based on fluorescent imaging.


Subject(s)
Antineoplastic Agents , Neuroprotective Agents , Peripheral Nervous System Diseases , Humans , Pharmaceutical Preparations , Neuroprotective Agents/adverse effects , Peripheral Nervous System Diseases/chemically induced , Peripheral Nervous System Diseases/drug therapy , Peripheral Nervous System Diseases/prevention & control , Paclitaxel/adverse effects , Cisplatin/adverse effects , Mitochondria , Antineoplastic Agents/adverse effects
10.
Cureus ; 15(9): e44983, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37822434

ABSTRACT

Diagnosing B-cell lymphoma-associated mononeuritis multiplex is challenging due to its rarity and the potential co-existence of other causes of mononeuritis multiplex. Here, we report a case of a 74-year-old male who initially presented with left cranial neuropathies followed by right-sided extremity weakness with hyporeflexia, right facial involvement, and subsequently asymmetric weakness and multifocal muscle wasting. Minor improvements were observed with multiple rounds of steroid treatment. The diffuse large B-cell lymphoma diagnosis was eventually established six months later upon a repeat mediastinal lymph node biopsy and cerebrospinal fluid cytology. A nerve biopsy demonstrated severe axonal neuropathy with loss of axons in all fascicles without evidence of vasculitis. A muscle biopsy showed atrophy in both type 1 and type 2 fibers. A presentation of mononeuritis multiplex warrants concern for B-cell lymphoma, mainly when other mechanisms of peripheral neuropathy are less likely.

11.
DNA Cell Biol ; 42(11): 653-667, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37819746

ABSTRACT

Axonal degeneration is a pathologic change common to multiple retinopathies and optic neuropathies. Various pathologic factors, such as mechanical injury, inflammation, and ischemia, can damage retinal ganglion cell (RGC) somas and axons, eventually triggering axonal degeneration and RGC death. The molecular mechanisms of somal and axonal degeneration are distinct but also overlap, and axonal degeneration can result in retrograde somal degeneration. While the mitogen-activated protein kinase pathway acts as a central node in RGC axon degeneration, several newly discovered molecules, such as sterile alpha and Toll/interleukin-1 receptor motif-containing protein 1 and nicotinamide mononucleotide adenylyltransferase 2, also play a critical role in this pathological process following different types of injury. Therefore, we summarize the types of injury that cause RGC axon degeneration and retrograde RGC death and important underlying molecular mechanisms, providing a reference for the identification of targets for protecting axons and RGCs.


Subject(s)
Axons , Retinal Ganglion Cells , Retinal Ganglion Cells/metabolism , Retinal Ganglion Cells/pathology , Axons/metabolism , Axons/pathology
12.
Cell Rep ; 42(10): 113257, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37851573

ABSTRACT

Nociceptive axons undergo remodeling as they innervate their targets during development and in response to environmental insults and pathological conditions. How is nociceptive morphogenesis regulated? Here, we show that the microtubule destabilizer kinesin family member 2A (Kif2a) is a key regulator of nociceptive terminal structures and pain sensitivity. Ablation of Kif2a in sensory neurons causes hyperinnervation and hypersensitivity to noxious stimuli in young adult mice, whereas touch sensitivity and proprioception remain unaffected. Computational modeling predicts that structural remodeling is sufficient to explain the phenotypes. Furthermore, Kif2a deficiency triggers a transcriptional response comprising sustained upregulation of injury-related genes and homeostatic downregulation of highly specific channels and receptors at the late stage. The latter effect can be predicted to relieve the hyperexcitability of nociceptive neurons, despite persisting morphological aberrations, and indeed correlates with the resolution of pain hypersensitivity. Overall, we reveal a critical control node defining nociceptive terminal structure, which is regulating nociception.


Subject(s)
Kinesins , Nociception , Repressor Proteins , Animals , Mice , Kinesins/genetics , Neurons/physiology , Pain , Repressor Proteins/genetics
13.
Neurobiol Dis ; 187: 106293, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37709208

ABSTRACT

Spastic paraplegia type 11 (SPG11) is a common autosomal recessive form of hereditary spastic paraplegia (HSP) characterized by the degeneration of cortical motor neuron axons, leading to muscle spasticity and weakness. Impaired lipid trafficking is an emerging pathology in neurodegenerative diseases including SPG11, though its role in axonal degeneration of human SPG11 neurons remains unknown. Here, we established a pluripotent stem cell-based SPG11 model by knocking down the SPG11 gene in human embryonic stem cells (hESCs). These stem cells were then differentiated into cortical projection neurons (PNs), the cell types affected in HSP patients, to examine axonal defects and cholesterol distributions. Our data revealed that SPG11 deficiency led to reduced axonal outgrowth, impaired axonal transport, and accumulated swellings, recapitulating disease-specific phenotypes. In SPG11-knockdown neurons, cholesterol was accumulated in lysosome and reduced in plasma membrane, revealing impairments in cholesterol trafficking. Strikingly, the liver-X-receptor (LXR) agonists restored cholesterol homeostasis, leading to the rescue of subsequent axonal defects in SPG11-deficient cortical PNs. To further determine the implication of impaired cholesterol homeostasis in SPG11, we examined the cholesterol distribution in cortical PNs generated from SPG11 disease-mutation knock-in hESCs, and observed a similar cholesterol trafficking impairment. Moreover, LXR agonists rescued the aberrant cholesterol distribution and mitigated the degeneration of SPG11 disease-mutated neurons. Taken together, our data demonstrate impaired cholesterol trafficking underlying axonal degeneration of SPG11 human neurons, and highlight the therapeutic potential of LXR agonists for SPG11 through restoring cholesterol homeostasis.


Subject(s)
Spastic Paraplegia, Hereditary , Humans , Spastic Paraplegia, Hereditary/genetics , Spastic Paraplegia, Hereditary/metabolism , Proteins/metabolism , Neurons/metabolism , Mutation , Cholesterol/metabolism , Liver/pathology
14.
Handb Clin Neurol ; 196: 59-88, 2023.
Article in English | MEDLINE | ID: mdl-37620092

ABSTRACT

The hereditary spastic paraplegias (HSPs) are a group of more than 90 genetic disorders in which lower extremity spasticity and weakness are either the primary neurologic impairments ("uncomplicated HSP") or when accompanied by other neurologic deficits ("complicated HSP"), important features of the clinical syndrome. Various genetic types of HSP are inherited such as autosomal dominant, autosomal recessive, X-linked, and maternal (mitochondrial) traits. Symptoms that begin in early childhood may be nonprogressive and resemble spastic diplegic cerebral palsy. Symptoms that begin later, typically progress insidiously over a number of years. Genetic testing is able to confirm the diagnosis for many subjects. Insights from gene discovery indicate that abnormalities in diverse molecular processes underlie various forms of HSP, including disturbance in axon transport, endoplasmic reticulum morphogenesis, vesicle transport, lipid metabolism, and mitochondrial function. Pathologic studies in "uncomplicated" HSP have shown axon degeneration particularly involving the distal ends of corticospinal tracts and dorsal column fibers. Treatment is limited to symptom reduction including amelioration of spasticity, reducing urinary urgency, proactive physical therapy including strengthening, stretching, balance, and agility exercise.


Subject(s)
Cerebral Palsy , Spastic Paraplegia, Hereditary , Child, Preschool , Humans , Spastic Paraplegia, Hereditary/genetics , Biological Transport , Exercise , Family
15.
Cells ; 12(15)2023 07 27.
Article in English | MEDLINE | ID: mdl-37566030

ABSTRACT

Retinal ganglion cells (RGCs) are the sole output neurons conveying visual stimuli from the retina to the brain, and dysfunction or loss of RGCs is the primary determinant of visual loss in traumatic and degenerative ocular conditions. Currently, there is a lack of RGC-specific Cre mouse lines that serve as invaluable tools for manipulating genes in RGCs and studying the genetic basis of RGC diseases. The RNA-binding protein with multiple splicing (RBPMS) is identified as the specific marker of all RGCs. Here, we report the generation and characterization of a knock-in mouse line in which a P2A-CreERT2 coding sequence is fused in-frame to the C-terminus of endogenous RBPMS, allowing for the co-expression of RBPMS and CreERT2. The inducible Rbpms-CreERT2 mice exhibited a high recombination efficiency in activating the expression of the tdTomato reporter gene in nearly all adult RGCs as well as in differentiated RGCs starting at E13.5. Additionally, both heterozygous and homozygous Rbpms-CreERT2 knock-in mice showed no detectable defect in the retinal structure, visual function, and transcriptome. Together, these results demonstrated that the Rbpms-CreERT2 knock-in mouse can serve as a powerful and highly desired genetic tool for lineage tracing, genetic manipulation, retinal physiology study, and ocular disease modeling in RGCs.


Subject(s)
Retina , Retinal Ganglion Cells , Mice , Animals , Retinal Ganglion Cells/metabolism , Retina/metabolism , Biomarkers/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
16.
Antioxid Redox Signal ; 39(16-18): 1167-1184, 2023 12.
Article in English | MEDLINE | ID: mdl-37503611

ABSTRACT

Significance: The remarkable geometry of the axon exposes it to unique challenges for survival and maintenance. Axonal degeneration is a feature of peripheral neuropathies, glaucoma, and traumatic brain injury, and an early event in neurodegenerative diseases. Since the discovery of Wallerian degeneration (WD), a molecular program that hijacks nicotinamide adenine dinucleotide (NAD+) metabolism for axonal self-destruction, the complex roles of NAD+ in axonal viability and disease have become research priority. Recent Advances: The discoveries of the protective Wallerian degeneration slow (WldS) and of sterile alpha and TIR motif containing 1 (SARM1) activation as the main instructive signal for WD have shed new light on the regulatory role of NAD+ in axonal degeneration in a growing number of neurological diseases. SARM1 has been characterized as a NAD+ hydrolase and sensor of NAD+ metabolism. The discovery of regulators of nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) proteostasis in axons, the allosteric regulation of SARM1 by NAD+ and NMN, and the existence of clinically relevant windows of action of these signals has opened new opportunities for therapeutic interventions, including SARM1 inhibitors and modulators of NAD+ metabolism. Critical Issues: Events upstream and downstream of SARM1 remain unclear. Furthermore, manipulating NAD+ metabolism, an overdetermined process crucial in cell survival, for preventing the degeneration of the injured axon may be difficult and potentially toxic. Future Directions: There is a need for clarification of the distinct roles of NAD+ metabolism in axonal maintenance as contrasted to WD. There is also a need to better understand the role of NAD+ metabolism in axonal endangerment in neuropathies, diseases of the white matter, and the early stages of neurodegenerative diseases of the central nervous system. Antioxid. Redox Signal. 39, 1167-1184.


Subject(s)
Neurodegenerative Diseases , Peripheral Nervous System Diseases , Humans , Wallerian Degeneration/metabolism , Wallerian Degeneration/pathology , NAD/metabolism , Peripheral Nervous System Diseases/metabolism , Axons/metabolism , Neurodegenerative Diseases/metabolism
17.
Adv Exp Med Biol ; 1415: 223-227, 2023.
Article in English | MEDLINE | ID: mdl-37440037

ABSTRACT

For the survival and maintenance of retinal ganglion cells (RGCs), axonal transportation is fundamental. Axonal transportation defects can cause severe neuropathies leading to neuronal loss. Axonal transport defects usually precede axonal degeneration and RGC loss in disease models. To date, the main causes of axonal transport defects have not been fully understood. Therefore, elucidation of the mechanisms that lead to transport defects will help us to develop novel therapeutic targets and early diagnostic tools. In this review, we provide an overview of optic neuropathies and axonal degeneration with a focus on axonal transport.


Subject(s)
Optic Nerve Diseases , Retinal Ganglion Cells , Animals , Humans , Retinal Ganglion Cells/physiology , Axonal Transport/physiology , Disease Models, Animal , Axons/metabolism
18.
Neural Regen Res ; 18(12): 2720-2726, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37449636

ABSTRACT

The formation of axonal spheroid is a common feature following spinal cord injury. To further understand the source of Ca2+ that mediates axonal spheroid formation, we used our previously characterized ex vivo mouse spinal cord model that allows precise perturbation of extracellular Ca2+. We performed two-photon excitation imaging of spinal cords isolated from Thy1YFP+ transgenic mice and applied the lipophilic dye, Nile red, to record dynamic changes in dorsal column axons and their myelin sheaths respectively. We selectively released Ca2+ from internal stores using the Ca2+ ionophore ionomycin in the presence or absence of external Ca2+. We reported that ionomycin dose-dependently induces pathological changes in myelin and pronounced axonal spheroid formation in the presence of normal 2 mM Ca2+ artificial cerebrospinal fluid. In contrast, removal of external Ca2+ significantly decreased ionomycin-induced myelin and axonal spheroid formation at 2 hours but not at 1 hour after treatment. Using mice that express a neuron-specific Ca2+ indicator in spinal cord axons, we confirmed that ionomycin induced significant increases in intra-axonal Ca2+, but not in the absence of external Ca2+. Periaxonal swelling and the resultant disruption in the axo-myelinic interface often precedes and is negatively correlated with axonal spheroid formation. Pretreatment with YM58483 (500 nM), a well-established blocker of store-operated Ca2+ entry, significantly decreased myelin injury and axonal spheroid formation. Collectively, these data reveal that ionomycin-induced depletion of internal Ca2+ stores and subsequent external Ca2+ entry through store-operated Ca2+ entry contributes to pathological changes in myelin and axonal spheroid formation, providing new targets to protect central myelinated fibers.

19.
Cell Rep Methods ; 3(5): 100481, 2023 May 22.
Article in English | MEDLINE | ID: mdl-37323578

ABSTRACT

Traumatic brain injury (TBI)-induced axonal degeneration leads to acute and chronic neuropsychiatric impairment, neuronal death, and accelerated neurodegenerative diseases of aging, including Alzheimer's and Parkinson's diseases. In laboratory models, axonal degeneration is traditionally studied through comprehensive postmortem histological evaluation of axonal integrity at multiple time points. This requires large numbers of animals to power for statistical significance. Here, we developed a method to longitudinally monitor axonal functional activity before and after injury in vivo in the same animal over an extended period. Specifically, after expressing an axonal-targeting genetically encoded calcium indicator in the mouse dorsolateral geniculate nucleus, we recorded axonal activity patterns in the visual cortex in response to visual stimulation. In vivo aberrant axonal activity patterns after TBI were detectable from 3 days after injury and persisted chronically. This method generates longitudinal same-animal data that substantially reduces the number of required animals for preclinical studies of axonal degeneration.


Subject(s)
Brain Injuries, Traumatic , Brain Injuries , Neurodegenerative Diseases , Mice , Animals , Brain Injuries/pathology , Axons/pathology , Brain Injuries, Traumatic/pathology , Neurodegenerative Diseases/pathology , Geniculate Bodies/pathology
20.
J Neuroimmune Pharmacol ; 18(1-2): 215-234, 2023 06.
Article in English | MEDLINE | ID: mdl-37285016

ABSTRACT

The action potential conduction along the axon is highly dependent on the healthy interactions between the axon and myelin-producing glial cells. Myelin, which facilitates action potential, is the protective insulation around the axon formed by Schwann cells and oligodendrocytes in the peripheral (PNS) and central nervous system (CNS), respectively. Myelin is a continuous structure with intermittent gaps called nodes of Ranvier, which are the sites enriched with ion channels, transmembrane, scaffolding, and cytoskeletal proteins. Decades-long extensive research has identified a comprehensive proteome with strictly regularized localization at the node of Ranvier. Concurrently, axon-glia interactions at the node of Ranvier have gathered significant attention as the pathophysiological targets for various neurodegenerative disorders. Numerous studies have shown the alterations in the axon-glia interactions culminating in neurological diseases. In this review, we have provided an update on the molecular composition of the node of Ranvier. Further, we have discussed in detail the consequences of disruption of axon-glia interactions during the pathogenesis of various CNS and PNS disorders.


Subject(s)
Peripheral Nervous System Diseases , Ranvier's Nodes , Humans , Ranvier's Nodes/metabolism , Ranvier's Nodes/pathology , Neuroglia/metabolism , Myelin Sheath/pathology , Myelin Sheath/physiology , Axons/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...