Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters











Publication year range
1.
Front Oncol ; 14: 1337954, 2024.
Article in English | MEDLINE | ID: mdl-38634053

ABSTRACT

Background: Recurrent genetic alterations contributing to leukemogenesis have been identified in pediatric B-cell Acute Lymphoblastic Leukemia (B-ALL), and some are useful for refining classification, prognosis, and treatment selection. IKZF1plus is a complex biomarker associated with a poor prognosis. It is characterized by IKZF1 deletion coexisting with PAX5, CDKN2A/2B, or PAR1 region deletions. The mutational spectrum and clinical impact of these alterations have scarcely been explored in Mexican pediatric patients with B-ALL. Here, we report the frequency of the IKZF1plus profile and the mutational spectrum of IKZF1, PAX5, CDKN2A/2B, and ERG genes and evaluate their impact on overall survival (OS) in a group of patients with B-ALL. Methods: A total of 206 pediatric patients with de novo B-ALL were included. DNA was obtained from bone marrow samples at diagnosis before treatment initiation. A custom-designed next-generation sequencing panel was used for mutational analysis. Kaplan-Meier analysis was used for OS estimation. Results: We identified the IKZF1plus profile in 21.8% of patients, which was higher than that previously reported in other studies. A significantly older age (p=0.04), a trend toward high-risk stratification (p=0.06), and a decrease in 5-year Overall Survival (OS) (p=0.009) were observed, although heterogeneous treatment protocols in our cohort would have impacted OS. A mutation frequency higher than that reported was found for IKZF1 (35.9%) and CDKN2A/2B (35.9%) but lower for PAX5 (26.6%). IKZF1MUT group was older at diagnosis (p=0.0002), and most of them were classified as high-risk (73.8%, p=0.02), while patients with CDKN2A/2BMUT had a higher leukocyte count (p=0.01) and a tendency toward a higher percentage of blasts (98.6%, >50% blasts, p=0.05) than the non-mutated patients. A decrease in OS was found in IKZF1MUT and CDKN2A/2BMUT patients, but the significance was lost after IKZF1plus was removed. Discussion: Our findings demonstrated that Mexican patients with B-ALL have a higher prevalence of genetic markers associated with poor outcomes. Incorporating genomic methodologies into the diagnostic process, a significant unmet need in low- and mid-income countries, will allow a comprehensive identification of relevant alterations, improving disease classification, treatment selection, and the general outcome.

3.
Cells ; 11(20)2022 10 12.
Article in English | MEDLINE | ID: mdl-36291073

ABSTRACT

Leukemia is the most common childhood malignancy in Mexico, representing more than 50% of all childhood cancers. Although treatment leads to a survival of up to 90% in developing countries, in our country, it is less than 65%. Additionally, ~30% of patients relapse with poor prognosis. Alternative splicing plays an important role in transcriptome diversity and cellular biology. This mechanism promotes an increase in the assortment of proteins with potentially distinct functions from a single gene. The proliferating cell nuclear antigen (PCNA) gene encodes two transcripts for the same protein of 261 amino acids, which is associated with several important cellular processes and with several types of cancer. However, the diversity of the transcript variants expressed in this condition is not clear. Then, we used microarray gene expression to identify changes in the exon expression level of PCNA. The data were validated using RT-PCR and Sanger sequencing, and three additional transcripts (PCNA_V3, PCNA_V4, and PCNA_V5) were identified. Computational analyses were used to determine the potential proteins resulting, their structure, and interactions with PCNA native protein and themselves. Additionally, the PCNA transcript variants were inhibited using specific siRNA, determining that their inhibition contributes to the malignant characteristics in vitro. Finally, we quantified the PCNA transcript variants in acute lymphoblastic leukemia samples and identified their expression in this disease. Based on the clinical characteristics, we determined that PCNA_V2 and PCNA_V4 are expressed at significantly low levels in relapsed B-ALL patients. We conclude that the low expression of PCNA_V2 and PCNA_V4 could be a potential molecular marker of relapse in acute lymphoblastic leukemia patients.


Subject(s)
Burkitt Lymphoma , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Child , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/metabolism , Nuclear Proteins/metabolism , RNA, Small Interfering , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Recurrence , Biomarkers , Acute Disease , Amino Acids
4.
Int J Mol Sci ; 23(17)2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36076986

ABSTRACT

Ph-like subtypes with CRLF2 abnormalities are frequent among Hispano-Latino children with pre-B ALL. Therefore, there is solid ground to suggest that this subtype is frequent in Mexican patients. The genomic complexity of Ph-like subtype constitutes a challenge for diagnosis, as it requires diverse genomic methodologies that are not widely available in diagnostic centers in Mexico. Here, we propose a diagnostic strategy for Ph-like ALL in accordance with our local capacity. Pre-B ALL patients without recurrent gene fusions (104) were classified using a gene-expression profile based on Ph-like signature genes analyzed by qRT-PCR. The expressions of the CRLF2 transcript and protein were determined by qRT-PCR and flow cytometry. The P2RY8::CRLF2, IGH::CRLF2, ABL1/2 rearrangements, and Ik6 isoform were screened using RT-PCR and FISH. Surrogate markers of Jak2-Stat5/Abl/Ras pathways were analyzed by phosphoflow. Mutations in relevant kinases/transcription factors genes in Ph-like were assessed by target-specific NGS. A total of 40 patients (38.5%) were classified as Ph-like; of these, 36 had abnormalities associated with Jak2-Stat5 and 4 had Abl. The rearrangements IGH::CRLF2,P2RY8::CRLF2, and iAMP21 were particularly frequent. We propose a strategy for the detection of Ph-like patients, by analyzing the overexpression/genetic lesions of CRLF2, the Abl phosphorylation of surrogate markers confirmed by gene rearrangements, and Sanger sequencing.


Subject(s)
Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Gene Rearrangement , Humans , Mexico , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Receptors, Cytokine/genetics , Receptors, Cytokine/metabolism , STAT5 Transcription Factor/metabolism
5.
J Pers Med ; 12(5)2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35629139

ABSTRACT

Bone marrow aging is associated with multiple cellular dysfunctions, including perturbed haematopoiesis, the propensity to haematological transformation, and the maintenance of leukaemia. It has been shown that instructive signals from different leukemic cells are delivered to stromal cells to remodel the bone marrow into a supportive leukemic niche. In particular, cellular senescence, a physiological program with both beneficial and deleterious effects on the health of the organisms, may be responsible for the increased incidence of haematological malignancies in the elderly and for the survival of diverse leukemic cells. Here, we will review the connection between BM aging and cellular senescence and the role that these processes play in leukaemia progression. Specifically, we discuss the role of mesenchymal stem cells as a central component of the supportive niche. Due to the specificity of the genetic defects present in leukaemia, one would think that bone marrow alterations would also have particular changes, making it difficult to envisage a shared therapeutic use. We have tried to summarize the coincident features present in BM stromal cells during aging and senescence and in two different leukaemias, acute myeloid leukaemia, with high frequency in the elderly, and B-acute lymphoblastic leukaemia, mainly a childhood disease. We propose that mesenchymal stem cells are similarly affected in these different leukaemias, and that the changes that we observed in terms of cellular function, redox balance, genetics and epigenetics, soluble factor repertoire and stemness are equivalent to those occurring during BM aging and cellular senescence. These coincident features may be used to explore strategies useful to treat various haematological malignancies.

6.
Discov Oncol ; 13(1): 28, 2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35445848

ABSTRACT

Mexico City has one of the highest incidences of acute lymphoblastic leukemia (ALL) globally, with patients showing low survival, and high relapse rates. To gain more insight into the molecular features of B-ALL in Mexican children, we isolated CD10 + /CD19 + precursor B lymphoblasts from four bone marrow and nine peripheral blood samples of B-ALL patients using a fluorescence-activated cell sorting protocol. The global gene expression profile (BM vs PB) revealed 136 differentially expressed genes; 62 were upregulated (45.6%) and 74 were downregulated (54.4%). Pearson's correlation coefficient was calculated to determine the similarity between pre-B lymphoblast populations. We selected 26 highly significant genes and validated 21 by RT-qPCR (CNN3, STON2, CALN1, RUNX2, GADD45A, CDC45, CDC20, PLK1, AIDA, HCK, LY86, GPR65, PIK3CG, LILRB2, IL7R, TCL1A, DOCK1, HIST1H3G, PTPN14, CD72, and NT5E). The gene set enrichment analysis of the total expression matrix and the ingenuity pathway analysis of the 136 differentially expressed genes showed that the cell cycle was altered in the bone marrow with four overexpressed genes (PLK1, CDC20, CDC45, and GADD45A) and a low expression of IL7R and PIK3CG, which are involved in B cell differentiation. A comparative bioinformatics analysis of 15 bone marrow and 10 peripheral blood samples from Hispanic B-ALL patients collected by the TARGET program, corroborated the genes observed, except for PIK3CG. We conclude the Mexican and the Hispanic B-ALL patients studied present common driver alterations and histotype-specific mutations that could facilitate risk stratification and diagnostic accuracy and serve as potential therapeutic targets.

7.
Transl Oncol ; 15(1): 101291, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34826720

ABSTRACT

Cytokine Receptor-Like Factor 2 (CRLF2) overexpression occurs in 5-15% of B-cell precursor acute lymphoblastic leukaemia (B-ALL). In ∼50% of these cases, the mechanisms underlying this dysregulation are unknown. IKAROS Family Zinc Finger 1 (IKZF1) is a possible candidate to play a role in this dysregulation since it binds to the CRLF2 promoter region and suppresses its expression. We hypothesised that IKZF1 loss of function, caused by deletions or its short isoforms expression, could be associated with CRLF2 overexpression in B-ALL. A total of 131 paediatric and adult patients and 7 B-ALL cell lines were analysed to investigate the presence of IKZF1 deletions and its splicing isoforms expression levels, the presence of CRLF2 rearrangements or mutations, CRLF2 expression and JAK2 mutations. Overall survival analyses were performed according to the CRLF2 and IKZF1 subgroups. Our analyses showed that 25.2% of patients exhibited CRLF2 overexpression (CRLF2-high). CRLF2-high was associated with the presence of IKZF1 deletions (IKZF1del, p = 0.001), particularly with those resulting in dominant-negative isoforms (p = 0.006). Moreover, CRLF2 expression was higher in paediatric samples with high loads of the short isoform IK4 (p = 0.011). It was also associated with the occurrence of the IKZF1 plus subgroup (p = 0.004). Furthermore, patients with CRLF2-high/IKZF1del had a poorer prognosis in the RELLA05 protocol (p = 0.067, 36.1 months, 95%CI 0.0-85.9) and adult cohort (p = 0.094, 29.7 months, 95%CI 11.8-47.5). In this study, we show that IKZF1 status is associated with CRLF2-high and dismal outcomes in B-ALL patients regardless of age.

8.
Molecules ; 26(17)2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34500796

ABSTRACT

Cell adhesion to stromal support and the associated intracellular signaling are central to drug resistance, therefore blocking both has been effective in increasing drug sensitization in leukemia. The stromal Ser/Thr protein kinase C (PKC) has been found to be important for conferring protection to leukemic cells. We aimed at elucidating the intracellular signals connected to cell adhesion and to stromal PKC. We found that NF-κB and Akt were up-regulated in mesenchymal stem cells (MSC) after binding of B-cell acute lymphoblastic leukemia (B-ALL) cells. Nevertheless, Akt inhibition did not induce B-ALL cell detachment. In spite of a clear activation of the NF-κB signaling pathway after B-ALL cell binding (up-regulation NF-κB1/2, and down-regulation of the IKBε and IKBα inhibitors) and an important reduction in cell adhesion after NF-κB inhibition, sensitization to the drug treatment was not observed. This was opposite to the PKC inhibitors Enzastaurin and HKPS, a novel chimeric peptide inhibitor, that were able to increase sensitization to dexamethasone, methotrexate, and vincristine. PLCγ1, Erk1/2, and CREB appear to be related to PKC signaling and PKC effect on drug sensitization since they were contra-regulated by HKPS when compared to dexamethasone-treated cells. Additionally, PKC inhibition by HKPS, but not by Enzastaurin, in MSC reduced the activity of three ABC transporters in leukemic cells treated with dexamethasone, a new indirect mechanism to increase sensitization to drug treatment in B-ALL cells. Our results show the validity of targeting the functional characteristic acquired and modulated during cell-to-cell interactions occurring in the leukemic niche.


Subject(s)
ATP-Binding Cassette Transporters/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cells, B-Lymphoid/drug effects , Protein Kinase C/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , ATP-Binding Cassette Transporters/metabolism , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Adhesion/drug effects , Drug Screening Assays, Antitumor , Humans , NF-kappa B/metabolism , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor Cells, B-Lymphoid/metabolism , Precursor Cells, B-Lymphoid/pathology , Protein Kinase C/metabolism , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Tumor Cells, Cultured
9.
Int J Mol Sci ; 22(15)2021 Jul 29.
Article in English | MEDLINE | ID: mdl-34360930

ABSTRACT

Leukemic cell growth in the bone marrow (BM) induces a very stressful condition. Mesenchymal stem cells (MSC), a key component of this BM niche, are affected in several ways with unfavorable consequences on hematopoietic stem cells favoring leukemic cells. These alterations in MSC during B-cell acute lymphoblastic leukemia (B-ALL) have not been fully studied. In this work, we have compared the modifications that occur in an in vitro leukemic niche (LN) with those observed in MSC isolated from B-ALL patients. MSC in this LN niche showed features of a senescence process, i.e., altered morphology, increased senescence-associated ß-Galactosidase (SA-ßGAL) activity, and upregulation of p53 and p21 (without p16 expression), cell-cycle arrest, reduced clonogenicity, and some moderated changes in stemness properties. Importantly, almost all of these features were found in MSC isolated from B-ALL patients. These alterations rendered B-ALL cells susceptible to the chemotherapeutic agent dexamethasone. The senescent process seems to be transient since when leukemic cells are removed, normal MSC morphology is re-established, SA-ßGAL expression is diminished, and MSC are capable of re-entering cell cycle. In addition, few cells showed low γH2AX phosphorylation that was reduced to basal levels upon cultivation. The reversibility of the senescent process in MSC must impinge important biological and clinical significance depending on cell interactions in the bone marrow at different stages of disease progression in B-ALL.


Subject(s)
Cellular Senescence , Mesenchymal Stem Cells/pathology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Tumor Microenvironment , Cell Differentiation , Cell Proliferation , Cells, Cultured , Hematopoietic Stem Cells/pathology , Humans
10.
Curr Oncol Rep ; 23(1): 2, 2020 11 14.
Article in English | MEDLINE | ID: mdl-33190177

ABSTRACT

PURPOSE OF REVIEW: The high prevalence of relapse in pediatric B-lineage acute lymphoblastic leukemia (B-ALL) despite the improvements achieved using current risk stratification schemes, demands more accurate methods for outcome prediction. Here, we provide a concise overview about the key advances that have expanded our knowledge regarding the somatic defects across B-ALL genomes, particularly focusing on copy number alterations (CNAs) and their prognostic impact. RECENT FINDINGS: The identification of commonly altered genes in B-ALL has inspired the development of risk classifiers based on copy number states such as the IKZF1plus and the United Kingdom (UK) ALL-CNA classifiers to improve outcome prediction in B-ALL. CNA-risk classifiers have emerged as effective tools to predict disease relapse; though, their clinical applications are yet to be transferred to routine practice.


Subject(s)
DNA Copy Number Variations , Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Child , Humans , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Prognosis
11.
Int J Mol Sci ; 21(10)2020 May 25.
Article in English | MEDLINE | ID: mdl-32466311

ABSTRACT

Mesenchymal stem cells (MSC) favour a scenario where leukemic cells survive. The protein kinase C (PKC) is essential to confer MSC support to leukemic cells and may be responsible for the intrinsic leukemic cell growth. Here we have evaluated the capacity of a chimeric peptide (HKPS), directed against classical PKC isoforms, to inhibit leukemic cell growth. HKPS was able to strongly inhibit viability of different leukemic cell lines, while control HK and PS peptides had no effect. Further testing showed that 30% of primary samples from paediatric B-cell acute lymphoblastic leukaemia (B-ALL) were also strongly affected by HKPS. We showed that HKPS disrupted the supportive effect of MSC that promote leukemic cell survival. Interestingly, ICAM-1 and VLA-5 expression increased in MSC during the co-cultures with B-ALL cells, and we found that HKPS inhibited the interaction between MSC and B-ALL cells due to a reduction in the expression of these adhesion molecules. Of note, the susceptibility of B-ALL cells to dexamethasone increased when MSC were treated with HKPS. These results show the relevance of these molecular interactions in the leukemic niche. The use of HKPS may be a new strategy to disrupt intercellular communications, increasing susceptibility to therapy, and at the same time, directly affecting the growth of PKC-dependent leukemic cells.


Subject(s)
Antineoplastic Agents/pharmacology , B-Lymphocytes/drug effects , Enzyme Inhibitors/pharmacology , Mesenchymal Stem Cells/drug effects , Oligopeptides/pharmacology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Protein Kinase C/antagonists & inhibitors , B-Lymphocytes/metabolism , Cell Adhesion , Cell Proliferation , Cells, Cultured , Child , Humans , Integrins/genetics , Integrins/metabolism , Intercellular Adhesion Molecule-1/genetics , Intercellular Adhesion Molecule-1/metabolism , Jurkat Cells , K562 Cells , Mesenchymal Stem Cells/metabolism , Recombinant Proteins/pharmacology
12.
Hematol Oncol ; 37(1): 103-112, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30393877

ABSTRACT

MicroRNAs (miRNAs) play a critical role on biological and cellular processes; the search for functional markers may be of importance for differential diagnosis, prognosis, and development of new therapeutic regimens. In this context, we evaluated the bone marrow miRNA profile of Brazilian children exhibiting T- or B-cell acute lymphoblastic leukemia (T-ALL or B-ALL), using massive parallel sequencing, using the HiSeq 2500 platform (Illumina). The differential expression analysis was conducted considering a leave-one-out approach and FDR ≤ 0.05. Machine learning algorithms were applied to search for the disease subset biomarkers. Target prediction, functional enrichment, and classification of biological categories were also performed. Sixteen miRNAs were differentially expressed between T- and B-ALL, of which 10 (miR-708-5p, miR-497-5p, miR-151a-5p, miR-151b, miR-371b-5p, miR-455-5p, miR-195-5p, miR-1266-5p, miR-574-5p, and miR-425-5p) were downregulated and six (miR-450b-5p, miR-450a-5p, miR-542-5p, miR-424-5p, miR-629-5p, and miR-29c-5p) were upregulated in childhood T-ALL. These miRNAs may be used for distinguishing childhood lymphoblastic leukemia subtypes, since it provided the clear separation of patients in these two distinct groups. Six relevant biological pathways were identified according to their role in leukemia, namely, viral carcinogenesis, cell cycle, and B-cell receptor signaling pathways for induced miRNAs and TGF-beta signaling, apoptosis, and NF-kappa B signaling for the repressed miRNAs, of which several miRNA gene targets participate in cell differentiation and hematopoiesis processes. Machine learning analysis pointed out miR-29c-5p expression as the best discriminator between childhood T- and B-ALL, which is involved in calcium signaling, critical for B-cell lymphocyte fate. Further studies are needed to assure the role of the 16 miRNAs and miR-29c-5p on acute lymphoblastic leukemia subtypes and on disease prognosis.


Subject(s)
MicroRNAs/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Transcriptome , Adolescent , Biomarkers , Child , Child, Preschool , Computational Biology/methods , Female , Gene Expression Profiling , Gene Expression Regulation, Leukemic , High-Throughput Nucleotide Sequencing , Humans , Immunophenotyping , Machine Learning , Male , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Reproducibility of Results , Signal Transduction
13.
J Exp Clin Cancer Res ; 36(1): 37, 2017 02 28.
Article in English | MEDLINE | ID: mdl-28245840

ABSTRACT

BACKGROUND: Survival of adults with B-Acute Lymphoblastic Leukemia requires accurate risk stratification of patients in order to provide the appropriate therapy. Contemporary techniques, using clinical and cytogenetic variables are incomplete for prognosis prediction. METHODS: To improve the classification of adult patients diagnosed with B-ALL into prognosis groups, two strategies were examined and combined: the expression of the ID1/ID3/IGJ gene signature by RT-PCR and the immunophenotypic profile of 19 markers proposed in the EuroFlow protocol by Flow Cytometry in bone marrow samples. RESULTS: Both techniques were correlated to stratify patients into prognostic groups. An inverse relationship between survival and expression of the three-genes signature was observed and an immunophenotypic profile associated with clinical outcome was identified. Markers CD10 and CD20 were correlated with simultaneous overexpression of ID1, ID3 and IGJ. Patients with simultaneous expression of the poor prognosis gene signature and overexpression of CD10 or CD20, had worse Event Free Survival and Overall Survival than patients who had either the poor prognosis gene expression signature or only CD20 or CD10 overexpressed. CONCLUSION: By utilizing the combined evaluation of these two immunophenotypic markers along with the poor prognosis gene expression signature, the risk stratification can be significantly strengthened. Further studies including a large number of patients are needed to confirm these findings.


Subject(s)
Antigens, CD20/metabolism , Immunoglobulin J-Chains/genetics , Inhibitor of Differentiation Protein 1/genetics , Inhibitor of Differentiation Proteins/genetics , Neoplasm Proteins/genetics , Neprilysin/metabolism , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/classification , Adolescent , Adult , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Immunophenotyping , Male , Middle Aged , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/immunology , Prognosis , Survival Analysis , Young Adult
14.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;50(1): e5426, 2017. tab, graf
Article in English | LILACS | ID: biblio-839242

ABSTRACT

IGH gene rearrangement and IGK-Kde gene deletion can be used as molecular markers for the assessment of B lineage acute lymphoblastic leukemia (B-ALL). Minimal residual disease detected based on those markers is currently the most reliable prognosis factor in B-ALL. The aim of this study was to use clonal IGH/IGK-Kde gene rearrangements to confirm B-ALL diagnosis and to evaluate the treatment outcome of Tunisian leukemic patients by monitoring the minimal residual disease (MRD) after induction chemotherapy. Seventeen consecutive newly diagnosed B-ALL patients were investigated by multiplex PCR assay and real time quantitative PCR according to BIOMED 2 conditions. The vast majority of clonal VH-JH rearrangements included VH3 gene. For IGK deletion, clonal VK1f/6-Kde recombinations were mainly identified. These rearrangements were quantified to follow-up seven B-ALL after induction using patient-specific ASO. Four patients had an undetectable level of MRD with a sensitivity of up to 10-5. This molecular approach allowed identification of prognosis risk group and adequate therapeutic decision. The IGK-Kde and IGH gene rearrangements might be used for diagnosis and MRD monitoring of B-ALL, introduced for the first time in Tunisian laboratories.


Subject(s)
Humans , Male , Female , Child, Preschool , Adolescent , Middle Aged , Biomarkers, Tumor/genetics , Gene Rearrangement/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Neoplasm, Residual , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Real-Time Polymerase Chain Reaction , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL