Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Vaccine ; 35(29): 3615-3620, 2017 06 22.
Article in English | MEDLINE | ID: mdl-28554503

ABSTRACT

Parvovirus B19 infections are typically mild in healthy individuals, but can be life threatening in individuals with sickle cell disease (SCD). A Saccharomyces cerevisiae-derived B19 VLP vaccine, now in pre-clinical development, is immunogenic in wild type mice when administered with the adjuvant MF59. Because SCD alters the immune response, we evaluated the efficacy of this vaccine in a mouse model for SCD. Vaccinated mice with SCD demonstrated similar binding and neutralizing antibody responses to those of heterozygous littermate controls following a prime-boost-boost regimen. Due to the lack of a mouse parvovirus B19 challenge model, we employed a natural mouse pathogen, Sendai virus, to evaluate SCD respiratory tract responses to infection. Normal mucosal and systemic antibody responses were observed in these mice. Results demonstrate that mice with SCD can respond to a VLP vaccine and to a respiratory virus challenge, encouraging rapid development of the B19 vaccine for patients with SCD.


Subject(s)
Anemia, Sickle Cell/complications , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Erythema Infectiosum/prevention & control , Parvovirus B19, Human/immunology , Vaccines, Virus-Like Particle/immunology , Adjuvants, Immunologic/administration & dosage , Animals , Disease Models, Animal , Mice , Parvovirus B19, Human/genetics , Polysorbates/administration & dosage , Respirovirus Infections/prevention & control , Saccharomyces cerevisiae/genetics , Squalene/administration & dosage , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Vaccines, Synthetic/isolation & purification , Vaccines, Virus-Like Particle/administration & dosage , Vaccines, Virus-Like Particle/genetics , Vaccines, Virus-Like Particle/isolation & purification
2.
Braz. j. microbiol ; 43(2): 594-601, Apr.-June 2012. graf, tab
Article in English | LILACS | ID: lil-644475

ABSTRACT

This paper aimed to determine the excretion period of B19 vaccine strain during a complete reproductive cycle (from estrus synchronization, artificial insemination, pregnancy and until 30 days after parturition) of dairy cows from 3 to 9 years old that were previously vaccinated from 3 to 8 months. Three groups were monitored with monthly milk and urine collection during 12 months: G1 with seven cows from 3 to 4 years old; G2 with three cows from 5 to 6 years old; and G3 with four cows from 7 to 9 years old. Urine and milk samples were submitted to bacteriological culture and urine and PCR reactions for detection of Brucella spp. and PCR-multiplex for B19 strain identification. Ring test (RT) was also performed in the milk samples, and serum samples were tested by buffered acidified plate antigen test (BAPA). All animals were serologically negative at BAPA and Brucella spp. was not isolated from both urine and milk samples. RT revealed 13/210 (6.2%) positive milk samples. PCR reactions detected DNA of Brucella spp. in 86/420 (20.5%) samples. In urine it was found a significantly higher frequency (35.2%; 74/210) than in milk (5.7%; 12/210), more frequently from the estrus to 150 days of pregnancy and after parturition (6.7%; 10/150), and from 150 days of pregnancy to parturition (3.4%; 2/60), and they were all identified as B19 strain. In three groups, intermittent excretion of B19 strain was detected mainly in urine samples, which confirmed its multiplication and persistence in cows for until 9 years.


Subject(s)
Animals , Cattle , Brucellosis, Bovine/genetics , In Vitro Techniques , Polymerase Chain Reaction/methods , Estrus Synchronization/methods , Brucella Vaccine/genetics , Food Samples , Methods , Serologic Tests
3.
Braz J Microbiol ; 43(2): 594-601, 2012 Apr.
Article in English | MEDLINE | ID: mdl-24031869

ABSTRACT

This paper aimed to determine the excretion period of B19 vaccine strain during a complete reproductive cycle (from estrus synchronization, artificial insemination, pregnancy and until 30 days after parturition) of dairy cows from 3 to 9 years old that were previously vaccinated from 3 to 8 months. Three groups were monitored with monthly milk and urine collection during 12 months: G1 with seven cows from 3 to 4 years old; G2 with three cows from 5 to 6 years old; and G3 with four cows from 7 to 9 years old. Urine and milk samples were submitted to bacteriological culture and urine and PCR reactions for detection of Brucella spp. and PCR-multiplex for B19 strain identification. Ring test (RT) was also performed in the milk samples, and serum samples were tested by buffered acidified plate antigen test (BAPA). All animals were serologically negative at BAPA and Brucella spp. was not isolated from both urine and milk samples. RT revealed 13/210 (6.2%) positive milk samples. PCR reactions detected DNA of Brucella spp. in 86/420 (20.5%) samples. In urine it was found a significantly higher frequency (35.2%; 74/210) than in milk (5.7%; 12/210), more frequently from the estrus to 150 days of pregnancy and after parturition (6.7%; 10/150), and from 150 days of pregnancy to parturition (3.4%; 2/60), and they were all identified as B19 strain. In three groups, intermittent excretion of B19 strain was detected mainly in urine samples, which confirmed its multiplication and persistence in cows for until 9 years.

SELECTION OF CITATIONS
SEARCH DETAIL
...