Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.570
Filter
1.
Eur J Haematol ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38994654

ABSTRACT

Precise and reliable predictive parameters to accurately identify chronic myeloid leukemia (CML) patients who can successfully discontinue their tyrosine kinase inhibitor (TKI) treatment are lacking. One promising parameter is depth of molecular response measured by BCR::ABL1 digital PCR (dPCR). The aim of this study was to validate a previously described prediction cutoff of 0.0023%IS and to assess the value of dPCR for treatment-free remission (TFR) prediction in relation to other clinical parameters. A droplet-based dPCR assay assessed BCR::ABL1 %IS prior to TKI discontinuation. The primary endpoint was molecular recurrence (MolR) by 36 months. A total of 186 patients from Canada, Germany, and the Netherlands were included. In patients with a first TKI discontinuation attempt (n = 163), a BCR::ABL1 dPCR < and ≥0.0023%IS had a MolR probability of 33% and 70%, respectively. Patients treated less than 6 years with a BCR::ABL1 dPCR <0.0023%IS had a MolR probability of 31%. After correction for treatment duration, both high dPCR value and the use of imatinib (vs. second-generation TKI) were significantly associated with a higher risk of MolR (HR of 3.66, 95%CI 2.06-6.51, p < .001; and 2.85, 95%CI 1.25-6.46, p = .013, respectively). BCR::ABL1 dPCR was not associated with TFR outcome after second TKI discontinuation, however, with the limitation of a small number of patients analyzed (n = 23). In conclusion, BCR::ABL1 digital PCR based on the cutoff of 0.0023%IS is a valuable predictive tool to identify CML patients with a high probability of TFR success after first TKI discontinuation, including patients treated for less than 6 years.

2.
Mol Cell Biochem ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009935

ABSTRACT

BCR::ABL1 inhibitors, the treatment of choice for the majority of patients with chronic myeloid leukaemia (CML), can cause vascular side effects that vary between agents. The exact underlying mechanisms are still poorly understood, but the vascular endothelium has been proposed as a site of origin. The present study investigates the effects of three BCR::ABL1 inhibitors, ponatinib, nilotinib and imatinib, on angiogenesis and signalling in human endothelial cells in response to vascular endothelial growth factor (VEGF). The experiments were performed in endothelial cells isolated from human umbilical veins. After exposure to imatinib, ponatinib and nilotinib, the angiogenic capacity of endothelial cells was assessed in spheroid assays. VEGF-induced signalling pathways were examined in Western blotting experiments using different specific antibodies. RNAi technology was used to downregulate proteins of interest. Intracellular cGMP levels were measured by ELISA. Imatinib had no effect on endothelial function. Ponatinib inhibited VEGF-induced sprouting, while nilotinib increased spontaneous and VEGF-stimulated angiogenesis. These effects did not involve wild-type ABL1 or ABL2, as siRNA-mediated knockdown of these kinases did not affect angiogenesis and VEGF signalling. Consistent with their effects on sprouting, ponatinib and nilotinib affected angiogenic pathways in opposite directions. While ponatinib inhibited VEGF-induced signalling and cGMP formation, nilotinib activated angiogenic signalling, in particular phosphorylation of extracellular signal-regulated kinase 1/2 (Erk1/2). The latter occurred in an epidermal growth factor receptor (EGFR)-dependent manner possibly via suppressing Fyn-related kinase (FRK), a negative regulator of EGFR signalling. Both, pharmacological inhibition of Erk1/2 or EGFR suppressed nilotinib-induced angiogenic sprouting. These results support the notion that the vascular endothelium is a site of action of BCR::ABL1 inhibitors from which side effects may arise, and that the different vascular toxicity profiles of BCR::ABL1 inhibitors may be due to their different actions at the molecular level. In addition, the as yet unknown pro-angiogenic effect of nilotinib should be considered in the treatment of patients with comorbidities associated with pathological angiogenesis, such as ocular disease, arthritis or obesity.

3.
Biochemistry (Mosc) ; 89(6): 1094-1108, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38981703

ABSTRACT

Despite significant progress made over the past two decades in the treatment of chronic myeloid leukemia (CML), there is still an unmet need for effective and safe agents to treat patients with resistance and intolerance to the drugs used in clinic. In this work, we designed 2-arylaminopyrimidine amides of isoxazole-3-carboxylic acid, assessed in silico their inhibitory potential against Bcr-Abl tyrosine kinase, and determined their antitumor activity in K562 (CML), HL-60 (acute promyelocytic leukemia), and HeLa (cervical cancer) cells. Based on the analysis of computational and experimental data, three compounds with the antitumor activity against K562 and HL-60 cells were identified. The lead compound efficiently suppressed the growth of these cells, as evidenced by the low IC50 values of 2.8 ± 0.8 µM (K562) and 3.5 ± 0.2 µM (HL-60). The obtained compounds represent promising basic structures for the design of novel, effective, and safe anticancer drugs able to inhibit the catalytic activity of Bcr-Abl kinase by blocking the ATP-binding site of the enzyme.


Subject(s)
Antineoplastic Agents , Drug Design , Fusion Proteins, bcr-abl , Protein Kinase Inhibitors , Humans , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Fusion Proteins, bcr-abl/antagonists & inhibitors , Fusion Proteins, bcr-abl/metabolism , K562 Cells , HeLa Cells , Pyrimidines/pharmacology , Pyrimidines/chemistry , Molecular Docking Simulation , HL-60 Cells , Drug Screening Assays, Antitumor , Cell Proliferation/drug effects , Computer Simulation
4.
Leuk Res Rep ; 21: 100403, 2024.
Article in English | MEDLINE | ID: mdl-39035746

ABSTRACT

Background: Chronic Myeloid Leukemia is characterized by the presence of the Philadelphia Chromosome (Ph) which contains the BCR::ABL1 fusion gene that occurs due to a reciprocal translocation between chromosomes 9 and 22. This accounts for up to 15 % of all adult leukemias [1]. Most patients treated with first line tyrosine kinase inhibitor (TKI) imatinib achieve durable response but may undergo relapse at some stage [2]. The most important mechanism that may confer imatinib resistance is point mutation within BCR::ABL kinase domain. Other generation ABL tyrosine kinase inhibitors such as dasatinib, nilotinib, bosutinib and ponatinib help to overcome imatinib resistance [3]. Sensitivity of the patient to each of the above TKIs depends upon the individual candidate mutation present. Thus, it is important to perform mutation analysis for effective therapeutic management of CML patients once they show imatinib resistance. We used direct sequencing to identify the different types of mutations responsible for resistance of imatinib treatment from north India. Methods: In this study, the patient resistance for the imatinib were analyzed for BCR::ABL kinase domain mutation by direct sequencing and the detected mutations along with their percentage prevalence were reported. Results: 329 patients with CML-CP were analyzed for BCR::ABL kinase domain mutation. Total 66 (20.06 %) patients out of 329 had mutation in at least one of the domains of BCR::ABL conferring resistance to different generations of TKI. Mutations in BCR::ABL kinase domain was observed in different domain of BCR::ABL. ATP binding P-Loop (42.42 %), Direct binding site (36.36 %), C-Loop (10.60 %), A-Loop (6.06 %), SH2 contact (3.03 %), SH3 contact (1.51 %). Conclusion: Total 20.06 % patients (66/329) show mutation in at least one of the structural motifs of BCR-ABL kinase domain, which further confer the resistance to a particular generation of TKI.

5.
Pharmacol Res Perspect ; 12(4): e1214, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39031848

ABSTRACT

In the treatment of chronic myeloid leukemia (CML), resistance to BCR-ABL inhibitors makes it difficult to continue treatment and is directly related to life expectancy. Therefore, asciminib was introduced to the market as a useful drug for overcoming drug resistance. While combining molecular targeted drugs is useful to avoid drug resistance, the new BCR-ABL inhibitor asciminib and conventional BCR-ABL inhibitors should be used as monotherapy in principle. Therefore, we investigated the synergistic effect and mechanism of the combination of asciminib and imatinib. We generated imatinib-resistant cells using the human CML cell line K562, examined the effects of imatinib and asciminib exposure on cell survival using the WST-8 assay, and comprehensively analyzed genetic variation related to drug resistance using RNA-seq and real-time PCR. A synergistic effect was observed when imatinib and asciminib were combined with or without imatinib resistance. Three genes, GRRP1, ESPN, and NOXA1, were extracted as the sites of action of asciminib. Asciminib in combination with BCR-ABL inhibitors may improve the therapeutic efficacy of conventional BCR-ABL inhibitors and prevent the development of resistance. Its dosage may be effective even at minimal doses that do not cause side effects. Further verification of this mechanism of action is needed. Additionally, cross-resistance between BCR-ABL inhibitors and asciminib may occur, which needs to be clarified through further validation as soon as possible.


Subject(s)
Drug Resistance, Neoplasm , Drug Synergism , Fusion Proteins, bcr-abl , Imatinib Mesylate , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Imatinib Mesylate/pharmacology , Humans , Fusion Proteins, bcr-abl/antagonists & inhibitors , Fusion Proteins, bcr-abl/genetics , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , K562 Cells , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Protein Kinase Inhibitors/pharmacology , Cell Survival/drug effects , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Agents/pharmacology , Niacinamide/analogs & derivatives , Pyrazoles
6.
Int J Lab Hematol ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840510

ABSTRACT

INTRODUCTION: Accurate quantification of the BCR::ABL1 fusion gene in whole blood is pivotal for the clinical management of chronic myeloid leukemia (CML) patients. The fusion protein encoded by BCR::ABL1 can vary in size, depending on the BCR and/or ABL1 gene breakpoint. The vast majority of CML patients have a p210 BCR::ABL1 fusion gene (M-BCR), which can be attributed to the presence of either e14a2 (b3a2) or e13a2 (b2a2) mRNA transcript junctions. METHODS: Twenty-five CML samples were analyzed in two different ISO15189-accredited centers that both use an Europe Against Cancer-based quantitative polymerase chain reaction (qPCR) protocol. Reanalysis of the sample set with transcript-specific standard curves and digital droplet PCR (ddPCR) were performed. RESULTS: qPCR quantification revealed a significant (up to 1 log) difference specifically for the e13a2 transcript variant in contrast to e14a2 transcripts (Hodges-Lehman 4.29; p < 0.001). Reanalysis of the sample set with transcript-specific standard curves abolishes the initial transcript-specific difference (Hodges-Lehman 0.003; p = 0.8192). Comparison of transcript-specific qPCR results of both centers with ddPCR, an absolute quantification method, showed a statically significant association, especially in the lower range, indicating the clinical utility of transcript-specific or absolute quantification methods. CONCLUSION: Our data show that differences between transcript-specific quantification might exist between centers, leading to potential clinical impact on the follow-up of CML patients. The use of transcript-specific standard curves for qPCR quantification, or absolute quantification, can significantly reduce these differences. Specific attention should be applied to the interpretation of quantification differences of CML patients that switch between diagnostic centers.

7.
Mol Carcinog ; 63(8): 1429-1435, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38860593

ABSTRACT

Mixed phenotype acute leukemia (MPAL) is a type of acute leukemia in which encompasses mixed features of myeloid, T-lymphoid, and/or B-lymphoid differentiation. Philadelphia chromosome-positive (Ph+) MPAL is a rare subgroup with a poor prognosis and accounts for <1% of adult acute leukemia. Until now, there is still no consensus on how to best treat Ph+ MPAL. Here, we report a 62-year-old male with Ph+ (atypical e13a2 BCR-ABL1 fusion protein) MPAL. This patient presented with recurrent and intense bone pain due to bone marrow necrosis (BMN). Besides, he did not achieve a complete remission for the first two chemotherapies, until he received flumatinib combined with hyper-CVAD (B) (a dose-intensive regimen include methotrexate and cytarabine). To our knowledge, this is the first report to describe the coexistence of BMN and atypical e13a2 BCR-ABL1 transcripts in patients with MPAL. This finding will bring new understandings in the diagnosis and treatment of Ph+ MPAL.


Subject(s)
Bone Marrow , Fusion Proteins, bcr-abl , Necrosis , Humans , Male , Middle Aged , Fusion Proteins, bcr-abl/genetics , Bone Marrow/pathology , Leukemia, Biphenotypic, Acute/genetics , Leukemia, Biphenotypic, Acute/pathology , Leukemia, Biphenotypic, Acute/drug therapy
8.
Cell Commun Signal ; 22(1): 314, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849885

ABSTRACT

BACKGROUND: Abnormally expressed BCR/ABL protein serves as the basis for the development of chronic myeloid leukaemia (CML). The F-actin binding domain (FABD), which is a crucial region of the BCR/ABL fusion protein, is also located at the carboxyl end of the c-ABL protein and regulates the kinase activity of c-ABL. However, the precise function of this domain in BCR/ABL remains uncertain. METHODS: The FABD-deficient adenovirus vectors Ad-BCR/ABL△FABD, wild-type Ad-BCR/ABL and the control vector Adtrack were constructed, and 32D cells were infected with these adenoviruses separately. The effects of FABD deletion on the proliferation and apoptosis of 32D cells were evaluated by a CCK-8 assay, colony formation assay, flow cytometry and DAPI staining. The levels of phosphorylated BCR/ABL, p73, and their downstream signalling molecules were detected by western blot. The intracellular localization and interaction of BCR/ABL with the cytoskeleton-related protein F-actin were identified by immunofluorescence and co-IP. The effect of FABD deletion on BCR/ABL carcinogenesis in vivo was explored in CML-like mouse models. The degree of leukaemic cell infiltration was observed by Wright‒Giemsa staining and haematoxylin and eosin (HE) staining. RESULTS: We report that the loss of FABD weakened the proliferation-promoting ability of BCR/ABL, accompanied by the downregulation of BCR/ABL downstream signals. Moreover, the deletion of FABD resulted in a change in the localization of BCR/ABL from the cytoplasm to the nucleus, accompanied by an increase in cell apoptosis due to the upregulation of p73 and its downstream proapoptotic factors. Furthermore, we discovered that the absence of FABD alleviated leukaemic cell infiltration induced by BCR/ABL in mice. CONCLUSIONS: These findings reveal that the deletion of FABD diminished the carcinogenic potential of BCR/ABL both in vitro and in vivo. This study provides further insight into the function of the FABD domain in BCR/ABL.


Subject(s)
Apoptosis , Cell Proliferation , Fusion Proteins, bcr-abl , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Fusion Proteins, bcr-abl/genetics , Fusion Proteins, bcr-abl/metabolism , Animals , Humans , Mice , Apoptosis/genetics , Actins/metabolism , Carcinogenesis/genetics , Protein Domains , Cell Line, Tumor
9.
Biomolecules ; 14(6)2024 May 30.
Article in English | MEDLINE | ID: mdl-38927048

ABSTRACT

Chronic myeloid leukemia (CML) is an oncological myeloproliferative disorder that accounts for 15 to 20% of all adult leukemia cases. The molecular basis of this disease lies in the formation of a chimeric oncogene BCR-ABL1. The protein product of this gene, p210 BCR-ABL1, exhibits abnormally high constitutive tyrosine kinase activity. Over recent decades, several targeted tyrosine kinase inhibitors (TKIs) directed against BCR-ABL1 have been developed and introduced into clinical practice. These inhibitors suppress BCR-ABL1 activity through various mechanisms. Furthermore, the advent of RNA interference technology has enabled the highly specific inhibition of BCR-ABL1 transcript expression using small interfering RNA (siRNA). This experimental evidence opens avenues for the development of a novel therapeutic strategy for CML, termed siRNA therapy. The review delves into molecular genetic mechanisms underlying the pathogenesis of CML, challenges in CML therapy, potential molecular targets for drug development, and the latest results from the application of siRNAs in in vitro and in vivo CML models.


Subject(s)
Fusion Proteins, bcr-abl , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Molecular Targeted Therapy , RNA, Small Interfering , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy , Humans , RNA, Small Interfering/genetics , RNA, Small Interfering/therapeutic use , Fusion Proteins, bcr-abl/genetics , Fusion Proteins, bcr-abl/antagonists & inhibitors , Fusion Proteins, bcr-abl/metabolism , Animals , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology , RNA Interference
10.
Ann Hematol ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888615

ABSTRACT

Here, we present a rare case of myeloproliferative neoplasms (MPN) with eosinophilia harboring both BCR::ABL1 and PDGFRB rearrangements, posing a classification dilemma. The patient exhibited clinical and laboratory features suggestive of chronic myeloid leukemia (CML) and myeloid/lymphoid neoplasms with eosinophilia and tyrosine kinase gene fusions (MLN-TK), highlighting the diagnostic challenges associated with overlapping phenotypes. Despite the complexity, imatinib treatment swiftly achieved deep molecular remission, underscoring the therapeutic efficacy of tyrosine kinase inhibitors in such scenarios. Furthermore, the rapid attainment of deep remission by this patient in response to imatinib closely resembles that observed in MLN-TK patients with PDGFRB rearrangements. Further research is warranted to elucidate the underlying mechanisms driving the coexistence of multiple oncogenic rearrangements in MPNs and to optimize therapeutic strategies for these complex cases.

11.
EJHaem ; 5(3): 607-615, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38895060

ABSTRACT

A distinct subset of acute myeloid leukemia (AML) is characterized by the presence of the Philadelphia chromosome (Ph+), due to reciprocal translocation t(9;22)(q34;q11.2). This chromosomal rearrangement leads to the fusion of the breakpoint cluster region (BCR) gene on chromosome 22 with the ABL1 gene on chromosome 9, generating the BCR::ABL1 fusion gene. The Ph+ AML subtype is associated with poor prognosis and resistance to conventional chemotherapy. Beyond the well-established BCR::ABL1 fusion, recent studies have shed light on additional genetic abnormalities in Ph+ AML, including associations with rearrangements involving core binding factor beta (CBFB). We describe a case of de novo AML with concurrent BCR::ABL1 and CBFB::MYH11 rearrangements.

12.
Cureus ; 16(5): e60679, 2024 May.
Article in English | MEDLINE | ID: mdl-38903380

ABSTRACT

Acute lymphoblastic leukemia (ALL) is an uncommon and rapidly progressing blood cancer originating in the bone marrow, characterized by the abnormal proliferation of immature lymphocytes. Although most cases of ALL are observed in children, the disease pattern shows two peaks: one in early childhood and another around the age of 50. Approximately a fifth to a third of adults diagnosed with ALL exhibit cytogenetic abnormalities involving the Philadelphia chromosome. Despite the existence of several studies on Philadelphia chromosome-positive ALL (Ph+ ALL), our case accentuates the use of a multi-disciplinary approach to treatment and involves a patient from a unique demographic.

13.
Am J Physiol Cell Physiol ; 327(1): C184-C192, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38826137

ABSTRACT

Clinical experience with tyrosine kinase inhibitors (TKIs) over the past two decades has shown that, despite the apparent therapeutic benefit, nearly 30% of patients with chronic myelogenous leukemia (CML) display primary resistance or intolerance to TKIs, and approximately 25% of those treated are forced to switch TKIs at least once during therapy due to acquired resistance. Safe and effective treatment modalities targeting leukemic clones that escape TKI therapy could hence be game changers in the professional management of these patients. Here, we aimed to investigate the efficacy of a novel therapeutic oligonucleotide of unconventional design, called ASP210, to reduce BCR-ABL1 mRNA levels in TKI-resistant CML cells, with the assumption of inducing their apoptosis. Imatinib- and dasatinib-resistant sublines of BCR-ABL1-positive MOLM-7 and CML-T1 cells were established and exposed to 0.25 and 2.5 µM ASP210 for 10 days. RT-qPCR showed a remarkable reduction of the target mRNA level by >99% after a single application. Cell viability was monitored daily by trypan blue staining. In response to the lack of driver oncoprotein BCR-ABL1, TKI-resistant CML cells underwent apoptosis regardless of the presence of the clinically relevant T315I mutation by day 5 after redosing with ASP210. The effect was selective for cancer cells, indicating a favorable safety profile for this therapeutic modality. Furthermore, the spontaneous uptake and high intracellular concentrations of ASP210 suggest its potential to be effective at relatively low doses. The present findings suggest that ASP210 is a promising therapeutic avenue for patients with CML who fail to respond to TKI therapy.NEW & NOTEWORTHY Effective treatment modalities targeting leukemic clones that escape tyrosine kinase inhibitor (TKI) therapy could be game changers in the professional management of patients displaying primary resistance, intolerance, or acquired resistance to TKIs. Although delivering authentic innovations today is more complex than ever, we developed a highly potent and safe oligonucleotide-based modality against BCR-ABL1 mRNA named ASP210 that effectively induces cell death in BCR-ABL1-positive TKI-resistant cells while sparing BCR-ABL1-negative healthy cells.


Subject(s)
Apoptosis , Drug Resistance, Neoplasm , Fusion Proteins, bcr-abl , Imatinib Mesylate , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Oligonucleotides , Protein Kinase Inhibitors , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Drug Resistance, Neoplasm/drug effects , Protein Kinase Inhibitors/pharmacology , Fusion Proteins, bcr-abl/genetics , Fusion Proteins, bcr-abl/antagonists & inhibitors , Fusion Proteins, bcr-abl/metabolism , Cell Line, Tumor , Oligonucleotides/pharmacology , Apoptosis/drug effects , Imatinib Mesylate/pharmacology , Imatinib Mesylate/therapeutic use , Dasatinib/pharmacology , Antineoplastic Agents/pharmacology , Cell Survival/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism
14.
Asian Pac J Cancer Prev ; 25(6): 1959-1967, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38918657

ABSTRACT

BACKGROUND: As one of the main molecules in BCR-ABL signaling, c-Myc acts as a pivotal key in disease progression and disruption of long-term remission in patients with CML. OBJECTIVES: To clarify the effects of c-Myc inhibition in CML, we examined the anti-tumor property of a well-known small molecule inhibitor of c-Myc 10058-F4 on K562 cell line. METHODS: This experimental study was conducted in K562 cell line for evaluation of cytotoxic activity of 10058-F4 using Trypan blue and MTT assays. Flow cytometry and Quantitative RT-PCR analysis were also conducted to determine its mechanism of action. Additionally, Annexin/PI staining was performed for apoptosis assessment. RESULTS: The results of Trypan blue and MTT assay demonstrated that inhibition of c-Myc, as shown by suppression of c-Myc expression and its associated genes PP2A, CIP2A, and hTERT, could decrease viability and metabolic activity of K562 cells, respectively. Moreover, a robust elevation in cell population in G1-phase coupled with up-regulation of p21 and p27 expression shows that 10058-F4 could hamper cell proliferation, at least partly, through induction of G1 arrest. Accordingly, we found that 10058-F4 induced apoptosis via increasing Bax and Bad; In contrast, no significant alterations were observed NF-KB pathway-targeted anti-apoptotic genes in the mRNA levels. Notably, disruption of the NF-κB pathway with bortezomib as a common proteasome inhibitor sensitized K562 cells to the cytotoxic effect of 10058-F4, substantiating the fact that the NF-κB axis functions probably attenuate the K562 cells sensitivity to c-Myc inhibition. CONCLUSIONS: It can be concluded from the results of this study that inhibition of c-Myc induces anti-neoplastic effects on CML-derived K562 cells as well as increases the efficacy of imatinib. For further insight into the safety and effectiveness of 10058-F4 in CML, in vivo studies will be required.


Subject(s)
Apoptosis , Cell Proliferation , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Proto-Oncogene Proteins c-myc , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Apoptosis/drug effects , Cell Proliferation/drug effects , K562 Cells , NF-kappa B/metabolism , NF-kappa B/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Bortezomib/pharmacology , Tumor Cells, Cultured , Boronic Acids/pharmacology , RNA, Messenger/genetics , Pyrazines/pharmacology , Signal Transduction/drug effects , Telomerase/antagonists & inhibitors
15.
BMC Cancer ; 24(1): 734, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877512

ABSTRACT

BACKGROUND: The role of familial influence in chronic myeloid leukaemia (CML) occurrence is less defined. Previously, we conducted a study to determine the prevalence of harbouring BCR::ABL1 in our local adult normal population (designated as StudyN). We present our current study, which investigated the prevalence of harbouring BCR::ABL1 in the normal first-degree relatives of local CML patients (designated as StudyR). We compared and discussed the prevalence of StudyR and StudyN to assess the familial influence in CML occurrence. METHODS: StudyR was a cross-sectional study using convenience sampling, recruiting first-degree relatives of local CML patients aged ≥ 18 years old without a history of haematological tumour. Real-time quantitative polymerase chain reaction standardised at the International Scale (BCR::ABL1-qPCRIS) was performed according to standard laboratory practice and the manufacturer's protocol. RESULTS: A total of 96 first-degree relatives from 41 families, with a mean age of 39 and a male-to-female ratio of 0.88, were enrolled and analysed. The median number of relatives per family was 2 (range 1 to 5). Among them, 18 (19%) were parents, 39 (41%) were siblings, and 39 (41%) were offspring of the CML patients. StudyR revealed that the prevalence of harbouring BCR::ABL1 in the first-degree relatives was 4% (4/96), which was higher than the prevalence in the local normal population from StudyN, 0.5% (1/190). All four positive relatives were Chinese, with three of them being female (p > 0.05). Their mean age was 39, compared to 45 in StudyN. The BCR::ABL1-qPCRIS levels ranged between 0.0017%IS and 0.0071%IS, similar to StudyN (0.0023%IS to 0.0032%IS) and another study (0.006%IS to 0.016%IS). CONCLUSION: Our study showed that the prevalence of harbouring BCR::ABL1 in the first-degree relatives of known CML patients was higher than the prevalence observed in the normal population. This suggests that familial influence in CML occurrence might exist but could be surpassed by other more dominant influences, such as genetic dilutional effects and protective genetic factors. The gender and ethnic association were inconsistent with CML epidemiology, suggestive of a higher familial influence in female and Chinese. Further investigation into this topic is warranted, ideally through larger studies with longer follow-up periods.


Subject(s)
Fusion Proteins, bcr-abl , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/epidemiology , Male , Female , Adult , Middle Aged , Cross-Sectional Studies , Prevalence , Fusion Proteins, bcr-abl/genetics , Family , Young Adult , Aged , Adolescent
16.
South Asian J Cancer ; 13(2): 132-141, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38919665

ABSTRACT

Atreye MajumdarSambit K. MohantyObjective This article identifies and evaluates the frequency of mutations in the BCR-ABL1 kinase domain (KD) of chronic myeloid leukemia (CML) patients who showed suboptimal response to their current tyrosine kinase inhibitor (TKI) regime and assesses their clinical value in further treatment decisions. Materials and Methods Peripheral and/or bone marrow were collected from 791 CML patients. Ribonucleic acid was extracted, reverse transcribed, and Sanger sequencing method was utilized to detect single-nucleotide variants (SNVs) in BCR-ABL1 KD. Results Thirty-eight different SNVs were identified in 29.8% ( n = 236/791) patients. T315I, E255K, and M244V were among the most frequent mutations detected. In addition, one patient harbored a novel L298P mutation. A subset of patients from the abovementioned harbored compound mutations (13.3%, n = 33/236). Follow-up data was available in 28 patients that demonstrated the efficacy of TKIs in correlation with mutation analysis and BCR-ABL1 quantitation. Molecular response was attained in 50% patients following an appropriate TKI shift. A dismal survival rate of 40% was observed in T315I-harboring patients on follow-up. Conclusion This study shows the incidence and pattern of mutations in one of the largest sets of Indian CML patients. In addition, our findings strengthen the prognostic value of KD mutation analysis among strategies to overcome TKI resistance.

18.
Cureus ; 16(4): e58972, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38800235

ABSTRACT

Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm characterized by the presence of the Philadelphia chromosome (Ph), resulting from the t(9;22)(q34;q11.2) translocation. Imatinib, a tyrosine kinase inhibitor (TKI), has revolutionized the treatment of CML. However, despite the initial response, some patients may progress to an advanced stage, such as a blast crisis. We report a 40-year-old female who presented with CML chronic phase (CP) taking imatinib 400 mg/day and achieved a complete hematological response (CHR) after one month of treatment. She achieved a suboptimal response in the third month (BCR-ABL positive 10.29% IS). However, five months into therapy, she developed a sudden lymphoid blast crisis with chromosomal aberrations involving chromosomes 10 and 12. Molecular analysis detected concomitant L248V with partial exon 4 deletion and E225V mutations within the BCR-ABL1 fusion gene. The patient received intensive chemotherapy and dasatinib. We report the first case of concomitant mutation of L248V with partial exon 4 deletion and E255V on BCR-ABL1 gene mutation, which contributes to a sudden precursor B-cell lymphoid blast crisis.

19.
Pathology ; 56(5): 681-687, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38719770

ABSTRACT

The use of next-generation sequencing (NGS) for monitoring measurable residual disease (MRD) in acute lymphoblastic leukaemia (ALL) has been gaining traction. This study aimed to investigate the utility of NGS in MRD monitoring for the three major fusion transcript (FT) subtypes of B-precursor ALL (B-ALL). The MRD results for 104 bone marrow samples from 56 patients were analysed through NGS and real time quantitative reverse transcription PCR (RT-qPCR) for the three major FTs: BCR::ABL1, TCF3::PBX1, and ETV6::RUNX1. To validate the NGS approach, NGS-MRD was initially compared with allele-specific oligonucleotide-qPCR-MRD, and the coefficient of determination was good (R2=0.8158). A subsequent comparison of NGS-MRD with FT-MRD yielded a good coefficient of determination (R2=0.7690), but the coefficient varied by subtype. Specifically, the R2 was excellent for TCF3::PBX1 ALL (R2=0.9157), good for ETV6::RUNX1 ALL (R2=0.8606), and subpar for BCR::ABL1 ALL (R2=0.5763). The overall concordance between the two methods was 83.7%, and an excellent concordance rate of 95.8% was achieved for TCF3::PBX1 ALL. Major discordance, which was defined as a >1 log difference between discordant NGS-MRD and FT-MRD, occurred in 6.7% of the samples, with all but one sample being BCR::ABL1 ALL. Among the four non-transplanted patients with BCR::ABL1-MRD (+)/NGS-MRD (-), three did not relapse after long-term follow-up. Our finding indicates that NGS-MRD has a better prognostic impact than RT-qPCR-MRD in ETV6::RUNX1 and BCR::ABL1 ALL, whereas in TCF3::PBX1 ALL, both methods exhibit comparable efficacy.


Subject(s)
High-Throughput Nucleotide Sequencing , Neoplasm, Residual , Oncogene Proteins, Fusion , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Neoplasm, Residual/genetics , Neoplasm, Residual/diagnosis , Oncogene Proteins, Fusion/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Female , Male , Adolescent , Adult , Child , Middle Aged , Young Adult , Child, Preschool , Core Binding Factor Alpha 2 Subunit/genetics , Fusion Proteins, bcr-abl/genetics
20.
Oncol Res Treat ; : 1-4, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38754400

ABSTRACT

INTRODUCTION: Philadelphia chromosome-positive acute lymphoblastic leukaemia (Ph+ALL) is treated as standard of care (SoC) by imatinib-based treatment combined with induction and consolidation chemotherapy followed by allogeneic stem cell transplantation (SCT) in first remission. The German Multicenter ALL Study Group for Adult ALL (GMALL) reports about a trial to evaluate the impact of ponatinib-based therapy, blinatumomab treatment for suboptimal responders, and the possibility of omission of SoC Allo SCT in optimal responders entitled GMALL-EVOLVE. METHODS: Herein, imatinib is randomized versus ponatinib as frontline treatment combined with chemotherapy, optimal responders also get randomized between SCT and chemo-immunotherapy, and suboptimal responders receive immunotherapy before SCT. The trial is registered under the EudraCT number 2022-000760-21. CONCLUSION: This trial will answer several major questions in the treatment of Ph+ALL.

SELECTION OF CITATIONS
SEARCH DETAIL
...