Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
Int. microbiol ; 27(1): 101-111, Feb. 2024. ilus, graf
Article in English | IBECS | ID: ibc-230247

ABSTRACT

Brucella abortus and Brucella melitensis are the primary etiological agents of brucellosis in large and small ruminants, respectively. There are limited comparative genomic studies involving Brucella strains that explore the relatedness among both species. In this study, we involved strains (n=44) representing standard, vaccine and Indian field origin for pangenome, single nucleotide polymorphism (SNP) and phylogenetic analysis. Both species shared a common gene pool representing 2884 genes out of a total 3244 genes. SNP-based phylogenetic analysis indicated higher SNP diversity among B. melitensis (3824) strains in comparison to B. abortus (540) strains, and a clear demarcation was identified between standard/vaccine and field strains. The analysis for virulence genes revealed that virB3, virB7, ricA, virB5, ipx5, wbkC, wbkB, and acpXL genes were highly conserved in most of the Brucella strains. Interestingly, virB10 gene was found to have high variability among the B. abortus strains. The cgMLST analysis revealed distinct sequence types for the standard/vaccine and field strains. B. abortus strains from north-eastern India fall within similar sequence type differing from other strains. In conclusion, the analysis revealed a highly shared core genome among two Brucella species. SNP analysis revealed B. melitensis strains exhibit high diversity as compared to B. abortus strains. Strains with absence or high polymorphism of virulence genes can be exploited for the development of novel vaccine candidates effective against both B. abortus and B. melitensis.(AU)


Subject(s)
Humans , Virulence Factors , Brucella melitensis/genetics , Brucella abortus/genetics , Genomics , Phylogeny , Polymorphism, Single Nucleotide , Microbiology , Microbiological Techniques , Vaccines
2.
Int Microbiol ; 27(1): 101-111, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37202587

ABSTRACT

Brucella abortus and Brucella melitensis are the primary etiological agents of brucellosis in large and small ruminants, respectively. There are limited comparative genomic studies involving Brucella strains that explore the relatedness among both species. In this study, we involved strains (n=44) representing standard, vaccine and Indian field origin for pangenome, single nucleotide polymorphism (SNP) and phylogenetic analysis. Both species shared a common gene pool representing 2884 genes out of a total 3244 genes. SNP-based phylogenetic analysis indicated higher SNP diversity among B. melitensis (3824) strains in comparison to B. abortus (540) strains, and a clear demarcation was identified between standard/vaccine and field strains. The analysis for virulence genes revealed that virB3, virB7, ricA, virB5, ipx5, wbkC, wbkB, and acpXL genes were highly conserved in most of the Brucella strains. Interestingly, virB10 gene was found to have high variability among the B. abortus strains. The cgMLST analysis revealed distinct sequence types for the standard/vaccine and field strains. B. abortus strains from north-eastern India fall within similar sequence type differing from other strains. In conclusion, the analysis revealed a highly shared core genome among two Brucella species. SNP analysis revealed B. melitensis strains exhibit high diversity as compared to B. abortus strains. Strains with absence or high polymorphism of virulence genes can be exploited for the development of novel vaccine candidates effective against both B. abortus and B. melitensis.


Subject(s)
Brucella melitensis , Vaccines , Brucella melitensis/genetics , Brucella abortus/genetics , Virulence Factors/genetics , Polymorphism, Single Nucleotide , Phylogeny , Genomics
3.
Braz J Microbiol ; 55(1): 911-917, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37999910

ABSTRACT

Brucellosis, caused by Brucella bacteria, is a common zoonotic infectious disease with various clinical manifestations in humans and animals. The disease is endemic in human and ruminant populations in Iran, with a particular prevalence in areas where humans have close interactions with livestock. Since domestic animals serve as the primary reservoir for brucellosis, this study aimed to identify the presence of Brucella spp. among aborted small ruminants in southeast Iran. Between 2021 and 2022, aborted fetuses of small ruminants (46 sheep and 4 goats) were collected from Zarand County in the Kerman province. Swab samples from the abomasum contents of these fetuses were obtained and subjected to DNA extraction. The samples were then tested for Brucella spp. detection using the polymerase chain reaction (PCR) method. Out of the 50 aborted fetuses examined, Brucella spp. was detected in 15 (30%) specimens, comprising 13 (28%) sheep and 2 (50%) goats. Species typing revealed the presence of Brucella ovis (6 sheep and 1 goat), Brucella melitensis (6 sheep), and Brucella abortus (1 sheep) among the positive specimens. This cross-sectional study highlights the high prevalence of various Brucella species in samples from small ruminant abortions in southeast Iran. Additionally, the identified Brucella species were not limited to their primary host livestock. These indicated potential cross-species transmission among small ruminants.


Subject(s)
Brucella melitensis , Brucellosis , Goat Diseases , Sheep Diseases , Humans , Pregnancy , Female , Animals , Sheep , Iran/epidemiology , Cross-Sectional Studies , Ruminants , Brucellosis/epidemiology , Brucellosis/veterinary , Brucellosis/diagnosis , Brucella melitensis/genetics , Goats/microbiology , Livestock , Sheep Diseases/microbiology , Goat Diseases/epidemiology , Goat Diseases/microbiology
4.
BMC Vet Res ; 19(1): 211, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37853407

ABSTRACT

Cattle brucellosis is a severe zoonosis of worldwide distribution caused by Brucella abortus and B. melitensis. In some countries with appropriate infrastructure, animal tagging and movement control, eradication was possible through efficient diagnosis and vaccination with B. abortus S19, usually combined with test-and-slaughter (T/S). Although S19 elicits anti-smooth lipopolysaccharide antibodies that may interfere in the differentiation of infected and vaccinated animals (DIVA), this issue is minimized using appropriate S19 vaccination protocols and irrelevant when high-prevalence makes mass vaccination necessary or when eradication requisites are not met. However, S19 has been broadly replaced by vaccine RB51 (a rifampin-resistant rough mutant) as it is widely accepted that is DIVA, safe and as protective as S19. These RB51 properties are critically reviewed here using the evidence accumulated in the last 35 years. Controlled experiments and field evidence shows that RB51 interferes in immunosorbent assays (iELISA, cELISA and others) and in complement fixation, issues accentuated by revaccinating animals previously immunized with RB51 or S19. Moreover, contacts with virulent brucellae elicit anti-smooth lipopolysaccharide antibodies in RB51 vaccinated animals. Thus, accepting that RB51 is truly DIVA results in extended diagnostic confusions and, when combined with T/S, unnecessary over-culling. Studies supporting the safety of RB51 are flawed and, on the contrary, there is solid evidence that RB51 is excreted in milk and abortifacient in pregnant animals, thus being released in abortions and vaginal fluids. These problems are accentuated by the RB51 virulence in humans, lack diagnostic serological tests detecting these infections and RB51 rifampicin resistance. In controlled experiments, protection by RB51 compares unfavorably with S19 and lasts less than four years with no evidence that RB51-revaccination bolsters immunity, and field studies reporting its usefulness are flawed. There is no evidence that RB51 protects cattle against B. melitensis, infection common when raised together with small ruminants. Finally, data acumulated during cattle brucellosis eradication in Spain shows that S19-T/S is far more efficacious than RB51-T/S, which does not differ from T/S alone. We conclude that the assumption that RB51 is DIVA, safe, and efficaceous results from the uncritical repetition of imperfectly examined evidence, and advise against its use.


Subject(s)
Brucella Vaccine , Brucellosis , Cattle Diseases , Pregnancy , Female , Humans , Cattle , Animals , Brucella abortus , Brucellosis/veterinary , Lipopolysaccharides , Abortion, Veterinary , Vaccination/veterinary , Antibodies, Bacterial
5.
FEMS Microbiol Lett ; 3702023 01 17.
Article in English | MEDLINE | ID: mdl-37309037

ABSTRACT

Brucella is the causative agent of brucellosis and can be transmitted to humans through aerosolized particles or contaminated food. Brucella abortus (B. abortus), Brucella melitensis (B. melitensis), and Brucella suis (B. suis) are the most virulent of the brucellae, but the traditional detection methods to distinguish them are time-consuming and require high instrumentation. To obtain epidemiological information on Brucella during livestock slaughter and food contamination, we developed a rapid and sensitive triplex recombinant polymerase amplification (triplex-RPA) assay that can simultaneously detect and differentiate between B. abortus, B. melitensis, and B. suis. Three pairs of primers (B1O7F/B1O7R, B192F/B192R, and B285F/B285R) were designed and screened for the establishment of the triplex-RPA assay. After optimization, the assay can be completed within 20 min at 39°C with good specificity and no cross-reactivity with five common pathogens. The triplex-RPA assay has a DNA sensitivity of 1-10 pg and a minimum detection limit of 2.14 × 104-2.14 × 105 CFU g-1 in B. suis spiked samples. It is a potential tool for the detection of Brucella and can effectively differentiate between B. abortus, B. melitensis, and B. suis S2, making it a useful tool for epidemiological investigations.


Subject(s)
Brucella melitensis , Brucella suis , Brucellosis , Humans , Brucella abortus/genetics , Brucella suis/genetics , Brucella melitensis/genetics , Recombinases , Brucellosis/diagnosis , Brucellosis/veterinary , Nucleotidyltransferases
6.
Comp Immunol Microbiol Infect Dis ; 96: 101981, 2023 May.
Article in English | MEDLINE | ID: mdl-37043846

ABSTRACT

This study investigates country-wide genotype variations through the genotyping of Brucella strains isolated from domestic ruminants and humans. The Brucella spp. isolated from samples taken from animals and humans were first identified as B. abortus and B. melitensis by real-time PCR, and the MLVA-16 approach was then used for the genotyping of the identified isolates. For the study, 416 Brucella spp. were isolated from aborted fetus samples examined between 2018 and 2021, and 74 Brucella spp. from infected humans. Of the 74 human isolates analyzed, 1.3% were identified as B. abortus and 98.7% (73/74) as B. melitensis. The MLVA-16 typing method revealed 30 clonal groups for B. abortus and 37 clonal groups for B. melitensis from which the dominant genotypes and similarities with human isolates in Türkiye were determined.


Subject(s)
Brucella melitensis , Brucellosis , Humans , Animals , Brucella melitensis/genetics , Brucellosis/epidemiology , Brucellosis/veterinary , Brucella abortus , Genotype , Phylogeny , Multilocus Sequence Typing/veterinary , Ruminants , Minisatellite Repeats
7.
Pathogens ; 12(1)2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36678430

ABSTRACT

Brucellosis is a common zoonotic disease in Iran. Antimicrobial-resistant (AMR) Brucella isolates have been reported from different developing countries, posing an imminent health hazard. The objective of this study was to evaluate AMR and virulence-associated factors in Brucella isolates recovered from humans and animals in different regions of Iran using classical phenotyping and next generation sequencing (NGS) technology. Our findings revealed that B. melitensis is the most common species in bovines, small ruminants and camels. B. abortus was isolated only from one human case. Probable intermediate or resistant phenotype patterns for rifampicin, trimethoprim-sulfamethoxazole, ampicillin-sulbactam and colistin were found. Whole genome sequencing (WGS) identified mprF, bepG, bepF, bepC, bepE, and bepD in all isolates but failed to determine other classical AMR genes. Forty-three genes associated with five virulence factors were identified in the genomes of all Brucella isolates, and no difference in the distribution of virulence-associated genes was found. Of them, 27 genes were associated with lipopolysaccharide (LPS), 12 genes were related to a type IV secretion system (virB1-B12), two were associated with the toll-interleukin-1 receptor (TIR) domain-containing proteins (btpA, btpB), one gene encoded the Rab2 interacting conserved protein A (ricA) and one was associated with the production of cyclic ß-1,2 glucans (cgs). This is the first investigation reporting the molecular-based AMR and virulence factors in brucellae isolated from different animal hosts and humans in Iran. Iranian B. abortus and B. melitensis isolates are still in vitro susceptible to the majority of antibiotics used for the treatment of human brucellosis. WGS failed to determine classical AMR genes and no difference was found in the distribution of virulence-associated genes in all isolates. Still, the absence of classical AMR genes in genomes of resistant strains is puzzling, and investigation of phenotypic resistance mechanisms at the proteomic and transcriptomic levels is needed.

8.
Anim Biotechnol ; 34(2): 375-383, 2023 Apr.
Article in English | MEDLINE | ID: mdl-34487479

ABSTRACT

Brucellosis is a widely prevalent zoonotic disease of major public health significance. A collection of Brucella melitensis and Brucella abortus field isolates of animal and human origin were subjected to MLVA-15 typing followed by phylogeography studies. The MLVA-15 analysis of B. melitensis (n = 65) field isolates resulted in 48 different profiles. The panel I marker bruce45 was found to be most conserved, while the rest of the panel I markers showed low to moderate length polymorphism. Among the panel II markers, bruce04, bruce16 and bruce30 showed a high discriminatory index. The MLVA-15 typing of 13 B. abortus field isolates revealed 13 different genotypes with panel II markers showing higher discriminatory ability vis-à-vis panel I. The minimum spanning tree analysis (MST) in comparison with isolates from the international database revealed that all B. melitensis and B. abortus isolates from this study belonged to the 'Eastern Mediterranean' and the 'abortus C' lineage, respectively. The MLVA-15 typing could differentiate field isolates of B. abortus and B. melitensis originating from different regions, reaffirming the technique's potential of high resolution and suitability for local epidemiological studies. The MLVA scheme also has the advantage of comparison of local isolates with a worldwide database, allowing for phylogeographical studies.


Subject(s)
Brucella melitensis , Humans , Animals , Brucella melitensis/genetics , Phylogeny , Multilocus Sequence Typing , Minisatellite Repeats , India
9.
Onderstepoort J Vet Res ; 90(1): e1-e8, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38197672

ABSTRACT

Brucellosis is an important bacterial zoonosis responsible for considerable economic losses in livestock and health-related burden worldwide. The objective of this study was to determine the seroprevalence of brucellosis in communal and smallholder cattle farming in four districts of the North West province of South Africa (Dr Ruth Segomotsi Mompati, Ngaka Modiri Molema, Bojanala platinum and Dr Kenneth Kaunda districts). Seven hundred and seventy blood samples from farmed animals (n = 378) and abattoir-slaughtered animals (n = 392) were collected. In addition, milk samples (n = 22) were collected from lactating farmed cows. Rose Bengal test (RBT), complement fixation test (CFT) and milk ring test (MRT) were used to detect antibodies against Brucella species. The RBT showed a seroprevalence of 2% at 95% confidence interval (CI: 1.35-3.35), CFT confirmed an overall seroprevalence of 1.95% (95% CI: 1.14-3.12) for all four districts sampled. Although the seroprevalence of brucellosis was found to be low, the possibility of undetected cases of the disease could not be ruled out. Overall, the findings of this study confirmed that brucellosis is endemic in the surveyed areas of the North West province of South Africa.Contribution: The outcome of this study will contribute to the National Brucellosis Project organised by the Department of Agriculture, Land Reform and Rural Development (2016-2026) to assist in the effective implementation of the disease control measures with a view to prevent further outbreaks in the country's cattle population.


Subject(s)
Brucellosis , Cattle Diseases , United States , Female , Cattle , Animals , South Africa/epidemiology , Lactation , Seroepidemiologic Studies , Agriculture , Brucellosis/epidemiology , Brucellosis/veterinary , Livestock , Rose Bengal , Cattle Diseases/epidemiology
10.
Iran J Vet Res ; 24(3): 270-275, 2023.
Article in English | MEDLINE | ID: mdl-38269017

ABSTRACT

Background: Brucellosis is one of the most important zoonotic diseases caused by Gram-negative bacteria belonging to the genus Brucella. Detection of Brucella species in different countries is of utmost importance. Aims: This study aimed to detect Brucella abortus and Brucella melitensis in domestic ruminant blood samples and their ticks in western Iran. Methods: Sampling was conducted on ruminants from August to September 2020 in four different counties of Kurdistan Province, including Divandareh, Marivan, Baneh, and Sanandaj. Totally, 250 blood samples were collected from 250 small ruminants. There were no ticks on the skin of six (2.4%) ruminants, and 244 ticks were isolated from 244 animals. After genomic DNA extraction from all the collected samples, quantitative polymerase chain reaction (qPCR) was performed to detect IS711 gene. Results: Based on qPCR results, Brucella genus was detected in two blood samples (0.8%) from female sheep and four ticks (1.6%) from male sheep, including three Dermacentor marginatus (1.22%) and one Rhipicephalus turanicus (0.4%). Although B. melitensis was not detected in any tick or blood sample, one tick sample (D. marginatus) was positive for B. abortus. Conclusion: Considering the positivity of ticks for brucellosis in this study, there is a possibility of Brucella transmission from infected ticks to humans and animals through tick bites, nevertheless, in order to identify the Brucella transmission relationship between ticks and animals, serological tests should be used in future studies.

11.
Braz J Microbiol ; 53(4): 2287-2297, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36269553

ABSTRACT

This review was performed to gather knowledge about brucellosis in livestock and wildlife in the Brazilian Pantanal, a biome with a huge biodiversity and extensive livestock production. Following the preferred reporting items for narrative review guidelines and using the terms "Brucella" and "Pantanal," we explored the PubMed, SciELO, Jstor, Science Direct, and Scholar Google databases. Information on host species, diagnostic test, number of positive animals, and positivity rates were acquired. Articles dating from 1998 to 2022 registered 14 studies including cattle, dogs, and the following wildlife species: Ozotoceros bezoarticus, Sus scrofa, Tayassu peccari, Nasua nasua, Cerdocyon thous, Panthera onca, Dasypus novemcintus, Cabassous unicinctus, Euphractus sexcinctus, Priodontes maximus, Myrmecophaga tridactyla and Hydrochoerus hydrochaeris. Brucella occurrence in cattle was demonstrated through the serological confirmatory test 2-mercaptoetanol. Molecular diagnosis detected Brucella abortus in dogs, smooth Brucella in O. beoarticus, and Brucella spp. in T. peccari. Cattle may have a pivotal importance in maintenance and spreading of Brucella spp. due to their high population density, environmental contamination from abortion of infected cows, and eventual excretion of B. abortus S19 strain from vaccinated heifers. The occurrence of Brucella spp. in O. bezoarticus and T. peccari represent a risk for wildlife conservation. These data indicate that Brucella spp. are enzootic in the Pantanal wetland, sustained by a reservoir system including domestic and wild mammals. Due to marked seasonality and large populations of wildlife species sharing same environments with livestock, brucellosis acquires great complexity in Pantanal and, therefore, must be analyzed considering both animal production and conservation.


Subject(s)
Brucellosis , Procyonidae , Animals , Cattle , Female , Dogs , Animals, Wild/microbiology , Brazil/epidemiology , Wetlands , Brucellosis/veterinary , Brucellosis/diagnosis , Brucella abortus , Livestock
12.
Biomed Pharmacother ; 155: 113557, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36115112

ABSTRACT

Vaccines against Brucella abortus, B. melitensis and B. suis have been based on weakened or killed bacteria, however there is no recombinant vaccine for disease prevention or therapy. This study attempted to predict IFN-γ epitopes, T cell cytotoxicity, and T lymphocytes in order to produce a multiepitope vaccine based on BtpA, Omp16, Omp28, virB10, Omp25, and Omp31 antigens against B. melitensis, B. abortus, and B. suis. AAY, GPGPG, and EAAAK peptides were used as epitope linkers, while the PADRE sequence was used as a Toll-like receptor 2 (TLR2) and TLR4 agonist. The final construct included 389 amino acids, and was a soluble protein with a molecular weight of 41.3 kDa, and nonallergenic and antigenic properties. Based on molecular docking studies, molecular dynamics simulations such as Gyration, RMSF, and RMSD, as well as tertiary structure validation methods, the modeled protein had a stable structure capable of interacting with TLR2/4. As a result, this novel vaccine may stimulate immune responses in B and T cells, and could prevent infection by B. suis, B. abortus, and B. melitensis.


Subject(s)
Brucella melitensis , Brucellosis , Humans , Toll-Like Receptor 2 , Epitope Mapping , Epitopes, T-Lymphocyte , Brucellosis/prevention & control , Brucellosis/microbiology , Toll-Like Receptor 4 , Molecular Docking Simulation , Antigens, Bacterial/chemistry , Amino Acids
13.
Microorganisms ; 10(8)2022 Aug 17.
Article in English | MEDLINE | ID: mdl-36014076

ABSTRACT

(1) Background: MALDI-TOF mass spectrometry (MS) is the gold standard for microbial fingerprinting, however, for phylogenetically closely related species, the resolution power drops down to the genus level. In this study, we analyzed MALDI-TOF spectra from 44 strains of B. melitensis, B. suis and B. abortus to identify the optimal classification method within popular supervised and unsupervised machine learning (ML) algorithms. (2) Methods: A consensus feature selection strategy was applied to pinpoint from among the 500 MS features those that yielded the best ML model and that may play a role in species differentiation. Unsupervised k-means and hierarchical agglomerative clustering were evaluated using the silhouette coefficient, while the supervised classifiers Random Forest, Support Vector Machine, Neural Network, and Multinomial Logistic Regression were explored in a fine-tuning manner using nested k-fold cross validation (CV) with a feature reduction step between the two CV loops. (3) Results: Sixteen differentially expressed peaks were identified and used to feed ML classifiers. Unsupervised and optimized supervised models displayed excellent predictive performances with 100% accuracy. The suitability of the consensus feature selection strategy for learning system accuracy was shown. (4) Conclusion: A meaningful ML approach is here introduced, to enhance Brucella spp. classification using MALDI-TOF MS data.

14.
Comput Struct Biotechnol J ; 20: 4185-4194, 2022.
Article in English | MEDLINE | ID: mdl-36016712

ABSTRACT

Melioidosis is a severe disease caused by the highly pathogenic gram-negative bacterium Burkholderia pseudomallei. Several studies have highlighted the broad resistance of this pathogen to many antibiotics and pointed out the pivotal importance of improving the pharmacological arsenal against it. Since γ-carbonic anhydrases (γ-CAs) have been recently introduced as potential and novel antibacterial drug targets, in this paper, we report a detailed characterization of BpsγCA, a γ-CA from B. pseudomallei by a multidisciplinary approach. In particular, the enzyme was recombinantly produced and biochemically characterized. Its catalytic activity at different pH values was measured, the crystal structure was determined and theoretical pKa calculations were carried out. Results provided a snapshot of the enzyme active site and dissected the role of residues involved in the catalytic mechanism and ligand recognition. These findings are an important starting point for developing new anti-melioidosis drugs targeting BpsγCA.

15.
Foods ; 11(15)2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35954037

ABSTRACT

Brucellosis is a worldwide zoonotic disease transmitted to humans, predominantly by the consumption of contaminated raw milk and dairy products. This study aimed to investigate the occurrence of Brucella spp. in 200 raw milk, ricotta, and artisan fresh cheese samples, collected from individual marketing points in four districts in Tunisia. Samples were analyzed for the presence of Brucella spp. by IS711-based real-time PCR assay. Positive samples were further analyzed by qPCR for B. melitensis and B. abortus species differentiation. The DNA of Brucella spp. was detected in 75% of the samples, B. abortus was detected in 31.3%, and B. melitensis was detected in 5.3% of positive samples. A percentage of 49.3% of samples co-harbored both species, while 14% of the Brucella spp. positive samples were not identified either as B. abortus or B. melitensis. High contamination rates were found in ricotta (86.2%), cheese (69.6%), and raw milk (72.5%) samples. The study is the first in Tunisia to assess the occurrence of Brucella spp. contamination in artisanal unpasteurized dairy products and showed high contamination rates. The detection of both B. abortus and B. melitensis highlights that zoonotic high-pathogen agent control remains a challenge for food safety and consumer health protection and could represent a serious emerging foodborne disease in Tunisia.

16.
Trop Anim Health Prod ; 54(1): 62, 2022 Jan 17.
Article in English | MEDLINE | ID: mdl-35037143

ABSTRACT

Brucellosis is a zoonotic infectious disease with a worldwide distribution. This cross-sectional study aimed to determine the occurrence of Brucella in milk and blood samples of ruminants and the importance factors associated with animal brucellosis in Eastern Iran. A total of 200 paired samples, including blood (100) and milk (100), were obtained from the goats, sheep, and cows in Eastern Iran. Serum agglutination (SAT) and 2-mercapto ethanol (2-ME) tests were performed on the sera. A multiplex-polymerase chain reaction (m-PCR) assay was performed to identify the following species of Brucella, including B. abortus biovar 1, 2, 4, 3b, 5, 6, and 9, B. abortus S19, B. melitensis, and B. melitensis Rev.1 vaccine strain. B. abortus RB51 vaccine strain was also investigated in a second PCR assay. Risk factors for infection with Brucella spp. including the effect of abortion, contact with the wild animals, herd type, age, and previous vaccination in predicting blood contamination with B. abortus biovar 1, 2, and 4 were modeled by use of the artificial neural network. A total of 23 samples were seropositive regarding SAT and 2-ME tests. In total, B. abortus was detected in 35% and 15% of blood and milk samples, respectively, by the m-PCR assay. One sample of each of milk and blood was detected to have B. melitensis. Some samples were simultaneously contaminated with two Brucella species or two biovars of B. abortus. B. abortus S19 and B. melitensis Rev.1 vaccine strains were also detected in milk and blood samples. The sensitivity and specificity of the ANN model were 81% and 62%, respectively. In conclusion, B. abortus had higher frequency than B. melitensis in blood and milk samples. ANN determined herd type, previous vaccination, and age of the animal as the largest predictors of blood contamination with B. abortus.


Subject(s)
Brucella melitensis , Brucellosis , Cattle Diseases , Goat Diseases , Sheep Diseases/epidemiology , Animals , Brucella abortus/genetics , Brucella melitensis/genetics , Brucellosis/epidemiology , Brucellosis/veterinary , Cattle , Cattle Diseases/epidemiology , Cross-Sectional Studies , Female , Goat Diseases/epidemiology , Goats , Iran/epidemiology , Multiplex Polymerase Chain Reaction/veterinary , Neural Networks, Computer , Pregnancy , Risk Factors , Sheep
17.
Pathogens ; 10(12)2021 Nov 26.
Article in English | MEDLINE | ID: mdl-34959502

ABSTRACT

In South Africa, the prevalence of cattle handler exposure to Brucella on cattle farms is unknown and risk factors and cattle symptoms associated with infected cattle herds are unavailable. To address this gap, a case-control study of cattle herds was conducted in Gauteng province and farm workers and veterinary officials were tested for exposure to Brucella. Seroprevalence amongst farm workers exposed to case herds ranged from 4.0% (BrucellaCapt®) to 16.7% (IgG ELISA®), compared to those exposed to control herds, where seroprevalence ranged from 1.9% (BrucellaCapt®) to 5.7% (IgG ELISA®). Seroprevalence amongst veterinary officials was significantly greater compared to farm workers exposed to case herds for the outcome RBT+ IgM- IgG+ (OR = 11.1, 95% CI: 2.5-49.9, p = 0.002) and RBT- IgM- IgG+ (OR = 6.3, 95% CI: 2.3-17.3, p < 0.001). Risk factors associated with being an infected herd were: being a government-sponsored farm vs. private farm (OR 4.0; 95% CI: 1.4-11.3; p = 0.009), beef vs. dairy herd (OR 7.9; 95% CI: 1.4-44.9; p = 0.020), open vs. closed herd (OR 3.3; 95% CI: 1.1-10.4; p = 0.038) and the presence of antelope on the farm (OR 29.4; 95% CI: 4.0-218.2; p = 0.001). Abortions (OR = 5.1; 95% CI: 2.0-13.3; p < 0.001), weak calves in the herd (OR = 8.0; 95% CI: 2.6-24.4; p < 0.001), reduction in number of calves born (OR = 9.0; 95% CI: 2.1-43.6; p < 0.001), reduction in conception rate (OR = 3.9; 95% CI: 0.8-18.3; p = 0.046), hygromas in cattle (p = 0.011) and farmers reporting brucellosis-like symptoms in their farm workers or in him/herself (OR = 3.4; 95% CI: 1.3-8.7; p = 0.006) were more likely to be associated with Brucella infected herds than control herds. This evidence can be used in strategic planning to protect both human and herd health.

18.
Pathogens ; 10(12)2021 Dec 09.
Article in English | MEDLINE | ID: mdl-34959549

ABSTRACT

Bovine brucellosis is a zoonotic disease of global public health and economic importance. South Africa has had a national bovine brucellosis eradication scheme since 1979; however, no published report on elimination progress from any province exists. We analysed laboratory test results of all cattle herds participating in the Gauteng Provincial Veterinary Services' eradication scheme between 2013 and 2018. Herd reactor status and within-herd seroprevalence, modelled using mixed-effects logistic and negative binomial regression models, respectively, showed no significant change over the period. However, provincial State Vet Areas, Randfontein (OR = 1.6; 95% CI: 1.2-2.1; p < 0.001) and Germiston (OR = 1.9; 95% CI: 1.5-2.5, p = 0.008) had higher odds of reactor herds than the Pretoria Area and within-herd prevalence count ratios for these areas were 1.5-fold greater than the Pretoria State Vet Area (p < 0.001). Reactor herds were associated with increased herd size (p < 0.001) and larger herd sizes were associated with lower within-herd prevalence (p < 0.001). Despite no evidence of significant progress toward bovine brucellosis elimination in Gauteng province, variability in bovine brucellosis prevalence between State Vet Areas exists. A public health and farmer-supported strategy of ongoing district-based surveillance and cattle vaccination targeting small- to medium-sized herds combined with compulsory test and slaughter of reactors in larger herds is recommended for the province.

19.
Pathogens ; 10(11)2021 Nov 14.
Article in English | MEDLINE | ID: mdl-34832639

ABSTRACT

Brucellosis in humans is under-detected and underreported in sub-Saharan Africa. Risk factors associated with Brucella infection and health seeking behaviour in response to brucellosis-like symptoms, amongst cattle farm workers and veterinary officials in South Africa, are unknown. Farm workers and veterinary officials (N = 230) were screened for brucellosis using commercial Rose Bengal Test (RBT®), IgM Enzyme-linked Immunoassay (ELISA)®, IgG ELISA® and the BrucellaCapt® test. Knowledge of brucellosis and risk factors for exposure to Brucella were also investigated. Seroprevalence varied according to test used: 10.1% (RBT®), 20.9% (IgG ELISA®) and 6.5% (BrucellaCapt®). Only 22.2% (6/27) of veterinary officials opt to visit a clinic, doctor, or hospital in response to self-experienced brucellosis-like symptoms, compared to 74.9% (152/203) of farm workers (p < 0.001). Of the BrucellaCapt® seropositive participants, 53% (7/15) did not visit a clinic in response to brucellosis-like symptoms. Weak evidence of an association between the handling of afterbirth or placenta and infection of a short evolution (RBT®, IgM ELISA® and IgG ELISA® seropositive) was found (OR = 8.9, 95% CI: 1.0-81.1, p = 0.052), and strong evidence of an association between this outcome and the slaughter of cattle (OR = 5.3, 95% CI: 1.4-19.6, p = 0.013). There was strong evidence of a positive association between inactive/resolved infection and veterinary officials vs. farm workers exposed to seropositive herds (OR = 7.0, 95% CI: 2.4-20.2, p < 0.001), with a simultaneous negative association with the handling of afterbirth or placenta (OR = 3.9, 95% CI: 1.3-11.3, p = 0.012). Findings suggest a proportion of undetected clinical cases of brucellosis amongst workers on cattle farms in Gauteng.

20.
Microb Pathog ; 158: 105079, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34245824

ABSTRACT

Brucella abortus, one of the most important members of the genus Brucella responsible for human disease, is an intracellular pathogen capable of avoiding or interfering components of the host immune responses that are critical for its virulence. GPR84, on the other hand, is a seven-transmembrane GPCR involved in the inflammatory response and its induced expression was associated with B. abortus infection of RAW264.7 cells. Here we examined the effects of the reported GPR84 surrogate and endogenous agonists, namely 6-n-octylaminouracil (6-OAU) and lauric acid (LU), respectively in the progression of B. abortus infection in a cell and mouse models. The in vitro studies revealed the LU had bactericidal effect against Brucella starting at 24 h post-incubation. Adhesion of Brucella to RAW264.7 cells was attenuated in both 6-OAU and LU treatments. Brucella uptake was observed to be inhibited in a dose and time-dependent manner in 6-OAU but only at the highest non-cytotoxic concentration in LU-treated cells. However, survival of Brucella within the cells was reduced only in LU-treated cells. We also investigated the possible inhibitory effects of the agonist in other Gram-negative bacterium, Salmonella Typhimurium and we found that both adhesion and uptake were inhibited in 6-OAU treatment and only the intracellular survival for LU treatment. Furthermore, 6-OAU treatment reduced ERK phosphorylation and MCP-1 secretion during Brucella infection as well as reduced MALT1 protein expression and ROS production in cells without infection. LU treatment attenuated ERK and JNK phosphorylation, MCP-1 secretion and NO accumulation but increased ROS production during infection, and similar pattern with MALT1 protein expression. The in vivo studies showed that both treatments via oral route augmented resistance to Brucella infection but more pronounced with 6-AOU as observed with reduced bacterial proliferation in spleens and livers. At 7 d post-treatment and 14 d post-infection, 6-OAU-treated mice displayed reduced IFN-γ serum level. At 7 d post-infection, high serum level of MCP-1 was observed in both treatments with the addition of TNF-α in LU group. IL-6 was increased in both treatments at 14 d post-infection with higher TNF-α, MCP-1 and IL-10 in LU group. Taken together, 6-OAU and LU are potential candidates representing pharmaceutical strategy against brucellosis and possibly other intracellular pathogens or inflammatory diseases.


Subject(s)
Brucellosis , Lauric Acids/pharmacology , Receptors, G-Protein-Coupled/agonists , Uracil/analogs & derivatives , Animals , Brucella abortus , Cattle , Humans , Mice , RAW 264.7 Cells , Uracil/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...