Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Metabol Open ; 15: 100204, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35990770

ABSTRACT

The interplay between the environment and the immune cells is linked to metabolic homeostasis under physiologic and pathophysiologic conditions. Diabetes mellitus type 2 (T2D) is considered an immune-related inflammatory disorder, in which the adipose tissue macrophages (ATMs) are key players orchestrating metabolic chronic meta-inflammation and contributing to the pathogenesis of metabolic disease. However, the molecular regulators that integrate the environmental signals to control ATM activation and adipose inflammation during obesity and T2D remain unclear. Epigenetic mechanisms constitute important parameters in metabolic homeostasis, obesity and T2D via the integration of the environmental factors to the transcriptional regulation of gene programs. In a very recent study published in Diabetes by Kong et al., BAF60a has been identified as a key chromatin remodeling checkpoint factor that associates obesity-associated stress signals with meta-inflammation and systemic homeostasis. Furthermore, this work uncovers Atf3 as an important downstream effector in BAF60a-mediated chromatin remodeling and transcriptional reprogramming of macrophage activation in adipose tissue. The findings of this research may contribute to the development of new therapeutic approaches for obesity-induced metabolic inflammation and associated metabolic disorders.

2.
Mol Cell Biol ; 42(2): e0031021, 2022 02 17.
Article in English | MEDLINE | ID: mdl-34898277

ABSTRACT

RASSF6, a member of the tumor suppressor Ras-association domain family (RASSF) proteins, regulates cell cycle arrest and apoptosis via p53 and plays a tumor suppressor role. We previously reported that RASSF6 blocks MDM2-mediated p53 degradation and enhances p53 expression. In this study, we demonstrated that RASSF6 has nuclear localization and nuclear export signals and that DNA damage triggers the nuclear accumulation of RASSF6. We found that RASSF6 directly binds to BAF53, the component of SWI/SNF complex. DNA damage induces CDK9-mediated phosphorylation of BAF53, which enhances the interaction with RASSF6 and increases the amount of RASSF6 in the nucleus. Subsequently, RASSF6 augments the interaction between BAF53 and BAF60a, another component of the SWI/SNF complex, and further promotes the interaction of BAF53 and BAF60a with p53. BAF53 silencing or BAF60a silencing attenuates RASSF6-mediated p53 target gene transcription and apoptosis. Thus, RASSF6 is involved in the regulation of DNA damage-induced complex formation, including BAF53, BAF60a, and p53.


Subject(s)
Actins/metabolism , Apoptosis Regulatory Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Cyclin-Dependent Kinase 9/metabolism , DNA Damage/genetics , DNA-Binding Proteins/metabolism , Transcription, Genetic/genetics , Tumor Suppressor Protein p53/metabolism , Actins/genetics , Apoptosis/physiology , Apoptosis Regulatory Proteins/genetics , Cell Cycle Checkpoints/genetics , Cell Cycle Checkpoints/physiology , Chromosomal Proteins, Non-Histone/genetics , Cyclin-Dependent Kinase 9/genetics , DNA Damage/physiology , DNA-Binding Proteins/genetics , Humans , Monomeric GTP-Binding Proteins/genetics , Tumor Suppressor Proteins/metabolism
3.
Cells ; 12(1)2022 12 28.
Article in English | MEDLINE | ID: mdl-36611918

ABSTRACT

Previous studies have demonstrated an involvement of chromatin-remodelling SWI/SNF complexes in the development of prostate cancer, suggesting both tumor suppressor and oncogenic activities. SMARCD1/BAF60A, SMARCD2/BAF60B, and SMARCD3/BAF60C are mutually exclusive accessory subunits that confer functional specificity and are components of all known SWI/SNF subtypes. To assess the role of SWI/SNF in prostate tumorigenesis, we studied the functions and functional relations of the SMARCD family members. Performing RNA-seq in LnCAP cells grown in the presence or absence of dihydrotestosterone, we found that the SMARCD proteins are involved in the regulation of numerous hormone-dependent AR-driven genes. Moreover, we demonstrated that all SMARCD proteins can regulate AR-downstream targets in androgen-depleted cells, suggesting an involvement in the progression to castration-resistance. However, our approach also revealed a regulatory role for SMARCD proteins through antagonization of AR-signalling. We further demonstrated that the SMARCD proteins are involved in several important cellular processes such as the maintenance of cellular morphology and cytokinesis. Taken together, our findings suggest that the SMARCD proteins play an important, yet paradoxical, role in prostate carcinogenesis. Our approach also unmasked the complex interplay of paralogue SWI/SNF proteins that must be considered for the development of safe and efficient therapies targeting SWI/SNF.


Subject(s)
Prostatic Neoplasms , Receptors, Androgen , Humans , Male , Chromatin Assembly and Disassembly/genetics , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Gene Expression Regulation , Prostatic Neoplasms/genetics , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Signal Transduction , Transcription Factors/metabolism
4.
Sheng Wu Gong Cheng Xue Bao ; 37(2): 500-512, 2021 Feb 25.
Article in Chinese | MEDLINE | ID: mdl-33645151

ABSTRACT

Metabolic syndrome is a global chronic epidemic. Its pathogenesis is determined by genetic and environmental factors. Epigenetic modification is reported to regulate gene expression without altering its nucleotide sequences. In recent years, epigenetic modification is sensitively responded to environmental signals, further affecting the gene expression and signaling transduction. Among these regulators, chromatin remodeling SWI/SNF (SWItch/Sucrose non fermentable, SWI/SNF) complex subunit Baf60a plays an important role in maintaining energy homeostasis in mammals. In this paper, we described the pathophysiological roles of Baf60a in maintaining the balance of energy metabolism, including lipid metabolism, cholesterol metabolism, urea metabolism, as well as their rhythmicity. Therefore, in-depth understanding of Baf60a-orchestrated transcriptional network of energy metabolism will provide potential therapeutic targets and reliable theoretical supports for the treatment of metabolic syndrome.


Subject(s)
Lipid Metabolism , Transcription Factors , Animals , Energy Metabolism/genetics , Homeostasis , Signal Transduction , Transcription Factors/genetics , Transcription Factors/metabolism
5.
Biochem Biophys Res Commun ; 534: 815-821, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33168186

ABSTRACT

The BRG1-associated factor 60A (BAF60A), an SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily D member 1, has been known to be important for transcriptional activation and inhibition through the alteration of the DNA nucleosome. Although the association between BAF60A and p53 plays a critical role in tumor suppression, the interaction mode is still unclear. Here, we report the detailed interactions between BAF60A and p53 by both NMR spectroscopy and pull-down analysis. Both N-terminal region (BAF60ANR) and the SWIB domain (BAF60ASWIB) of BAF60A directly interact with the tetramerization domain of p53 (p53TET). NMR data show that Ile315, Met366, Ala388, and Tyr390 of BAF60ASWIB are mostly involved in p53TET binding. The calculated dissociation constant (KD) value between BAF60ASWIB and p53TET revealed relatively weak binding affinity, at approximately 0.3 ± 0.065 mM. Our data will enhance detailed interaction mechanism to elucidate the molecular basis of p53-mediated integration via BAF60A interaction.


Subject(s)
Chromosomal Proteins, Non-Histone/metabolism , Tumor Suppressor Protein p53/metabolism , Binding Sites , Chromosomal Proteins, Non-Histone/genetics , Humans , Molecular Docking Simulation , Nuclear Magnetic Resonance, Biomolecular/methods , Protein Interaction Domains and Motifs , Protein Interaction Maps , Tumor Suppressor Protein p53/genetics
6.
Chinese Journal of Biotechnology ; (12): 500-512, 2021.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-878578

ABSTRACT

Metabolic syndrome is a global chronic epidemic. Its pathogenesis is determined by genetic and environmental factors. Epigenetic modification is reported to regulate gene expression without altering its nucleotide sequences. In recent years, epigenetic modification is sensitively responded to environmental signals, further affecting the gene expression and signaling transduction. Among these regulators, chromatin remodeling SWI/SNF (SWItch/Sucrose non fermentable, SWI/SNF) complex subunit Baf60a plays an important role in maintaining energy homeostasis in mammals. In this paper, we described the pathophysiological roles of Baf60a in maintaining the balance of energy metabolism, including lipid metabolism, cholesterol metabolism, urea metabolism, as well as their rhythmicity. Therefore, in-depth understanding of Baf60a-orchestrated transcriptional network of energy metabolism will provide potential therapeutic targets and reliable theoretical supports for the treatment of metabolic syndrome.


Subject(s)
Animals , Energy Metabolism/genetics , Homeostasis , Lipid Metabolism , Signal Transduction , Transcription Factors/metabolism
7.
Mol Metab ; 32: 85-96, 2020 02.
Article in English | MEDLINE | ID: mdl-32029232

ABSTRACT

OBJECTIVE: Ureagenesis predominantly occurs in the liver and functions to remove ammonia, and the dysregulation of ureagenesis leads to the development of hyperammonemia. Recent studies have shown that ureagenesis is under the control of nutrient signals, but the mechanism remains elusive. Therefore, intensive investigation of the molecular mechanism underlying ureagenesis will shed some light on the pathology of metabolic diseases related to ammonia imbalance. METHODS: Mice were fasted for 24 h or fed a high-fat diet (HFD) for 16 weeks. For human evaluation, we obtained a public data set including 41 obese patients with and without hepatic steatosis. We analyzed the expression levels of hepatic BAF60a under different nutrient status. The impact of BAF60a on ureagenesis and hyperammonemia was assessed by using gain- and loss-of-function strategies. The molecular chaperons mediating the effects of BAF60a on ureagenesis were validated by molecular biological strategies. RESULTS: BAF60a was induced in the liver of both fasted and HFD-fed mice and was positively correlated with body mass index in obese patients. Liver-specific overexpression of BAF60a inhibited hepatic ureagenesis, leading to the increase of serum ammonia levels. Mechanistically, BAF60a repressed the transcription of Cps1, a rate-limiting enzyme, through interaction with Y-box protein 1 (YB-1) and by switching the chromatin structure of Cps1 promoter into an inhibitory state. More importantly, in response to different nutrient status, PGC-1α (as a transcriptional coactivator) and YB-1 competitively bound to BAF60a, thus selectively regulating hepatic fatty acid ß-oxidation and ureagenesis. CONCLUSION: The BAF60a-YB-1 axis represses hepatic ureagenesis, thereby contributing to hyperammonemia under overnutrient status. Therefore, hepatic BAF60a may be a novel therapeutic target for the treatment of overnutrient-induced urea cycle disorders and their associated diseases.


Subject(s)
Chromosomal Proteins, Non-Histone/metabolism , Liver/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Transcription Factors/metabolism , Urea/metabolism , Animals , Male , Mice , Mice, Inbred C57BL
8.
J Cell Physiol ; 234(7): 11780-11791, 2019 07.
Article in English | MEDLINE | ID: mdl-30515787

ABSTRACT

SWI/SNF chromatin remodeling enzymes are multisubunit complexes that contain one of two catalytic subunits, BRG1 or BRM and 9-11 additional subunits called BRG1 or BRM-associated factors (BAFs). BRG1 interacts with the microphthalmia-associated transcription factor (MITF) and is required for melanocyte development in vitro and in vivo. The subunits of SWI/SNF that mediate interactions between BRG1 and MITF have not been elucidated. Three mutually exclusive isoforms of a 60-kDa subunit (BAF60A, B, or C) often facilitate interactions with transcription factors during lineage specification. We tested the hypothesis that a BAF60 subunit promotes interactions between MITF and the BRG1-containing SWI/SNF complex. We found that MITF can physically interact with BAF60A, BAF60B, and BAF60C. The interaction between MITF and BAF60A required the basic helix-loop-helix domain of MITF. Recombinant BAF60A pulled down recombinant MITF, suggesting that the interaction can occur in the absence of other SWI/SNF subunits and other transcriptional regulators of the melanocyte lineage. Depletion of BAF60A in differentiating melanoblasts inhibited melanin synthesis and expression of MITF target genes. MITF promoted BAF60A recruitment to melanocyte-specific promoters, and BAF60A was required to promote BRG1 recruitment and chromatin remodeling. Thus, BAF60A promotes interactions between MITF and the SWI/SNF complex and is required for melanocyte differentiation.


Subject(s)
Cell Differentiation , Chromosomal Proteins, Non-Histone/metabolism , DNA Helicases/metabolism , Melanocytes/cytology , Melanocytes/metabolism , Microphthalmia-Associated Transcription Factor/metabolism , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Animals , Cell Cycle , Cell Differentiation/genetics , Gene Expression Regulation , HEK293 Cells , Humans , Melanins/biosynthesis , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Mice , Microphthalmia-Associated Transcription Factor/chemistry , Models, Biological , Oxidoreductases/genetics , Oxidoreductases/metabolism , Promoter Regions, Genetic/genetics , Protein Binding , Protein Subunits/metabolism
9.
Protein Cell ; 9(2): 207-215, 2018 02.
Article in English | MEDLINE | ID: mdl-28688083

ABSTRACT

Metabolic syndrome has become a global epidemic that adversely affects human health. Both genetic and environmental factors contribute to the pathogenesis of metabolic disorders; however, the mechanisms that integrate these cues to regulate metabolic physiology and the development of metabolic disorders remain incompletely defined. Emerging evidence suggests that SWI/SNF chromatin-remodeling complexes are critical for directing metabolic reprogramming and adaptation in response to nutritional and other physiological signals. The ATP-dependent SWI/SNF chromatin-remodeling complexes comprise up to 11 subunits, among which the BAF60 subunit serves as a key link between the core complexes and specific transcriptional factors. The BAF60 subunit has three members, BAF60a, b, and c. The distinct tissue distribution patterns and regulatory mechanisms of BAF60 proteins confer each isoform with specialized functions in different metabolic cell types. In this review, we summarize the emerging roles and mechanisms of BAF60 proteins in the regulation of nutrient sensing and energy metabolism under physiological and disease conditions.


Subject(s)
Chromatin Assembly and Disassembly , DNA-Binding Proteins/metabolism , Metabolism , Nutrients/metabolism , Signal Transduction , Disease , Humans
10.
Protein & Cell ; (12): 207-215, 2018.
Article in English | WPRIM (Western Pacific) | ID: wpr-756955

ABSTRACT

Metabolic syndrome has become a global epidemic that adversely affects human health. Both genetic and environmental factors contribute to the pathogenesis of metabolic disorders; however, the mechanisms that integrate these cues to regulate metabolic physiology and the development of metabolic disorders remain incompletely defined. Emerging evidence suggests that SWI/SNF chromatin-remodeling complexes are critical for directing metabolic reprogramming and adaptation in response to nutritional and other physiological signals. The ATP-dependent SWI/SNF chromatin-remodeling complexes comprise up to 11 subunits, among which the BAF60 subunit serves as a key link between the core complexes and specific transcriptional factors. The BAF60 subunit has three members, BAF60a, b, and c. The distinct tissue distribution patterns and regulatory mechanisms of BAF60 proteins confer each isoform with specialized functions in different metabolic cell types. In this review, we summarize the emerging roles and mechanisms of BAF60 proteins in the regulation of nutrient sensing and energy metabolism under physiological and disease conditions.


Subject(s)
Humans , Chromatin Assembly and Disassembly , DNA-Binding Proteins , Metabolism , Disease , Metabolism , Nutrients , Metabolism , Signal Transduction
11.
Nutr Metab (Lond) ; 13: 30, 2016.
Article in English | MEDLINE | ID: mdl-27127533

ABSTRACT

The switching defective/sucrose non-fermenting (SWI/SNF) complexes play an important role in hepatic lipid metabolism regulating both transcriptional activation and repression. BAF60a is a core subunit of the SWI/SNF chromatin-remodeling complexes that activates the transcription of fatty acid oxidation genes during fasting/glucagon. BAF60c, another subunit of SWI/SNF complexes, is recruited to form the lipoBAF complex that activates lipogenic genes, promoting lipogenesis and increasing the triglyceride level in response to feeding/insulin. Interestingly, hepatocytes located in the periportal and perivenous zones of the liver display a remarkable heterogeneity in the activity of various enzymes, metabolic functions and gene expression. Especially, fatty-acid oxidation was shown to be mostly periportal, whereas lipogenesis was mostly perivenous. Therefore, the present review highlights the role of of SWI/SNF regulating lipid metabolism under nutritional and hormonal control, which may be associated with hepatocyte heterogeneity.

SELECTION OF CITATIONS
SEARCH DETAIL
...