Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
Heliyon ; 9(12): e23169, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38076194

ABSTRACT

Cancer immunotherapy is a treatment that uses the body's own immune system to fight against cancer. Malignant cells in the human body have the ability to mutate themselves in such a way that they can escape from immune system surveillance and proliferate. So, if the human immune system could be boosted or its surveillance and defensive mechanisms improved so that our bodies can detect cancer cells and kill them by combining all of the human body's defensive mechanisms, it would be much easier to deal with cancer. A recent trial at Memorial Sloan Kettering Cancer Center in New York found that by using a drug called Dostarlimab, rectal adenocarcinoma could be cured by boosting the human immune system to detect and kill cancer cells. This could be considered a validated extension of cancer immunotherapy. This paper will explain how dostarlimab works on the body's immune system and destroys cancer cells in a simple way that anyone who is not in the medical field also can understand.

2.
Front Mol Neurosci ; 16: 1305574, 2023.
Article in English | MEDLINE | ID: mdl-38106879

ABSTRACT

Despite structural similarity with other tumor necrosis factor receptor superfamily (TNFRSF) members, the p75 neurotrophin receptor (p75NTR, TNFR16) mediates pleiotropic biological functions not shared with other TNFRs. The high level of p75NTR expression in the nervous system instead of immune cells, its utilization of co-receptors, and its interaction with soluble dimeric, rather than soluble or cell-tethered trimeric ligands are all characteristics which distinguish it from most other TNFRs. Here, we compare these attributes to other members of the TNFR superfamily. In addition, we describe the recent evolutionary adaptation in B7-1 (CD80), an immunoglobulin (Ig) superfamily member, which allows engagement to neuronally-expressed p75NTR. B7-1-mediated binding to p75NTR occurs in humans and other primates, but not lower mammals due to specific sequence changes that evolved recently in primate B7-1. This discovery highlights an additional mechanism by which p75NTR can respond to inflammatory cues and trigger synaptic elimination in the brain through engagement of B7-1, which was considered to be immune-restricted. These observations suggest p75NTR does share commonality with other immune co-modulatory TNFR family members, by responding to immunoregulatory cues. The evolution of primate B7-1 to bind and elicit p75NTR-mediated effects on neuronal morphology and function are discussed in relationship to immune-driven modulation of synaptic actions during injury or inflammation.

3.
J Med Life ; 16(4): 599-609, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37305822

ABSTRACT

Classical Hodgkin lymphoma represents a paradigm of tumor cell-microenvironment interactions as the neoplastic Hodgkin Reed-Sternberg (HRS) cells typically constitute less than 1% of the total tumor volume. CTLA-4, a member of the CD28/B7 immunoglobulin superfamily, and CD28 and their ligands B7-1 and B7-2 are critically important for the initial activation of naive T cells. Strategies aimed at interfering with the crosstalk between tumoral Reed-Sternberg cells and their cellular partners have been taken into account in the development of new immunotherapies that target different cell components of the HL microenvironment. The study included 50 histopathological confirmed cases of Hodgkin lymphoma. IHC staining for CTLA-4 and B7-1 was performed on archival paraffin-embedded biopsy. SPSS version 17 was used for statistical analysis. CTLA-4 IHC expression in HRS cells was negative in all cases, while in immune cells, CTLA-4 expression was observed in 45 (90%) cases. CD80 expression was present in all cases, both in HRS and immune cells. There was a significant association between HRS cell percentage and IPS score (p-value=0.001). Mean survival duration was longer in <50% immune cells compared to >50% groups, with an overall mean survival of 67.633 months. Considering the CTLA4 expression in immune cells within the microenvironment and the availability of targeted drugs like Iplimumab, which act through CTLA4 blockade, it may be appropriate to use this as targeted therapy in HL cases, particularly in those with refractory disease who are unable to achieve cure prior to ASCT.


Subject(s)
Hodgkin Disease , Humans , CTLA-4 Antigen , Ligands , CD28 Antigens , Tumor Microenvironment , Clinical Relevance
4.
Front Cell Dev Biol ; 11: 1089817, 2023.
Article in English | MEDLINE | ID: mdl-36875761

ABSTRACT

Type 1 diabetes mellitus (T1DM) is an autoimmune disorder specifically targeting pancreatic islet beta cells. Despite many efforts focused on identifying new therapies able to counteract this autoimmune attack and/or stimulate beta cells regeneration, TD1M remains without effective clinical treatments providing no clear advantages over the conventional treatment with insulin. We previously postulated that both the inflammatory and immune responses and beta cell survival/regeneration must be simultaneously targeted to blunt the progression of disease. Umbilical cord-derived mesenchymal stromal cells (UC-MSC) exhibit anti-inflammatory, trophic, immunomodulatory and regenerative properties and have shown some beneficial yet controversial effects in clinical trials for T1DM. In order to clarify conflicting results, we herein dissected the cellular and molecular events derived from UC-MSC intraperitoneal administration (i.p.) in the RIP-B7.1 mouse model of experimental autoimmune diabetes. Intraperitoneal (i.p.) transplantation of heterologous mouse UC-MSC delayed the onset of diabetes in RIP-B7.1 mice. Importantly, UC-MSC i. p. transplantation led to a strong peritoneal recruitment of myeloid-derived suppressor cells (MDSC) followed by multiple T-, B- and myeloid cells immunosuppressive responses in peritoneal fluid cells, spleen, pancreatic lymph nodes and the pancreas, which displayed significantly reduced insulitis and pancreatic infiltration of T and B Cells and pro-inflammatory macrophages. Altogether, these results suggest that UC-MSC i. p. transplantation can block or delay the development of hyperglycemia through suppression of inflammation and the immune attack.

5.
Pediatr Nephrol ; 38(1): 145-159, 2023 01.
Article in English | MEDLINE | ID: mdl-35507150

ABSTRACT

BACKGROUND: Primary FSGS manifests with nephrotic syndrome and may recur following KT. Failure to respond to conventional therapy after recurrence results in poor outcomes. Evaluation of podocyte B7-1 expression and treatment with abatacept (a B7-1 antagonist) has shown promise but remains controversial. METHODS: From 2012 to 2020, twelve patients developed post-KT FSGS with nephrotic range proteinuria, failed conventional therapy, and were treated with abatacept. Nine/twelve (< 21 years old) experienced recurrent FSGS; three adults developed de novo FSGS, occurring from immediately, up to 8 years after KT. KT biopsies were stained for B7-1. RESULTS: Nine KTRs (75%) responded to abatacept. Seven of nine KTRs were B7-1 positive and responded with improvement/resolution of proteinuria. Two patients with rFSGS without biopsies resolved proteinuria after abatacept. Pre-treatment UPCR was 27.0 ± 20.4 (median 13, range 8-56); follow-up UPCR was 0.8 ± 1.3 (median 0.2, range 0.07-3.9, p < 0.004). Two patients who were B7-1 negative on multiple KT biopsies did not respond to abatacept and lost graft function. One patient developed proteinuria while receiving belatacept, stained B7-1 positive, but did not respond to abatacept. CONCLUSIONS: Podocyte B7-1 staining in biopsies of KTRs with post-transplant FSGS identifies a subset of patients who may benefit from abatacept. A higher resolution version of the Graphical abstract is available as Supplementary information.


Subject(s)
Glomerulosclerosis, Focal Segmental , Podocytes , Adult , Child , Humans , Young Adult , Glomerulosclerosis, Focal Segmental/drug therapy , Glomerulosclerosis, Focal Segmental/pathology , Abatacept/therapeutic use , Proteinuria/drug therapy , Proteinuria/etiology , Podocytes/pathology , Staining and Labeling , Recurrence
6.
Pharmaceuticals (Basel) ; 15(12)2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36558957

ABSTRACT

Currently, various pharmaceutical modalities are being developed rapidly. Targeting protein-protein interactions (PPIs) is an important objective in such development. Cyclic peptides, because they have good specificity and activity, have been attracting much attention as an alternative to antibody drugs. However, cyclic peptides involve some difficulties, such as oral availability and cell permeability. Therefore, while small-molecule drugs still present many benefits, the screening of functional small-molecule compounds targeting PPIs requires a great deal of time and effort, including structural analysis of targets and hits. In this study, we investigated a rational two-step strategy to design small-molecule compounds targeting PPIs. First, we obtained inhibitory cyclic peptides that bind to cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) by ribosomal display using PUREfrex® (PUREfrex®RD) to get structure-activity relation (SAR) information. Based on that information, we converted cyclic peptides to small molecules using PepMetics® scaffolds that can mimic the α-helix or ß-turn of the peptide. Finally, we succeeded in generating small-molecule compounds with good IC50 (single-digit µM values) against CTLA-4. This strategy is expected to be a useful approach for small-molecule design targeting PPIs, even without having structural information such as that associated with X-ray crystal structures.

7.
Cancer Sci ; 113(1): 349-361, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34738707

ABSTRACT

CD28, one of the costimulatory molecules, has a pivotal role in T-cell activation, and its expression is strictly regulated in normal T cells. Gain-of-function genetic alterations involving CD28 have been frequently observed in adult T-cell leukemia/lymphoma (ATLL). These abnormalities, such as CD28 fusions and copy number variations, may not only confer continuous, prolonged, and enhanced CD28 signaling to downstream pathways but also induce overexpression of the CD28 protein. In this study, 120 ATLL cases were examined by immunohistochemistry for CD28 and its ligands CD80 and CD86, and their expression on tumor cells was semiquantitatively evaluated. CD28 was overexpressed in 55 (46%) cases, and CD80 or CD86 (CD80/CD86) was infrequently overexpressed in 12 (11%). Compared with non-overexpressers, CD28 overexpressers showed a higher frequency of CD28 genetic alterations and had an increased number of CD80/CD86-positive non-neoplastic cells infiltrating tumor microenvironment. In the entire ATLL patient cohort, CD28 overexpressers showed a significantly poorer overall survival (OS) compared with non-overexpressers (P = .001). The same was true for a subgroup who were treated with multidrug regimens with or without mogamulizumab. CD28 overexpression had no prognostic impact in the group who received allogeneic hematopoietic stem cell transplantation. In the multivariate analysis for OS, CD28 overexpression was selected as an independent risk factor. These results suggest ATLL patients with CD28 overexpression have more aggressive clinical course and are more refractory to treatment with multidrug chemotherapy. CD28 overexpression appears to be a novel unfavorable prognostic marker in ATLL patients, and further prospective studies are warranted to establish its prognostic significance.


Subject(s)
B7-1 Antigen/metabolism , B7-2 Antigen/metabolism , CD28 Antigens/genetics , CD28 Antigens/metabolism , Leukemia-Lymphoma, Adult T-Cell/mortality , Up-Regulation , Adult , Aged , Aged, 80 and over , DNA Copy Number Variations , Female , Gene Expression Regulation, Neoplastic , Humans , Leukemia-Lymphoma, Adult T-Cell/genetics , Leukemia-Lymphoma, Adult T-Cell/metabolism , Male , Middle Aged , Prognosis , Survival Analysis , Tumor Microenvironment
8.
Cancer Med ; 11(2): 479-491, 2022 01.
Article in English | MEDLINE | ID: mdl-34907653

ABSTRACT

BACKGROUND: Programmed cell death ligand 1 (PD-L1) status has been reported to be different between metastatic and primary lesions in some cases. Therefore, the interaction between carcinoma and immune cells could influence their expression in the tumor microenvironment. PD-L1 is known to bind not only to Programmed cell death 1 (PD-1) but also to B7-1 (CD80). In this study, we examined the interaction between lung carcinoma cell lines and peripheral blood mononuclear cells (PBMCs) in vitro. We then examined the significance of B7-1 expression non-small cell lung cancer (NSCLC) microenvironment. METHODS: The interaction of lung carcinoma cell lines and PBMC through the soluble factors was analyzed using a co-culture system. The changes in expression of immune checkpoint-related factors in PBMC were examined by PD-1/PD-L1 Checkpoint Pathway qPCR Array Kit. B7-1 expression in NSCLC tissues was examined by immunohistochemistry. RESULTS: B7-1 was upregulated following the co-culture with the lung carcinoma cell lines. B7-1 expression in NSCLC tissues was significantly higher in smokers and squamous cell carcinomas and was significantly positively correlated with PD-L1 status in primary cancer. However, B7-1 and PD-1 were not correlated between primary and metastatic diseases in the same patients. CONCLUSION: PD-1 inhibitors inhibited PD-1/PD-L1 binding but not PD-L1/B7-1 binding. These results demonstrated that the intratumoral ratio of B7-1 positive T cells in NSCLC tissue could be involved in the therapeutic efficacy of PD-L1 inhibitors. This study focused on lymph node metastasis but other sites of distant metastases should be explored by further analysis.


Subject(s)
B7-H1 Antigen/metabolism , Carcinoma, Non-Small-Cell Lung/immunology , Lung Neoplasms/immunology , Tumor Microenvironment/immunology , Aged , B7-H1 Antigen/immunology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/immunology , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Female , Humans , Immune Checkpoint Inhibitors/pharmacology , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lymphatic Metastasis , Male , Middle Aged , Neoplasm Grading , Neoplasm Staging , Survival Rate , Tumor Microenvironment/drug effects
9.
Front Immunol ; 13: 1056397, 2022.
Article in English | MEDLINE | ID: mdl-36618349

ABSTRACT

ICOS/ICOSL and CD28/B7-1/B7-2 are T cell co-stimulators and CTLA-4 is an immune checkpoint inhibitor that play critical roles in the pathogenesis of neoplasia. Chitinase 3-like-1 (CHI3L1) is induced in many cancers where it portends a poor prognosis and contributes to tumor metastasis. Here we demonstrate that CHI3L1 inhibits the expression of ICOS, ICOSL and CD28 while stimulating CTLA-4 and the B7 moieties in melanoma lung metastasis. We also demonstrate that RIG-like helicase innate immune activation augments T cell co-stimulation, inhibits CTLA-4 and suppresses pulmonary metastasis. At least additive antitumor responses were seen in melanoma lung metastasis treated with anti-CTLA-4 and anti-CHI3L1 antibodies in combination. Synergistic cytotoxic T cell-induced tumor cell death and the heightened induction of the tumor suppressor PTEN were seen in co-cultures of T and tumor cells treated with bispecific antibodies that target both CHI3L1 and CTLA-4. Thus, CHI3L1 contributes to pulmonary metastasis by inhibiting T cell co-stimulation and stimulating CTLA-4. The simultaneous targeting of CHI3L1 and the CTLA-4 axis with individual and, more powerfully with bispecific antibodies, represent promising therapeutic strategies for pulmonary metastasis.


Subject(s)
Antibodies, Bispecific , Lung Neoplasms , Melanoma , Humans , CD28 Antigens , Antigens, CD , Melanoma/metabolism , Chitinase-3-Like Protein 1
10.
Curr Med Sci ; 41(3): 505-512, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34129205

ABSTRACT

The role of B7-1 in podocyte injury has received increasing attention. The aim of this study was to investigate whether losartan protects podocytes of patients with diabetic kidney disease (DKD) by regulating B7-1 and the underlying mechanisms. Rats with streptozotocin-induced DKD were treated with losartan for 8 weeks. Biochemical changes in blood and urine were analyzed. Kidneys were isolated for electron microscopy, immunofluorescence, real-time quantitative PCR (RT-PCR), and Western blot analysis. Immortalized mouse podocyte cells were cultured in normal or high glucose medium in the presence or absence of losartan for 48 h, and then the cells were collected for immunofluorescence, PCR, Western blotting and monolayer permeability detection. The phosphatidylinositol 3-kinase (PI3K) 110α subunit and angiotensin II type 1 receptor (AT1R) plasmids were transfected into podocytes, respectively, and then Western blotting was performed to assess the expression of B7-1 protein. The results showed that losartan ameliorated podocyte structure and function in the rat model of DKD, and reduced the expression of B7-1 protein. Overexpression of PI3K 110α subunit in podocytes attenuated the inhibitory effect of losartan on B7-1 expression in high glucose-stimulated podocytes. The expression of B7-1 was significantly increased by overexpression of AT1R and significantly reduced by blocking PI3K 110α subunit. We conclude that losartan protects podocytes against high glucose-induced injury by inhibiting AT1R-mediated B7-1 expression. This effect is dependent on the AT1R-PI3K 110α subunit pathway.


Subject(s)
B7-1 Antigen/genetics , Class I Phosphatidylinositol 3-Kinases/genetics , Diabetic Nephropathies/drug therapy , Losartan/pharmacology , Receptor, Angiotensin, Type 1/genetics , Angiotensin II/genetics , Animals , Apoptosis/drug effects , Diabetic Nephropathies/chemically induced , Diabetic Nephropathies/genetics , Diabetic Nephropathies/pathology , Disease Models, Animal , Glucose/metabolism , Humans , Kidney/drug effects , Kidney/injuries , Kidney/pathology , Mice , Podocytes/drug effects , Podocytes/pathology , Rats , Streptozocin/toxicity
11.
Clin Kidney J ; 14(6): 1691-1693, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34084465

ABSTRACT

Recurrence of primary focal segmental glomerulosclerosis (FSGS) occurs in up to 50% of patients after kidney transplantation and is associated with poor allograft outcome. Novel therapeutic concepts directly target podocyte function via B7-1 with inconsistent response. We present the case of a 19-year-old patient with recurrent primary FSGS early after living donor kidney transplantation. Plasmapheresis and rituximab did not induce remission. Repetitive abatacept administration was able to achieve partial remission. Maintenance immunosuppression was subsequently switched to a belatacept-based calcineurin inhibitor-free immunosuppression, resulting in sustained complete remission with excellent allograft function throughout a follow-up of >56 months.

12.
Hum Immunol ; 82(2): 103-120, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33358455

ABSTRACT

The purpose of this research is to identify and characterize deleterious genetic variants in the co-stimulatory ligand B7-1, also known as the human cluster of differentiation CD80 marker. The B7-1 ligand and the major histocompatibility complex class II (MHC II) molecules are the main determinants that provide B-cells the required competency to act as antigen presenting cells. For this, participation of both MHC class II molecules and CD80 is required. The interaction of the CD80 ligand with CD28 on the surface 7 of TH cells plays a key role in the activation of TH cells and progression of B cells through the S phase, hence, leading to their proliferation in mitosis. A set of 2313 genetic variants in the B7-1 ligand have been mapped and retrieved from dbSNP database. Subsequently, 150 non-synonymous single nucleotide polymorphisms (nsSNPs) were mapped and subjected to the sequence and structural homology based predictions, which were further analyzed for protein stability and the disease phenotypes. Finally, we identified 7 potentially damaging nsSNPs in the B7-1 ligand that may affect its interaction with the cognitive receptor CD28, hence, may also interfere with TH cell activation and B cell proliferation. We propose that subsequent experimental analyses (stability, expression and interactions) on these proteins can provide a deep understanding about the effect of these variants on the structure and function of CD80.


Subject(s)
B-Lymphocytes/immunology , B7-1 Antigen/genetics , CD28 Antigens/metabolism , Lymphocyte Activation/genetics , T-Lymphocytes, Helper-Inducer/immunology , Adaptive Immunity/genetics , B7-1 Antigen/metabolism , Cell Proliferation/genetics , Computational Biology , Datasets as Topic , Humans , Mitosis/immunology , Polymorphism, Single Nucleotide/immunology , T-Lymphocytes, Helper-Inducer/metabolism
13.
Trends Mol Med ; 27(3): 207-219, 2021 03.
Article in English | MEDLINE | ID: mdl-33199209

ABSTRACT

Immune checkpoints negatively regulate immune cell responses. Programmed cell death protein 1:programmed death ligand 1 (PD-1:PD-L1) and cytotoxic T lymphocyte-associated protein 4 (CTLA-4):B7-1 are among the most important immune checkpoint pathways, and are key targets for immunotherapies that seek to modulate the balance between stimulatory and inhibitory signals to lead to favorable therapeutic outcomes. The current dogma of these two immune checkpoint pathways has regarded them as independent with no interactions. However, the newly characterized PD-L1:B7-1 ligand-ligand cis-interaction and its ability to bind CTLA-4 and CD28, but not PD-1, suggests that these pathways have significant crosstalk. Here, we propose that the PD-L1:B7-1 cis-interaction brings novel mechanistic understanding of these pathways, new insights into mechanisms of current immunotherapies, and fresh ideas to develop better treatments in a variety of therapeutic settings.


Subject(s)
B7-1 Antigen , B7-H1 Antigen , Immunity , Autoimmune Diseases/immunology , Autoimmune Diseases/therapy , B7-1 Antigen/chemistry , B7-1 Antigen/immunology , B7-H1 Antigen/chemistry , B7-H1 Antigen/immunology , Humans , Immune Checkpoint Inhibitors , Immune Evasion , Immunity/immunology , Immunity/physiology , Immunotherapy , Neoplasms/immunology , Neoplasms/therapy , Organ Transplantation , Programmed Cell Death 1 Receptor/chemistry , Programmed Cell Death 1 Receptor/immunology
14.
Med Oncol ; 37(11): 107, 2020 Nov 02.
Article in English | MEDLINE | ID: mdl-33136217

ABSTRACT

The treatment of castration-resistant prostate cancer (CRPC) is always a difficulty in the clinic. Most patients with localized tumor eventually develop CRPC, even if hormone therapy is initially effective. Increasing evidence shows immunotherapy has special advantages compared with traditional therapy in cancer treatment. In this study, we constructed the DC-PC-3 fusion vaccine with B7-1- and GM-CSF-specific modification, and studied its ability to stimulate specific immune response and anti-tumor effect in vitro. The results showed that fusion of DC and tumor cells can improve the expression of associated antigens of DCs. DC-tumor fusion vaccine can strongly promote T cell proliferation and IFN-γ secretion and induce a significant tumor-specific cytotoxic T lymphocyte response. In addition, the B7-1/GM-CSF-modified fusion vaccine showed a more significant anti-tumor effect and greater ability to stimulate the immune response than that without specific modification in vitro. Thus, GM-CSF/B7-1-modified fusion vaccine might be used as a potential therapy strategy for prostate cancer.


Subject(s)
B7-1 Antigen/immunology , Cancer Vaccines/administration & dosage , Dendritic Cells/immunology , Granulocyte-Macrophage Colony-Stimulating Factor/immunology , Immunotherapy/methods , Prostatic Neoplasms, Castration-Resistant/therapy , T-Lymphocytes, Cytotoxic/immunology , B7-1 Antigen/metabolism , Cancer Vaccines/immunology , Cell Fusion/methods , Cell Line, Tumor , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Humans , Immunologic Factors/immunology , Immunologic Factors/metabolism , Male , PC-3 Cells , Prostatic Neoplasms, Castration-Resistant/immunology , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology
15.
Exp Ther Med ; 20(5): 14, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32934679

ABSTRACT

Lupus nephritis (LN) is the most common complication that causes mortality in patients with systemic lupus erythematosus. The B7-1/B7-2 and CD28/cytotoxic T-lymphocyte associated protein 4 co-stimulatory pathway serves a key role in autoimmune disease and organ transplantation. The aim of the present study was to generate and characterize a monoclonal antibody (mAb; clone 4E5) against human B7-1 and to investigate its potential use for the treatment of LN. The results demonstrated that the 4E5 mAb was successfully generated and able to recognize both human and mouse B7-1. After injection of this mAb into a mouse model with chronic graft-vs.-host disease (cGVHD)-induced lupus-like disease, the expression of CD21, CD23, CD80 and CD86 on B220+ B-cells in the spleen, and the concentrations of serum autoantibodies and urine protein, were decreased. Direct immunofluorescence analysis of the kidneys revealed that immunofluorescence of immune complex deposits was weaker in the 4E5-treated mice and electron microscopy analyses of renal tissues indicated that pathological injury of the kidneys of 4E5-treated mice was decreased compared with that in the model control mice. The results of the present study demonstrated that inhibition of the B7-1/CD28 co-stimulatory signaling pathway with the 4E5 mAb may represent a promising strategy to decelerate the progression of LN that is induced by cGVHD with potential for use in the treatment of other autoimmune diseases.

17.
Immune Netw ; 19(4): e25, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31501713

ABSTRACT

CD80 is mainly expressed on Ag-presenting cells (APCs) as a costimulatory molecule but is also detected on T cells. However, the origin and physiological role of CD80 on CD8+ T cells remain unclear. In the present study, we demonstrated that effector and memory CD8+ T cells, but not naïve CD8+ T cells, displayed CD80 molecules on their surfaces after acute lymphocytic choriomeningitis virus infection. Using adoptive transfer of CD80-knockout (KO) CD8+ T cells into a wild type or CD80-KO recipient, we demonstrated that the effector CD8+ T cells displayed CD80 by both intrinsic expression and extrinsic acquisition, while memory CD8+ T cells displayed CD80 only by extrinsic acquisition. Interestingly, the extrinsic acquisition of CD80 by CD8+ T cells was observed only in the lymphoid organs but not in the periphery, indicating the trogocytosis of CD80 molecules via interaction between CD8+ T cells and APCs. We compared the recall immune responses by memory CD8+ T cells that either extrinsically acquired CD80 or were deficient in CD80, and found that CD80, presented by memory CD8+ T cells, played a role in limiting their expansion and IL-2 production upon exposure to secondary challenge. Our study presents the in vivo dynamics of the extrinsic acquisition of CD80 by Ag-specific CD8+ T cells and its role in the regulation of recall immune responses in memory CD8+ T cells.

18.
Front Immunol ; 10: 942, 2019.
Article in English | MEDLINE | ID: mdl-31114583

ABSTRACT

Staphylococcal and streptococcal superantigens are virulence factors that cause toxic shock by hyperinducing inflammatory cytokines. Effective T-cell activation requires interaction between the principal costimulatory receptor CD28 and its two coligands, B7-1 (CD80) and B7-2 (CD86). To elicit an inflammatory cytokine storm, bacterial superantigens must bind directly into the homodimer interfaces of CD28 and B7-2. Recent evidence revealed that by engaging CD28 and B7-2 directly at their dimer interface, staphylococcal enterotoxin B (SEB) potently enhances intercellular synapse formation mediated by B7-2 and CD28, resulting in T-cell hyperactivation. Here, we addressed the question, whether diverse bacterial superantigens share the property of triggering B7-2/CD28 receptor engagement and if so, whether they are capable of enhancing also the interaction between B7-1 and CD28, which occurs with an order-of-magnitude higher affinity. To this end, we compared the ability of distinct staphylococcal and streptococcal superantigens to enhance intercellular B7-2/CD28 engagement. Each of these diverse superantigens promoted B7-2/CD28 engagement to a comparable extent. Moreover, they were capable of triggering the intercellular B7-1/CD28 interaction, analyzed by flow cytometry of co-cultured cell populations transfected separately to express human CD28 or B7-1. Streptococcal mitogenic exotoxin Z (SMEZ), the most potent superantigen known, was as sensitive as SEB, SEA and toxic shock syndrome toxin-1 (TSST-1) to inhibition of inflammatory cytokine induction by CD28 and B7-2 dimer interface mimetic peptides. Thus, superantigens act not only by mediating unconventional interaction between MHC-II molecule and T-cell receptor but especially, by strongly promoting engagement of CD28 by its B7-2 and B7-1 coligands, a critical immune checkpoint, forcing the principal costimulatory axis to signal excessively. Our results show that the diverse superantigens use a common mechanism to subvert the inflammatory response, strongly enhancing B7-1/CD28 and B7-2/CD28 costimulatory receptor engagement.


Subject(s)
B7-1 Antigen/immunology , B7-2 Antigen/immunology , Bacterial Toxins/toxicity , CD28 Antigens/immunology , Staphylococcus aureus/immunology , Streptococcus pyogenes/immunology , Superantigens/toxicity , T-Lymphocytes/immunology , Bacterial Toxins/immunology , HEK293 Cells , Humans , Inflammation/chemically induced , Inflammation/immunology , Inflammation/pathology , Lymphocyte Activation/drug effects , Superantigens/immunology , T-Lymphocytes/pathology
19.
J Virol ; 93(11)2019 06 01.
Article in English | MEDLINE | ID: mdl-30918073

ABSTRACT

In this article we report that the M2 protein encoded by the vaccinia virus is secreted as a homo-oligomer by infected cells and binds two central costimulation molecules, CD80 (B7-1) and CD86 (B7-2). These interactions block the ligation of the two B7 proteins to both soluble CD28 and soluble cytotoxic T-lymphocyte associated protein 4 (CTLA4) but favor the binding of soluble PD-L1 to soluble CD80. M2L gene orthologues are found in several other poxviruses, and the B7-CD28/CTLA4 blocking activity has been identified for several culture supernatants of orthopoxvirus-infected cells and for a recombinant myxoma virus M2 protein homolog (i.e., Gp120-like protein, or Gp120LP). Overall, these data indicate that the M2 poxvirus family of proteins may be involved in immunosuppressive activities broader than the NF-κB inhibition already reported (R. Gedey, X. L. Jin, O. Hinthong, and J. L. Shisler, J Virol 80:8676-8685, 2006, https://doi.org/10.1128/JVI.00935-06). A Copenhagen vaccinia virus with a deletion of the nonessential M2L locus was generated and compared with its parental virus. This M2L-deleted vaccinia virus, unlike the parental virus, does not generate interference with the B7-CD28/CTLA4/PD-L1 interactions. Moreover, this deletion did not affect any key features of the virus (in vitro replication, oncolytic activities in vitro and in vivo, and intratumoral expression of a transgene in an immunocompetent murine model). Altogether, these first results suggest that the M2 protein has the potential to be used as a new immunosuppressive biotherapeutic and that the M2L-deleted vaccinia virus represents an attractive new oncolytic platform with an improved immunological profile.IMPORTANCE The vaccinia virus harbors in its genome several genes dedicated to the inhibition of the host immune response. Among them, M2L was reported to inhibit the intracellular NF-κB pathway. We report here several new putative immunosuppressive activities of M2 protein. M2 protein is secreted and binds cornerstone costimulatory molecules (CD80/CD86). M2 binding to CD80/CD86 blocks their interaction with soluble CD28/CTLA4 but also favors the soluble PD-L1-CD80 association. These findings open the way for new investigations deciphering the immune system effects of soluble M2 protein. Moreover, a vaccinia virus with a deletion of its M2L has been generated and characterized as a new oncolytic platform. The replication and oncolytic activities of the M2L-deleted vaccinia virus are indistinguishable from those of the parental virus. More investigations are needed to characterize in detail the immune response triggered against both the tumor and the virus by this M2-defective vaccinia virus.


Subject(s)
B7-1 Antigen/metabolism , B7-H1 Antigen/metabolism , Vaccinia virus/metabolism , Animals , Antigens, CD/metabolism , B7-1 Antigen/genetics , B7-2 Antigen/genetics , B7-2 Antigen/metabolism , CD28 Antigens/metabolism , CTLA-4 Antigen/metabolism , Cell Adhesion Molecules , Cell Line , Chick Embryo , Humans , Immunoconjugates , Interleukin-2/metabolism , Lymphocyte Activation/immunology , Membrane Glycoproteins/metabolism , Mice , NF-kappa B/metabolism , Vaccinia/genetics , Vaccinia/metabolism , Vaccinia virus/genetics , Viral Proteins/metabolism
20.
Nephrol Ther ; 15(3): 127-135, 2019 Jun.
Article in French | MEDLINE | ID: mdl-30713068

ABSTRACT

Known in less than half a century, borreliosis, or Lyme disease, is a zoonosis caused by the tick bite. It is the most common vector disease in Europe and the United States. Borrelia burgdorferi sensu lato, the bacterium in question, is fitted with a "cunning device" that allows it to trick the immune system and implant the infection chronically. It causes multi-system tissue damage mediated by the inflammatory response of the host. Renal involvement is rarely reported and is better known in dogs as Lyme nephritis. The first case of kidney impairment in the human being was described in 1999, and since then eight other cases have been reported. The involvement is preferentially glomerular; the histological forms vary between immune complex nephropathy and podocytopathy. The pathophysiological mechanisms appear to be triple: immune complex deposits, podocytic hyper-expression of the B7-1 membrane protein, and renal infiltration of inflammatory cells. On the basis of the accumulated knowledge of the disease in just over 40 years, this review aims at establishing the physio-pathological hypotheses of renal involvement in order to better define the histological lesions.


Subject(s)
Lyme Disease , Nephritis/microbiology , Nephritis/physiopathology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...