Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 991
Filter
1.
Iran J Microbiol ; 16(3): 401-410, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39005596

ABSTRACT

Background and Objectives: Rotavirus and Hepatitis A virus are responsible for causing gastroenteritis and jaundice. The current vaccination approaches have proven insufficient, especially in low-income countries. In this study, we presented a novel dual-vaccine candidate that combines the rotavirus VP8 protein and the hepatitis A virus VP1. Materials and Methods: The VP8*-rotavirus+AAY+HAV-VP1 fusion protein was produced using an Escherichia coli expression system. The recombinant protein had a molecular weight of approximately 45.5 kDa and was purified through affinity chromatography. BALB/c mice were injected subcutaneously with the recombinant protein, VP1, VP8 and vaccines for rotavirus and hepatitis A virus, both with and without ALUM and M720 adjuvants. ELISA assays were used to measure total IgG, IgG1, IgG2, and short-term and long-term IL-5 and IFN-γ responses. Results: The fusion protein, when combined with adjuvants, elicited significantly higher total IgG, IgG1, and IgG2 responses compared to VP1 and VP8 alone, as well as the rotavirus and hepatitis A vaccines. Furthermore, it induced a higher short-term IL-5 and IFN-γ response while demonstrating a higher long-term IL-5 response compared to the rotavirus and hepatitis A vaccines. Conclusion: This study demonstrates that the VP8*-rotavirus+AAY+HAV-VP1 fusion protein is a promising dual vaccine candidate for immunization against hepatitis A and rotaviruses.

2.
Iran J Parasitol ; 19(2): 238-246, 2024.
Article in English | MEDLINE | ID: mdl-39011527

ABSTRACT

Background: Curcumin is an extract of rhizome turmeric (diferuloylmethane), with antioxidant, anti-inflammatory, antimicrobial, and anti-parasitic properties, which making it a potential candidate for the treatment of leishmaniasis. The aim of the presented study was to evaluate curcumin as possible candidate for treatment of cutaneous leishmaniasis. Methods: We investigated the physicochemical properties and anti-leishmanial effects of nanoliposomal curcumin (40, 80, and 120 µM) in Leishmania major (MRHO/IR/75/ER) infected BALB/c mice at the faculty of Veterinary Medicinem University of Tehran, Iran. For this aim, L. major promastigotes (MHROM/IR/75/ER) at stationary phase (2×106) were inoculated sub-cutaneously into the upper area of the tail in BALB/c mice (six groups, n= 10 per group). For evaluation of nanoliposomal curcumin, the zeta potential, particle size and stability of nanoliposomal curcumin was determined. Furthermore, the anti-leishmanial effects of nanoliposomal curcumin formulation on the lesion sizes was determined and the parasite burden in the leishmania induced lesion was performed using semi quantitative PCR. Results: Treatment of L. major infected BALB/c mice with nanoliposomal curcumin led to a reduction in the kinetic of the skin lesion size development. The semi quantitative PCR analysis of DNA extracted from the lesions showed reduction of parasite burden. The most effective treatment could be found in 80 µM nanoliposomal curcumin. Treatment with Glucantime, as a positive control, also showed a nearly similar effect compared to the effect of 80 µM nanoliposomal curcumin. Conclusion: Nanoliposomal curcumin could be considered as a potential drug against cutaneous leishmaniasis caused by L. major in susceptible animal models.

3.
Front Immunol ; 15: 1392043, 2024.
Article in English | MEDLINE | ID: mdl-38962015

ABSTRACT

In the Americas, P. vivax is the predominant causative species of malaria, a debilitating and economically significant disease. Due to the complexity of the malaria parasite life cycle, a vaccine formulation with multiple antigens expressed in various parasite stages may represent an effective approach. Based on this, we previously designed and constructed a chimeric recombinant protein, PvRMC-1, composed by PvCyRPA, PvCelTOS, and Pvs25 epitopes. This chimeric protein was strongly recognized by naturally acquired antibodies from exposed population in the Brazilian Amazon. However, there was no investigation about the induced immune response of PvRMC-1. Therefore, in this work, we evaluated the immunogenicity of this chimeric antigen formulated in three distinct adjuvants: Stimune, AddaVax or Aluminum hydroxide (Al(OH)3) in BALB/c mice. Our results suggested that the chimeric protein PvRMC-1 were capable to generate humoral and cellular responses across all three formulations. Antibodies recognized full-length PvRMC-1 and linear B-cell epitopes from PvCyRPA, PvCelTOS, and Pvs25 individually. Moreover, mice's splenocytes were activated, producing IFN-γ in response to PvCelTOS and PvCyRPA peptide epitopes, affirming T-cell epitopes in the antigen. While aluminum hydroxide showed notable cellular response, Stimune and Addavax induced a more comprehensive immune response, encompassing both cellular and humoral components. Thus, our findings indicate that PvRMC-1 would be a promising multistage vaccine candidate that could advance to further preclinical studies.


Subject(s)
Antibodies, Protozoan , Antigens, Protozoan , Malaria Vaccines , Malaria, Vivax , Mice, Inbred BALB C , Plasmodium vivax , Protozoan Proteins , Animals , Plasmodium vivax/immunology , Plasmodium vivax/genetics , Mice , Antigens, Protozoan/immunology , Antigens, Protozoan/genetics , Malaria, Vivax/immunology , Malaria, Vivax/prevention & control , Antibodies, Protozoan/immunology , Malaria Vaccines/immunology , Female , Protozoan Proteins/immunology , Protozoan Proteins/genetics , Epitopes, B-Lymphocyte/immunology , Epitopes, B-Lymphocyte/genetics , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/genetics , Disease Models, Animal , Adjuvants, Immunologic , Immunogenicity, Vaccine , Antigens, Surface
4.
Int Immunopharmacol ; 138: 112593, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38972210

ABSTRACT

In lab settings, inbred mouse strains like BALB/c, C57BL/6J, and C57BL/6N are commonly used. Research in immunology and infectious diseases indicates that their Th1 and Th2 immune responses differ. However, the specific differences in the immune response to the vaccination still require investigation. In this study, ovalbumin (OVA) was used as an antigen and CpG-enriched recombinant plasmid (pUC18-CpG) as an adjuvant for immunisation. The level of serum-specific antibody IgG was detected by indirect ELISA. At 35dpi, serum cytokine levels were measured using MILLIPLEX®. T lymphocyte clusters from mouse spleen were examined using flow cytometry to investigate the immunological effects of the CPG-OVA vaccine on three different types of mice. The results showed that pUC18-CpG as an adjuvant could successfully enhance the immune response. BALB/c had the highest level of IgG antibody. In the OVA-only group, the CD4+/CD8+ ratio of the three types of mice was generally increased, and the BALB/c group had the highest ratio. After inoculation with CpG-OVA, the CD4+/CD8+ ratio of the three types of mice was lower than that of the OVA-only group, and C57BL/6J was the lowest. Compared with the CpG-OVA group of the three kinds of mice, the levels of Th2 cytokines IL-6 and IL-10 in BALB/c were increased compared with C57BL/6J and C57BL/6N. After OVA, the six cytokines secreted in C57BL/6J were higher than those in the C57BL/6N OVA group. Therefore, C57 is a better model for examining the function of the vaccine in cellular immunity, whereas BALB/c mice are more prone to humoral immunity. In addition to highlighting the CpG plasmid's ability to successfully activate the immune response of Th1 and Th2, as well as the expression of IgG in vivo and promote T cell immune typing, this study provides valuable insights into immunology and the selection of mouse models for infectious diseases, providing a valuable resource for designing more effective vaccines in the future.

5.
Eur Radiol Exp ; 8(1): 74, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38872042

ABSTRACT

BACKGROUND: New immunotherapies activate tumor-associated macrophages (TAMs) in the osteosarcoma microenvironment. Iron oxide nanoparticles (IONPs) are phagocytosed by TAMs and, therefore, enable TAM detection on T2*- and T2-weighted magnetic resonance images. We assessed the repeatability and reproducibility of T2*- and T2-mapping of osteosarcomas in a mouse model. METHODS: Fifteen BALB/c mice bearing-murine osteosarcomas underwent magnetic resonance imaging (MRI) on 3-T and 7-T scanners before and after intravenous IONP infusion, using T2*-weighted multi-gradient-echo, T2-weighted fast spin-echo, and T2-weighted multi-echo sequences. Each sequence was repeated twice. Tumor T2 and T2* relaxation times were measured twice by two independent investigators. Repeatability and reproducibility of measurements were assessed. RESULTS: We found excellent agreement between duplicate acquisitions for both T2* and T2 measurements at either magnetic field strength, by the same individual (repeatability), and between individuals (reproducibility). The repeatability concordance correlation coefficient (CCC) for T2* values were 0.99 (coefficients of variation (CoV) 4.43%) for reader 1 and 0.98 (CoV 5.82%) for reader 2. The reproducibility of T2* values between the two readers was 0.99 (CoV 3.32%) for the first acquisitions and 0.99 (CoV 6.30%) for the second acquisitions. Regarding T2 values, the repeatability of CCC was similar for both readers, 0.98 (CoV 3.64% for reader 1 and 4.45% for reader 2). The CCC of the reproducibility of T2 was 0.99 (CoV 3.1%) for the first acquisition and 0.98 (CoV 4.38%) for the second acquisition. CONCLUSIONS: Our results demonstrated high repeatability and reproducibility of quantitative T2* and T2 mapping for monitoring the presence of TAMs in osteosarcomas. RELEVANCE STATEMENT: T2* and T2 measurements of osteosarcomas on IONP-enhanced MRI could allow identifying patients who may benefit from TAM-modulating immunotherapies and for monitoring treatment response. The technique described here could be also applied across a wide range of other solid tumors. KEY POINTS: • Optimal integration of TAM-modulating immunotherapies with conventional chemotherapy remains poorly elucidated. • We found high repeatability of T2* and T2 measurements of osteosarcomas in a mouse model, both with and without IONPs contrast, at 3-T and 7-T MRI field strengths. • T2 and T2* mapping may be used to determine response to macrophage-modulating cancer immunotherapies.


Subject(s)
Bone Neoplasms , Disease Models, Animal , Magnetic Resonance Imaging , Mice, Inbred BALB C , Osteosarcoma , Animals , Osteosarcoma/diagnostic imaging , Mice , Magnetic Resonance Imaging/methods , Reproducibility of Results , Bone Neoplasms/diagnostic imaging , Female
6.
Article in English | MEDLINE | ID: mdl-38877781

ABSTRACT

Hepatitis E virus (HEV) is the major pathogen of viral hepatitis. Immunocompromised individuals infected by HEV are prone to chronic hepatitis and increase the risk of hepato-cellular carcinoma (HCC). Inhibitor of growth family member 5 (ING5) is a tumor suppressor that is expressed at low levels in cancer tumors or cells. However, the underlying relationship between ING5 and HEV infection is unclear. In the present study, acute and chronic HEV animal models are used to explore the interaction between ING5 and HEV. Notably, the expression of ING5 is significantly increased in both the livers of acute HEV-infected BALB/c mice and chronic HEV-infected rhesus macaques. In addition, the relationship between HEV infection and ING5 expression is further identified in human hepatoma (HepG-2) cells. In conclusion, HEV infection strongly upregulates ING5 expression both in vivo and in vitro, which has significant implications for further understanding the pathogenic mechanism of HEV infection.

7.
Curr Protoc ; 4(5): e1053, 2024 May.
Article in English | MEDLINE | ID: mdl-38752927

ABSTRACT

The recombinant human proteoglycan aggrecan-G1 domain (rhG1)-induced arthritis (GIA) mouse model is a complex model of rheumatoid arthritis (RA). In GIA, autoimmune arthritis is induced by repeated intraperitoneal immunization of genetically susceptible BALB/c mice with the rhG1 antigen emulsified in the adjuvant dimethyldioctadecylammonium (DDA). This article describes the steps for producing and purifying the rhG1 antigen, the immunization protocol, methods for following the clinical picture of arthritis, and the evaluation of relevant laboratory parameters. In this model, the autoimmune arthritis develops stepwise, similar to RA: First is the preclinical stage (after the first immunization, days 0-20) with no sign of inflammation but detectable T and B cell activation; next, the stage of early arthritis (after the second immunization, days 21-41), where the first definitive signs of arthritis appear together with autoantibody production; and then the severe late-stage arthritis (after the third immunization, after day 42), which presents with massive inflammation of the limbs, leading to cartilage and bone destruction and finally ankylosis. The protocols described here provide sufficient information for investigators to use the GIA model to study different aspects of autoimmune arthritis. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Induction of recombinant human proteoglycan aggrecan-G1 domain (rhG1)-induced arthritis (GIA) Support Protocol 1: Production of rhG1-Xa-mFc2a fusion protein with CHOK1 mammalian expression system Support Protocol 2: Purification of the rhG1-Xa-mFc2a fusion protein by affinity chromatography Support Protocol 3: Preparation of DDA adjuvant Support Protocol 4: Clinical assessment of arthritis Support Protocol 5: Measurement of serum antibody levels and cytokines Support Protocol 6: Measurement of rhG1-induced proliferation and cytokine production in spleen cell culture Support Protocol 7: Histological assessment of arthritic limbs Support Protocol 8: Evaluation of arthritis with micro-computed tomography.


Subject(s)
Aggrecans , Disease Models, Animal , Recombinant Proteins , Animals , Humans , Mice , Aggrecans/metabolism , Arthritis, Experimental/immunology , Arthritis, Experimental/pathology , Arthritis, Rheumatoid/immunology , Mice, Inbred BALB C
8.
Curr Gene Ther ; 24(4): 307-320, 2024.
Article in English | MEDLINE | ID: mdl-38783530

ABSTRACT

BACKGROUND: Astrocyte elevated gene-1 (AEG-1) is overexpressed in various malignancies. Exostosin-1 (EXT-1), a tumor suppressor, is an intermediate for malignant tumors. Understanding the mechanism behind the interaction between AEG-1 and EXT-1 may provide insights into colon cancer metastasis. METHODS: AOM/DSS was used to induce tumor in BALB/c mice. Using an in vivo-jetPEI transfection reagent, transient transfection of AEG-1 and EXT-1 siRNAs were achieved. Histological scoring, immunohistochemical staining, and gene expression studies were performed from excised tissues. Data from the Cancer Genomic Atlas and GEO databases were obtained to identify the expression status of AEG-1 and itsassociation with the survival. RESULTS: In BALB/c mice, the AOM+DSS treated mice developed necrotic, inflammatory and dysplastic changes in the colon with definite clinical symptoms such as loss of goblet cells, colon shortening, and collagen deposition. Administration of AEG-1 siRNA resulted in a substantial decrease in the disease activity index. Mice treated with EXT-1 siRNA showed diffusely reduced goblet cells. In vivo investigations revealed that PTCH-1 activity was influenced by upstream gene AEG-1, which in turn may affect EXT-1 activity. Data from The Cancer Genomic Atlas and GEO databases confirmed the upregulation of AEG-1 and downregulation of EXT-1 in cancer patients. CONCLUSIONS: This study revealed that AEG-1 silencing might alter EXT-1 expression indirectly through PTCH-1, influencing cell-ECM interactions, and decreasing dysplastic changes, proliferation and invasion.


Subject(s)
Colonic Neoplasms , Membrane Proteins , Mice, Inbred BALB C , RNA, Small Interfering , RNA-Binding Proteins , Animals , Humans , Mice , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Cell Line, Tumor , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Colonic Neoplasms/therapy , Gene Expression Regulation, Neoplastic , Gene Silencing , Membrane Proteins/genetics , RNA, Small Interfering/genetics , RNA, Small Interfering/pharmacology , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Male
9.
Microb Pathog ; 192: 106671, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38729381

ABSTRACT

This work evaluated aspects of the immune response of BALB/c mice infected with Corynebacterium pseudotuberculosis (T1 and C57). The fifteen BALB/c mice were euthanized after 70 days of infection and morphologically evaluated, also analyzing the innate and adaptive immune responses. The C57 strain induced more pronounced morphological changes than the T1 strain. There was an increase in CD4+ and CD8+ T cells identified during infection with the C57 strain. Cytokines of the inflammatory profile IL-1α and IL-6 and regulatory IL-13 and IL-10 presented significant differences. Cytokines IL-2, IL-4, INF-γ, IL-22, IL-21, and IL-27 did not differ significantly between groups. The obtained results contribute to a better understanding of the type of response and the immunological mechanisms involved during infection with different strains of C. pseudotuberculosis.


Subject(s)
CD8-Positive T-Lymphocytes , Corynebacterium Infections , Corynebacterium pseudotuberculosis , Cytokines , Mice, Inbred BALB C , Animals , Corynebacterium pseudotuberculosis/immunology , Corynebacterium Infections/immunology , Corynebacterium Infections/microbiology , Mice , Cytokines/metabolism , CD8-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , Interleukin-10 , Adaptive Immunity , Immunity, Innate , Interleukin-6 , Disease Models, Animal , Mice, Inbred C57BL , Interleukin-1alpha/metabolism , Interleukin-1alpha/immunology , Interferon-gamma/metabolism , Interleukin-4/metabolism , Interleukins , Interleukin-2/metabolism
10.
In Silico Pharmacol ; 12(1): 46, 2024.
Article in English | MEDLINE | ID: mdl-38800619

ABSTRACT

East Africa (Musa spp.), notably Musa acuminata, "Matooke" a staple and economically important food in the region. Here, 12 selected M. acuminata peels extract (MAPE) bioactive compounds were studied for hepatoprotective potentials in aluminium chloride-induced hepatoxicity in adult BALB/c mice. GC-MS analysis was used to identify active components of MAPE. In silico estimation of the pharmacokinetic, the GCMS-identified compounds' toxicity profile and molecular docking were compared with the standard (Simvastatin) drug. Hepatotoxicity was induced using aluminium-chloride treated with MAPE, followed by biochemical and histopathological examination. Twelve bioactive compounds 2,2-Dichloroacetophenone (72870), Cyclooctasiloxane 18993663), 7-Hydroxy-6,9a-dimethyl-3-methylene-decahydro-azuleno[4,5-b]furan-2,9-dione (534579), all-trans-alpha-Carotene (4369188), Cyclononasiloxane (53438479), 3-Chloro-5-(4-methoxyphenyl)-6,7a-dimethyl-5,6,7,7a-tetrahydro-4H-furo[2,3-c]pyridin-2-one (536708), Pivalic acid (6417), 10,13-Octadecadienoic acid (54284936), Ethyl Linoleate (5282184), Oleic acid (5363269), Tirucallol (101257), Obtusifoliol (65252) were identified by GC-MS. Of these, seven were successfully docked with the target proteins. The compounds possess drug likeness potentials that do not inhibits CYP450 isoforms biotransformation. All the docked compounds were chemoprotective to AMES toxicity, hERGI, hERGII and hepatotoxicity. The animal model reveals MAPE protective effect on liver marker's function while the histological studies show regeneration of the disoriented layers of bile ducts and ameliorate the cellular/histoarchitecture of the hepatic cells induced by AlCl3. The findings indicate that MAPE improved liver functions and ameliorated the hepatic cells' cellular or histoarchitecture induced by AlCl3. Further studies are necessary to elucidate the mechanism action and toxicological evaluation of MAPE's chronic or intermittent use to ascertain its safety in whole organism systems.

11.
Parasit Vectors ; 17(1): 203, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38711063

ABSTRACT

BACKGROUND: The role of pathogen genotype in determining disease severity and immunopathology has been studied intensively in microbial pathogens including bacteria, fungi, protozoa and viruses but is poorly understood in parasitic helminths. The medically important blood fluke Schistosoma mansoni is an excellent model system to study the impact of helminth genetic variation on immunopathology. Our laboratory has demonstrated that laboratory schistosome populations differ in sporocyst growth and cercarial production in the intermediate snail host and worm establishment and fecundity in the vertebrate host. Here, we (i) investigate the hypothesis that schistosome genotype plays a significant role in immunopathology and related parasite life history traits in the vertebrate mouse host and (ii) quantify the relative impact of parasite and host genetics on infection outcomes. METHODS: We infected BALB/c and C57BL/6 mice with four different laboratory schistosome populations from Africa and the Americas. We quantified disease progression in the vertebrate host by measuring body weight and complete blood count (CBC) with differential over a 12-week infection period. On sacrifice, we assessed parasitological (egg and worm counts, fecundity), immunopathological (organ measurements and histopathology) and immunological (CBC with differential and cytokine profiles) characteristics to determine the impact of parasite and host genetics. RESULTS: We found significant variation between parasite populations in worm numbers, fecundity, liver and intestine egg counts, liver and spleen weight, and fibrotic area but not in granuloma size. Variation in organ weight was explained by egg burden and intrinsic parasite factors independent of egg burden. We found significant variation between infected mouse lines in cytokine levels (IFN-γ, TNF-α), eosinophils, lymphocytes and monocyte counts. CONCLUSIONS: This study showed that both parasite and host genotype impact the outcome of infection. While host genotype explains most of the variation in immunological traits, parasite genotype explains most of the variation in parasitological traits, and both host and parasite genotypes impact immunopathology outcomes.


Subject(s)
Genotype , Mice, Inbred BALB C , Mice, Inbred C57BL , Schistosoma mansoni , Schistosomiasis mansoni , Animals , Schistosoma mansoni/immunology , Schistosoma mansoni/genetics , Mice , Schistosomiasis mansoni/immunology , Schistosomiasis mansoni/parasitology , Schistosomiasis mansoni/pathology , Female , Host-Parasite Interactions/immunology , Host-Parasite Interactions/genetics , Cytokines/genetics , Cytokines/blood , Cytokines/immunology
12.
Eur J Pharm Biopharm ; 200: 114328, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763329

ABSTRACT

Aggressive colon cancer treatment poses significant challenges. This study investigates the potential of innovative carbohydrate-based nanoparticles for targeted Capecitabine (CTB) delivery. CTB nanoparticles were synthesized by conjugating CTB with potato starch and chitosan using ultrasonication, hydrolysis, and ionotropic gelation. Characterization included drug loading, rheology, Surface-Enhanced Raman Spectroscopy (SERS), Fourier-Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), X-ray Diffraction (XRD), and Thermogravimetric Analysis (TGA). In vitro and in vivo antitumor activity was evaluated using HT-29 cells and N, N-dimethylhydrazine-induced Balb/c mice, respectively. Cellular assays assessed angiogenesis, migration, proliferation, and apoptosis. Nanoparticles exhibited a mean size of 245 nm, positive zeta potential (+30 mV), high loading efficacy (76 %), and sustained drug release (92 % over 100 h). CTB-loaded nanoparticles displayed superior colon histology, reduced tumour scores, and inhibited VEGD and CD31 expression compared to free CTB. Cellular assays confirmed significant antitumor effects, including reduced tube formation, migration, and proliferation, and increased apoptosis. This study demonstrates the promise of CTB-loaded potato starch-chitosan nanoparticles for aggressive colon cancer treatment. These findings highlight the potential of these nanoparticles for further evaluation in diverse cancer models.


Subject(s)
Capecitabine , Chitosan , Colonic Neoplasms , Mice, Inbred BALB C , Nanoparticles , Solanum tuberosum , Starch , Animals , Chitosan/chemistry , Colonic Neoplasms/drug therapy , Colonic Neoplasms/pathology , Starch/chemistry , Solanum tuberosum/chemistry , Capecitabine/administration & dosage , Capecitabine/pharmacology , Humans , Mice , Nanoparticles/chemistry , HT29 Cells , Antimetabolites, Antineoplastic/administration & dosage , Antimetabolites, Antineoplastic/pharmacology , Antimetabolites, Antineoplastic/chemistry , Drug Liberation , Drug Carriers/chemistry , Apoptosis/drug effects , Drug Delivery Systems/methods , Cell Proliferation/drug effects , Male
13.
J Med Food ; 27(5): 385-395, 2024 May.
Article in English | MEDLINE | ID: mdl-38574296

ABSTRACT

This study aimed to investigate the effects and mechanism of Lactobacillus gasseri BNR17, a probiotic strain isolated from human breast milk, on dexamethasone-induced muscle loss in mice and cultured myotubes. BALB/c mice were intraperitoneally injected with dexamethasone, and orally administered L. gasseri BNR17 for 21 days. L. gasseri BNR17 treatment ameliorated dexamethasone-induced decline in muscle function, as evidenced by an increase in forelimb grip strength, treadmill running time, and rotarod retention time in both female and male mice. In addition, L. gasseri BNR17 treatment significantly increased the mass of the gastrocnemius and quadriceps muscles. Dual-energy X-ray absorptiometry showed a significant increase in lean body mass and a decrease in fat mass in both whole body and hind limb after treatment with L. gasseri BNR17. It was found that L. gasseri BNR17 treatment downregulated serum myostatin level and the protein degradation pathway composed of muscle-specific ubiquitin E3 ligases, MuRF1 and MAFbx, and their transcription factor FoxO3. In contrast, L. gasseri BNR17 treatment upregulated serum insulin-like growth factor-1 level and Akt-mTOR-p70S6K signaling pathway involved in protein synthesis in muscle. As a result, L. gasseri BNR17 treatment significantly increased the levels of major muscular proteins such as myosin heavy chain and myoblast determination protein 1. Consistent with in vivo results, L. gasseri BNR17 culture supernatant significantly ameliorated dexamethasone-induced C2C12 myotube atrophy in vitro. In conclusion, L. gasseri BNR17 ameliorates muscle loss by downregulating the protein degradation pathway and upregulating the protein synthesis pathway.


Subject(s)
Dexamethasone , Lactobacillus gasseri , Mice, Inbred BALB C , Muscle Fibers, Skeletal , Muscle Proteins , Muscle, Skeletal , Muscular Atrophy , Probiotics , Ubiquitin-Protein Ligases , Animals , Dexamethasone/adverse effects , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/drug effects , Mice , Female , Male , Muscle Proteins/metabolism , Muscular Atrophy/chemically induced , Muscular Atrophy/metabolism , Muscular Atrophy/drug therapy , Lactobacillus gasseri/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , SKP Cullin F-Box Protein Ligases/metabolism , SKP Cullin F-Box Protein Ligases/genetics , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/genetics , Forkhead Box Protein O3/metabolism , Forkhead Box Protein O3/genetics , Humans , Insulin-Like Growth Factor I/metabolism , TOR Serine-Threonine Kinases/metabolism
14.
Viruses ; 16(4)2024 03 29.
Article in English | MEDLINE | ID: mdl-38675880

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) often causes severe viral pneumonia. Although many studies using mouse models have examined the pathogenicity of SARS-CoV-2, COVID-19 pathogenesis remains poorly understood. In vivo imaging analysis using two-photon excitation microscopy (TPEM) is useful for elucidating the pathology of COVID-19, providing pathological insights that are not available from conventional histological analysis. However, there is no reporter SARS-CoV-2 that demonstrates pathogenicity in C57BL/6 mice and emits sufficient light intensity for two-photon in vivo imaging. Here, we generated a mouse-adapted strain of SARS-CoV-2 (named MASCV2-p25) and demonstrated its efficient replication in the lungs of C57BL/6 mice, causing fatal pneumonia. Histopathologic analysis revealed the severe inflammation and infiltration of immune cells in the lungs of MASCV2-p25-infected C57BL/6 mice, not unlike that observed in COVID-19 patients with severe pneumonia. Subsequently, we generated a mouse-adapted reporter SARS-CoV-2 (named MASCV-Venus-p9) by inserting the fluorescent protein-encoding gene Venus into MASCV2-p25 and sequential lung-to-lung passages in C57BL/6 mice. C57BL/6 mice infected with MASCV2-Venus-p9 exhibited severe pneumonia. In addition, the TPEM of the lungs of the infected C57BL/6J mice showed that the infected cells emitted sufficient levels of fluorescence for easy observation. These findings suggest that MASCV2-Venus-p9 will be useful for two-photon in vivo imaging studies of the pathogenesis of severe COVID-19 pneumonia.


Subject(s)
COVID-19 , Disease Models, Animal , Lung , Mice, Inbred C57BL , SARS-CoV-2 , Animals , Mice , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , COVID-19/virology , Lung/virology , Lung/pathology , Lung/diagnostic imaging , Humans , Genes, Reporter , Virus Replication
15.
Horm Behav ; 162: 105524, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38513526

ABSTRACT

Letrozole, an aromatase inhibitor preventing estrogen synthesis from testosterone, is used as an adjuvant therapy in estrogen receptor-positive breast cancer patients. However, like other aromatase inhibitors, it induces many side effects, including impaired cognition. Despite its negative effect in humans, results from animal models are inconsistent and suggest that letrozole can either impair or improve cognition. Here, we studied the effects of chronic letrozole treatment on cognitive behavior of adult female BALB/c mice, a relevant animal model for breast cancer studies, to develop an appropriate animal model aimed at testing therapies to mitigate side effects of letrozole. In Morris water maze, letrozole 0.1 mg/kg impaired reference learning and memory. Interestingly, most of the letrozole 0.1 mg/kg-treated mice were able to learn the new platform position in reversal training and performed similar to control mice in a reversal probe test. Results of the reversal test suggest that letrozole did not completely disrupt spatial navigation, but rather delayed acquisition of spatial information. The delay might be related to increased anxiety as suggested by increased thigmotactic behavior during the reference memory training. The learning impairment was water maze-specific since we did not observe impairment in other spatial tasks such as in Y-maze or object location test. In contrast, the dose of 0.3 mg/kg did not have effect on water maze learning and facilitated locomotor habituation and recognition in novel object recognition test. The current study shows that letrozole dose-dependently modulates behavioral response and that its effects are task-dependent.


Subject(s)
Anxiety , Aromatase Inhibitors , Letrozole , Maze Learning , Mice, Inbred BALB C , Animals , Letrozole/pharmacology , Female , Maze Learning/drug effects , Mice , Anxiety/drug therapy , Aromatase Inhibitors/pharmacology , Nitriles/pharmacology , Triazoles/pharmacology
16.
Article in English | MEDLINE | ID: mdl-38468520

ABSTRACT

BACKGROUND: Malaria is still the deadliest parasitic disease caused by Plasmodium spp. Due to drug resistance and their unpleasant side effects, of conventional researchers are enormously seeking to achieve antimalarial drugs with more curative effective, less toxic and cost-affordable drugs using more advanced technology such as nanodrugs. PURPOSE: The present study aimed to examine the antimalarial effects of a novel synthesized nonochloroquine-loaded curcumin relying on dendrimer G2 in susceptible mice. METHODS: Antimalarial activity and toxicity of the nanocomposite were examined on BALB/C mice with microscopy, checking RBCs morphology and related enzymatic activity rate. RESULTS: The maximum inhibitory effect of the nanocomposite was seen at 10 mg/kg, killing 98% of P. berghei compared to sole chloroquine, whereas ED50 was reported at 5.5 mg/kg. The safety of the synthesized nanocomposite was confirmed with biochemical tests with no detrimental effects on mice. The sustainability and longevity of the nanodrug increased significantly with the NDC-CQ assay compared to the control groups. CONCLUSION: The study showed that nonochloroquine-loaded curcumin had a promising inhibitory effect on P. berghei growth in infected mice compared to standard drugs. However, further studies and clinical trials with large samples are recommended to study different aspects of using nanodrug.

17.
Indian J Microbiol ; 64(1): 175-185, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38468725

ABSTRACT

The aim of this study was to evaluate the cholesterol lowering ability of Lactic Acid Bacteria (LAB) isolated from human breast milk under in vitro and in vivo conditions. Six LAB isolates namely Lacticaseibacillus casei 1A, Lactobacillus gasseri 5A, Enterococcus faecium 2C, Limosilactobacillus fermentum 3D, Pediococcus acidilactici 1C, and Lactiplantibacillus plantarum 7A, were examined for their bile resistance, bile salt hydrolase activity, cholesterol assimilation and viability in cholesterol rich; DeMan Rogosa and Sharpe broth, simulated gastric, small and upper intestinal conditions. During in vivo experiments, two putative LAB isolates were orally gavage to BALB/c mice, fed with normal basal and cholesterol rich (HCD) diets, daily for a period of 4 weeks. Blood serum analysis including total serum cholesterol, triglycerides, high-density and low-density lipoprotein (LDL) cholesterol levels and total fecal LAB counts of the animals were determined. The isolates in study showed bile resistance and bile salt hydrolysis activity, while significant differences (P < 0.05) were seen in their cholesterol assimilation ability. L. gasseri 5A (195.67%) and L. plantarum 7A (193.78%) displayed highest cholesterol removal percentages, respectively. Animals in HCD, fed with L. gasseri 5A and L. plantarum 7A showed decreased levels of total cholesterol and LDL, compared to the control groups. In HCD group liver weight was increased, while fecal LAB counts were decreased. No changes were observed in behavior or body weight in all experimental groups. In conclusion, L. gasseri 5A and L. plantarum 7A isolated from human breast milk demonstrates significant hypocholesterolaemic actions in vitro and in vivo and might be considered a promising candidates for preventing hypercholesterolemia in man and animals.

18.
Int J Pharm ; 656: 124029, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38527566

ABSTRACT

α-Bisabolol (αBIS), a plant-derived compound with anti-inflammatory properties, is potentially a therapeutic agent for Atopic dermatitis. However, its poor water solubility and photoinstability limit its topical application. Therefore, the present study, aimed to develop cationic polymeric nanocapsules of αBIS to improve its skin delivery, photostability, and therapeutic efficacy. The αBIS-loaded nanocapsules were prepared using the solvent displacement technique. A Box-Behnken (BB) design was employed to statistically optimize formulation variables and αBIS-loaded nanocapsules characterized by particle size, surface charge and encapsulation efficiency. The optimal formulation was selected, and the spherical shape of the nanocapsules was confirmed by scanning electron microscopy (SEM). Furthermore, hydrogel containing αBIS-loaded nanocapsules was prepared by thickening of nanocapsule suspension with Carbopol 934 and evaluated for rheology, in vitro drug release and skin permeation. Furthermore, a mice model of atopic dermatitis was used to evaluate the anti-inflammatory potential of the hydrogels. The optimal formulation displayed a spherical morphology under scanning electron microscopy (SEM) with an optimum particle size of 133.00 nm, polydispersity index (PDI) of 0.12, high EE% of 93 %, and improved optical stability of αBIS in the prepared nanocapsules compared to the free drug. The nano-based hydrogels demonstrated non-Newtonian pseudoplastic behavior and an increased αBIS in vitro release profile without causing skin irritation in rabbits. Drug retention within the dermis and epidermis layers significantly surpassed that of drug-free hydrogel. Moreover, in vivo histopathological studies and myeloperoxidase (MPO) enzyme activity, revealed that hydrogel containing bisabolol nanocapsules exhibited The best anti-inflammatory effect. The results showed that hydrogels containing bisabolol nanocapsules markedly alleviated dermatitis-related inflammation and reduced skin thickness in Balb/c mice. Our findings support nanocapsules as an effective drug delivery system to enhance αBIS stability, bioavailability, and therapeutic efficacy in AD treatment.


Subject(s)
Anti-Inflammatory Agents , Dermatitis, Atopic , Drug Liberation , Hydrogels , Mice, Inbred BALB C , Monocyclic Sesquiterpenes , Nanocapsules , Animals , Hydrogels/chemistry , Hydrogels/administration & dosage , Nanocapsules/chemistry , Dermatitis, Atopic/drug therapy , Monocyclic Sesquiterpenes/administration & dosage , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Skin Absorption/drug effects , Particle Size , Disease Models, Animal , Mice , Administration, Cutaneous , Male , Skin/drug effects , Skin/metabolism , Skin/pathology , Sesquiterpenes/administration & dosage , Sesquiterpenes/chemistry , Sesquiterpenes/pharmacology , Sesquiterpenes/pharmacokinetics , Female
19.
Front Immunol ; 15: 1347835, 2024.
Article in English | MEDLINE | ID: mdl-38495883

ABSTRACT

Vitamin D3 regulates a variety of biological processes irrespective of its well-known importance for calcium metabolism. Epidemiological and animal studies indicate a role in immune regulation, intestinal barrier function and microbiome diversity. Here, we analyzed the impact of different vitamin D3- containing diets on C57BL/6 and BALB/c mice, with a particular focus on gut homeostasis and also investigated effects on immune cells in vitro. Weak regulatory effects were detected on murine T cells. By trend, the active vitamin D3 metabolite 1,25-dihydroxyvitamin D3 suppressed IFN, GM-CSF and IL-10 cytokine secretion in T cells of C57BL/6 but not BALB/c mice, respectively. Using different vitamin D3-fortified diets, we found a tissue-specific enrichment of mainly CD11b+ myeloid cells but not T cells in both mouse strains e.g. in spleen and Peyer's Patches. Mucin Reg3γ and Batf expression, as well as important proteins for gut homeostasis, were significantly suppressed in the small intestine of C57BL76 but not BALB/c mice fed with a high-vitamin D3 containing diet. Differences between both mouse stains were not completely explained by differences in vitamin D3 receptor expression which was strongly expressed in epithelial cells of both strains. Finally, we analyzed gut microbiome and again an impact of vitamin D3 was detected in C57BL76 but not BALB/c. Our data suggest strain-specific differences in vitamin D3 responsiveness under steady state conditions which may have important implications when choosing a murine disease model to study vitamin D3 effects.


Subject(s)
Cholecalciferol , Intestine, Small , Mice , Animals , Cholecalciferol/pharmacology , Mice, Inbred C57BL , Epithelial Cells , Diet
20.
J Parasit Dis ; 48(1): 157-162, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38440762

ABSTRACT

Therapeutic research is very important in the prevention and treatment of leishmaniasis due to problems such as drug resistance, scarring and disease recurrence. The aim of this study was to determine how Leishmania major responds to the anti-leishmaniasis properties of podophyllotoxin and podophyllin. Cultured Leishmania promastigotes were exposed to different concentrations of podophyllotoxin and podophyllin for 24 and 48 h. Then, during the animal phase, Balb/c mice were experimentally injected with Leishmania promastigotes. After wounding, the effects of 0.5% podophyllotoxin and 25% podophyllin on reducing wound diameter and the number of amastigotes in the wound were evaluated. Podophyllotoxin and podophyllin were 83% and 59% lethal to Leishmania major promastigotes at the highest concentrations (200 µg/ml) and time (48 h). In the in vivo study, the mean lesion diameter at the end of treatment in the negative control group was 15.10 mm compared to 14.21 mm and 11.55 mm in the 25% podophyllin and 0.5% podophyllotoxin groups, respectively. Although both agents reduced the size of mice wounds and the number of amastigotes in the wounds, podophyllotoxin was more effective in this regard. Based on the results, podophyllotoxin and podophyllin can be used as leishmaniasis drugs after further research.

SELECTION OF CITATIONS
SEARCH DETAIL
...