Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 678
Filter
1.
Yale J Biol Med ; 97(2): 253-263, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38947109

ABSTRACT

Environmental mismatches are defined as changes in the environment that induce public health crises. Well known mismatches leading to chronic disease include the availability of technologies that facilitate unhealthy diets and sedentary lifestyles, both factors that adversely affect cardiovascular health. This commentary puts these mismatches in context with biota alteration, an environmental mismatch involving hygiene-related technologies necessary for avoidance of infectious disease. Implementation of hygiene-related technologies causes a loss of symbiotic helminths and protists, profoundly affecting immune function and facilitating a variety of chronic conditions, including allergic disorders, autoimmune diseases, and several inflammation-associated neuropsychiatric conditions. Unfortunately, despite an established understanding of the biology underpinning this and other environmental mismatches, public health agencies have failed to stem the resulting tide of increased chronic disease burden. Both biomedical research and clinical practice continue to focus on an ineffective and reactive pharmaceutical-based paradigm. It is argued that the healthcare of the future could take into account the biology of today, effectively and proactively dealing with environmental mismatch and the resulting chronic disease burden.


Subject(s)
Immune System Diseases , Humans , Chronic Disease , Animals , Environment
2.
J Hazard Mater ; 475: 134937, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38889461

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) constitute important organic contaminants that have been degrading coastal ecosystems over the years. Evaluating PAH status in port ecosystems aligns with societal goals of maintaining clean habitats and sustainability. This comprehensive review systematically analyzed 123 articles, exploring the global distribution, sources, and ecological risks linked to PAH contamination in ports, focusing on water, sediment, and biota. The mean concentrations of 16 PAHs in water, sediment, and biota across worldwide ports were 175.63 ± 178.37 ng/L, 1592.65 ± 1836.5 µg/kg, and 268.47 ± 235.84 µg/kg, respectively. In line with PAH emissions and use in Asia, Asian ports had the highest PAH concentrations for water and biota, while African ports had the highest PAH concentrations for sediment. The temporal trend in PAH accumulation in sediments globally suggests stability. However, PAH concentrations in water and biota of global ports exhibit increasing trends, signaling aggravating PAH contamination within port aquatic ecosystems. Some ports exhibited elevated PAH levels, particularly in sediments with 4.5 %, 9.5 %, and 21 % of the ports categorized as very poor, poor, and moderate quality. Some PAH isomers exceeded guidelines, including the carcinogenic Benzo(a)pyrene (BaP). Coal, biomass, and petroleum combustion were major sources for PAHs. The structure of ports significantly influences the concentrations of PAHs. PAH concentrations in sediments of semi-enclosed ports were 3.5 times higher than those in open ports, while PAH concentrations in water and biota of semi-enclosed ports were lower than those in open ports. Finally, risk analyses conducted through Monte Carlo simulation indicated moderate to high risks to aquatic species, with probabilities of 74.8 % in water and 34.4 % in sediments of ports worldwide. This review underscores the imperative to delve deeper into the accumulation of PAHs and similar pollutants in ports for effective management and environmental protection.


Subject(s)
Environmental Monitoring , Geologic Sediments , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Polycyclic Aromatic Hydrocarbons/analysis , Water Pollutants, Chemical/analysis , Geologic Sediments/chemistry , Geologic Sediments/analysis , Risk Assessment , Animals , Ships
3.
Aquat Toxicol ; 272: 106977, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38820743

ABSTRACT

Concerns have been conveyed regarding the availability and hazards of microplastics (MPs) in aquatic biota due to their widespread presence in aquatic habitats. Zebrafish (Danio rerio) are widely used as a model organism to study the adverse impacts of MPs due to their several compelling advantages, such as their small size, ease of breeding, inexpensive maintenance, short life cycle, year-round spawning, high fecundity, fewer legal restrictions, and genetic resemblances to humans. Exposure of organisms to MPs produces physical and chemical toxic effects, including abnormal behavior, oxidative stress, neurotoxicity, genotoxicity, immune toxicity, reproductive imbalance, and histopathological effects. But the severity of the effects is size and concentration-dependent. It has been demonstrated that smaller particles could reach the gut and liver, while larger particles are only confined to the gill, the digestive tract of adult zebrafish. This thorough review encapsulates the current body of literature concerning research on MPs in zebrafish and demonstrates an overview of MPs size and concentration effects on the physiological, morphological, and behavioral characteristics of zebrafish. Finding gaps in the literature paves the way for further investigation.


Subject(s)
Behavior, Animal , Microplastics , Water Pollutants, Chemical , Zebrafish , Animals , Zebrafish/physiology , Microplastics/toxicity , Water Pollutants, Chemical/toxicity , Behavior, Animal/drug effects
4.
Fungal Biol ; 128(3): 1751-1757, 2024 May.
Article in English | MEDLINE | ID: mdl-38796259

ABSTRACT

This study explores the fungal diversity associated with tarballs, weathered crude oil deposits, on Goa's tourist beaches. Despite tarball pollution being a longstanding issue in Goa state in India, comprehensive studies on associated fungi are scarce. Our research based on amplicon sequence analysis of fungal ITS region fills this gap, revealing a dominance of Aspergillus, particularly Aspergillus penicillioides, associated with tarballs from Vagator and Morjim beaches. Other notable species, including Aspergillus sydowii, Aspergillus carbonarius, and Trichoderma species, were identified, all with potential public health and ecosystem implications. A FUNGuild analysis was conducted to investigate the potential ecological roles of these fungi, revealing a diverse range of roles, including nutrient cycling, disease propagation, and symbiotic relationships. The study underscores the need for further research and monitoring, given the potential health risks and contribution of tarball-associated fungi to the bioremediation of crude oil-contaminated beaches.


Subject(s)
Biodiversity , DNA, Fungal , Fungi , India , DNA, Fungal/genetics , Fungi/genetics , Fungi/classification , Fungi/isolation & purification , Sequence Analysis, DNA , DNA, Ribosomal Spacer/genetics , Phylogeny , Petroleum/microbiology
5.
J Hazard Mater ; 472: 134463, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38723486

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are a class of toxic manufactured chemicals in commercial and consumer products. They are resistant to environmental degradation and mobile in soil, air, and water. This study used the introduced bivalve Corbicula fluminea as a passive biomonitor at sampling locations in a primary drinking water source in Virginia, USA. Many potential PFAS sources were identified in the region. Perfluorohexane sulfonate (PFHxS) and 6:2 fluorotelomer sulfonic acid (6:2 FTS) levels were highest downstream of an airport. The highest levels of short-chain carboxylic acids were in locations downstream of a wastewater treatment plant. Measured PFAS concentrations varied by location in C. fluminea, sediment, and surface water samples. Two compounds were detected across all three mediums. Calculated partitioning coefficients confirm bioaccumulation of PFAS in C. fluminea and sorption to sediment. C. fluminea bioaccumulated two PFAS not found in the other mediums. Perfluoroalkyl carboxylic acids and short-chain compounds dominated in clam tissue, which contrasts with findings of accumulation of longer-chain and perfluorosulfonic acids in fish. These findings suggest the potential for using bivalves to complement other organisms to better understand the bioaccumulation of PFAS and their fate and transport in a freshwater ecosystem.


Subject(s)
Corbicula , Fluorocarbons , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/analysis , Fluorocarbons/analysis , Corbicula/metabolism , Corbicula/chemistry , Environmental Monitoring/methods , Geologic Sediments/chemistry , Geologic Sediments/analysis , Biological Monitoring , Virginia
6.
J Hazard Mater ; 472: 134574, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38739959

ABSTRACT

The pervasive and steadily increasing presence of microplastics/nanoplastics (MPs/NPs) in aquatic environments has raised significant concerns regarding their potential adverse effects on aquatic organisms and their integration into trophic dynamics. This emerging issue has garnered the attention of (eco)toxicologists, promoting the utilization of toxicotranscriptomics to unravel the responses of aquatic organisms not only to MPs/NPs but also to a wide spectrum of environmental pollutants. This review aims to systematically explore the broad repertoire of predicted molecular responses by aquatic organisms, providing valuable intuitions into complex interactions between plastic pollutants and aquatic biota. By synthesizing the latest literature, present analysis sheds light on transcriptomic signatures like gene expression, interconnected pathways and overall molecular mechanisms influenced by various plasticizers. Harmful effects of these contaminants on key genes/protein transcripts associated with crucial pathways lead to abnormal immune response, metabolic response, neural response, apoptosis and DNA damage, growth, development, reproductive abnormalities, detoxification, and oxidative stress in aquatic organisms. However, unique challenge lies in enhancing the fingerprint of MPs/NPs, presenting complicated enigma that requires decoding their specific impact at molecular levels. The exploration endeavors, not only to consolidate existing knowledge, but also to identify critical gaps in understanding, push forward the frontiers of knowledge about transcriptomic signatures of plastic contaminants. Moreover, this appraisal emphasizes the imperative to monitor and mitigate the contamination of commercially important aquatic species by MPs/NPs, highlighting the pivotal role that regulatory frameworks must play in protecting all aquatic ecosystems. This commitment aligns with the broader goal of ensuring the sustainability of aquatic resources and the resilience of ecosystems facing the growing threat of plastic pollutants.


Subject(s)
Aquatic Organisms , Microplastics , Transcriptome , Water Pollutants, Chemical , Microplastics/toxicity , Water Pollutants, Chemical/toxicity , Aquatic Organisms/drug effects , Aquatic Organisms/genetics , Animals , Transcriptome/drug effects , Nanoparticles/toxicity , Nanoparticles/chemistry
7.
Mar Pollut Bull ; 203: 116444, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705002

ABSTRACT

An efficient and sensitivity approach, which combines solid-phase extraction or ultrasonic extraction for pretreatment, followed by ultra-performance liquid chromatography-tandem mass spectrometry, has been established to simultaneously determine eight lipophilic phycotoxins and one hydrophilic phycotoxin in seawater, sediment and biota samples. The recoveries and matrix effects of target analytes were in the range of 61.6-117.3 %, 55.7-121.3 %, 57.5-139.9 % and 82.6 %-95.0 %, 85.8-106.8 %, 80.7 %-103.3 % in seawater, sediment, and biota samples, respectively. This established method revealed that seven, six and six phycotoxins were respectively detected in the Beibu Gulf, with concentrations ranging from 0.14 ng/L (okadaic acid, OA) to 26.83 ng/L (domoic acid, DA) in seawater, 0.04 ng/g (gymnodimine-A, GYM-A) to 2.75 ng/g (DA) in sediment and 0.01 ng/g (GYM-A) to 2.64 ng/g (domoic acid) in biota samples. These results suggest that the presented method is applicable for the simultaneous determination of trace marine lipophilic and hydrophilic phycotoxins in real samples.


Subject(s)
Biota , Environmental Monitoring , Marine Toxins , Seawater , Solid Phase Extraction , Marine Toxins/analysis , Environmental Monitoring/methods , Seawater/chemistry , Geologic Sediments/chemistry , Water Pollutants, Chemical/analysis , Tandem Mass Spectrometry , Hydrophobic and Hydrophilic Interactions , Kainic Acid/analogs & derivatives , Kainic Acid/analysis , Heterocyclic Compounds, 3-Ring , Hydrocarbons, Cyclic , Imines
8.
Sci Total Environ ; 935: 173358, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38768727

ABSTRACT

The presence of contaminants of emerging concern in aquatic ecosystems represents an ever-increasing environmental problem. Aquatic biota is exposed to these contaminants, which can be absorbed and distributed to their organs. This study focused on the assessment, distribution, and ecological risk of 32 CECs in a Spanish river impacted by effluents from a wastewater treatment plant, analyzing the organs and plasma of common carp. Environmental concentrations in water and sediment were examined at sites upstream and downstream of the wastewater treatment plant. The two downstream sites showed 15 times higher total concentrations (12.4 µg L-1 and 30.1 µg L-1) than the two upstream sites (2.08 µg L-1 and 1.66 µg L-1). Half of the CECs were detected in fish organs, with amantadine having the highest concentrations in the kidney (158 ng g-1 w.w.) and liver (93 ng g-1 w.w.), followed by terbutryn, diazepam, and bisphenol F in the brain (50.2, 3.82 and 1.18 ng g-1 w.w.). The experimental bioaccumulation factors per organ were compared with the bioconcentration factors predicted by a physiologically based pharmacokinetic model, obtaining differences of one to two logarithmic units for most compounds. Risk quotients indicated a low risk for 38 % of the contaminants. However, caffeine and terbutryn showed an elevated risk for fish. The mixed risk quotient revealed a medium risk for most of the samples in the three environmental compartments: surface water, sediment, and fish.


Subject(s)
Environmental Monitoring , Geologic Sediments , Wastewater , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Wastewater/chemistry , Animals , Geologic Sediments/chemistry , Risk Assessment , Carps , Rivers/chemistry , Spain , Fishes
9.
Eur J Nutr ; 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733401

ABSTRACT

PURPOSE: Ulcerative colitis (UC) is a serious health problem with increasing morbidity and prevalence worldwide. The pathogenesis of UC is complex, currently believed to be influenced by genetic factors, dysregulation of the host immune system, imbalance in the intestinal microbiota, and environmental factors. Currently, UC is typically managed using aminosalicylates, immunosuppressants, and biologics as adjunctive therapies, with the risk of relapse and development of drug resistance upon discontinuation. Therefore, further research into the pathogenesis of UC and exploration of potential treatment strategies are necessary to improve the quality of life for affected patients. According to previous studies, Lactobacillus paracasei Jlus66 (Jlus66) reduced inflammation and may help prevent or treat UC. METHODS: We used dextran sulfate sodium (DSS) to induce a mouse model of UC to assess the effect of Jlus66 on the progression of colitis. During the experiment, we monitored mouse body weight, food and water consumption, as well as rectal bleeding. Hematoxylin-eosin staining was performed to assess intestinal pathological damage. Protein imprinting and immunohistochemical methods were used to evaluate the protein levels of nuclear factor-kappa B (NF-κB), mitogen-activated protein kinase (MAPK), and tight junction (TJ) proteins in intestinal tissues. Fecal microbiota was analyzed based on partial 16S rRNA gene sequencing. RESULTS: Jlus66 supplementation reduced the degree of colon tissue damage, such as colon shortening, fecal occult blood, colon epithelial damage, and weight loss. Supplementation with Jlus66 reduced DSS-induced upregulation of cytokine levels such as TNF-α, IL-1ß, and IL-6 (p < 0.05). The NF-κB pathway and MAPK pathway were inhibited, and the expression of TJ proteins (ZO-1, Occludin, and Claudin-3) was upregulated. 16S rRNA sequencing of mouse cecal contents showed that Jlus66 effectively regulated the structure of the intestinal biota. CONCLUSION: In conclusion, these data indicate that Jlus66 can alter the intestinal biota and slow the progression of UC, providing new insights into potential therapeutic strategies for UC.

10.
Proc Biol Sci ; 291(2023): 20240101, 2024 May.
Article in English | MEDLINE | ID: mdl-38808442

ABSTRACT

The early Ediacaran Weng'an biota (Doushantuo Formation, South China) provides a rare window onto the period of Earth history in which molecular timescales have inferred the initial phase of crown-metazoan diversification. Interpretation of the embryo-like fossils that dominate the biota remains contentious because they are morphologically simple and so difficult to constrain phylogenetically. Spiralicellula from the Weng'an biota is distinguished by spiral internal bodies, allied through development to Megasphaera or Helicoforamina and interpreted variously as metazoan embryos, encysting protists, or chlorophycean green algae. Here we show, using X-ray microtomography, that Spiralicellula has a single-layered outer envelope and no more than 32 internal cells, often preserving a nucleus and yolk granules. There is no correlation between the extent of spiral development and the number of component cells; rather, the spiral developed with each palintomic stage, associated with cell disaggregation and reorientation. Evidence for envelope thinning and cell loss was observed in all developmental stages, reflecting non-deterministic shedding of gametes or amoebae. The developmental biology of Spiralicellula is similar to Megasphaera and Helicoforamina, which otherwise exhibit more rounds of palintomy. We reject a crown-metazoan affinity for Spiralicellula and all other components of the Weng'an biota, diminishing the probability of crown-metazoan diversification before the early Ediacaran.


Subject(s)
Biological Evolution , Fossils , Fossils/anatomy & histology , Animals , China , X-Ray Microtomography , Phylogeny
11.
Heliyon ; 10(9): e30021, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38707367

ABSTRACT

This research analyzes data on the microplastic (MP) contamination in the environmental systems (atmosphere, lithosphere, hydrosphere) and the levels of MPs in freshwater of cities with different levels of national income. This study investigates the influencing factors of MP generation, i.e., mismanaged plastic waste, untreated wastewater, number of registered motor vehicles, and stormwater runoff. The statistical correlations between the MP contamination in urban freshwater and the four influencing factors of MP generation are determined by linear regression. The results indicate that MPs are most abundant in aquatic systems (i.e., hydrosphere) and pose a serious threat to the human food chain. The regression analysis shows a strong correlation between mismanaged plastic waste and microfragment smaller than 300 µm in particle size in urban freshwater with high goodness-of-fit (R2 = 0.8091). A strong relationship with high goodness-of-fit also exists between untreated wastewater and microfragment of 1000-5000 µm in particle size (R2 = 0.9522). The key to mitigate the MP contamination in urban freshwater is to replace improper plastic waste management and wastewater treatment with proper management practices.

12.
R Soc Open Sci ; 11(4): 231580, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38601033

ABSTRACT

Molecular clock estimates suggest the origin of Annelida dates back to the Ediacaran period, which is in discordance with the first appearance of this taxon in the early Cambrian, as evidenced by the fossil records of stem-group and basally branching crown-group annelids. Using new material from the early Cambrian Guanshan biota (Cambrian Series 2, Stage 4), we re-interpret Gaoloufangchaeta bifurcus Zhao, Li & Selden, 2023, as the earliest known errantian annelid. Gaoloufangchaeta has a prominent anterior end bearing three pairs of putatively sensory appendages and a pair of anterior eyes; a muscular eversible pharynx with papillae is identified. The presence of enlarged parapodia with acicula-like structures and long capillary chaetae suggests a pelagic lifestyle for this taxon. Our phylogenetic analyses recover Gaoloufangchaeta within the Phyllodocida (Pleistoannelida, Errantia), extending the origin of Errantia back to the early Cambrian. Our data are in line with the hypothesis that Annelida diverged before the Cambrian and indicate both morphological and ecological diversification of annelids in the early Cambrian.

14.
Environ Sci Pollut Res Int ; 31(20): 29669-29683, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38589586

ABSTRACT

The radionuclide concentration of man-made radionuclides on non-human biota in freshwater ecosystems has been extensively studied in environments affected by the Chernobyl and Fukushima accidents, in both humid continental and subtropical climates, respectively. However, there are very few studies that assess the long-term effects of operating nuclear facilities in Mediterranean environments. In the present study, a temporal analysis of the impact on carp, cattail, and bulrushes in the cooling pond of the currently operating Almaraz nuclear power plant was investigated for the period 2000-2020. The results do not show a general trend in man-made radionuclide concentrations. Instead, depending on their availability and the type of organism, trends decrease over time. This is also reflected in the effective half-lives obtained, which are lower than the physical half-life for some radionuclides. Transfer coefficients for the main man-made radionuclides detected were obtained, and it was found that these were significantly lower than the typical ranges found for benthic fish and vascular plants in freshwater ecosystems. Finally, the internal and external doses received by the carp have been evaluated using ERICA tool, and it has been observed that the main contribution to the total dose is due to the internal dose (0.65-7.04) × 10-4 µGy/h.


Subject(s)
Ecosystem , Fresh Water , Nuclear Power Plants , Radiation Monitoring , Water Pollutants, Radioactive , Water Pollutants, Radioactive/analysis
15.
Glob Chang Biol ; 30(4): e17283, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38663017

ABSTRACT

Stratospheric ozone, which has been depleted in recent decades by the release of anthropogenic gases, is critical for shielding the biosphere against ultraviolet-B (UV-B) radiation. Although the ozone layer is expected to recover before the end of the 21st century, a hole over Antarctica continues to appear each year. Ozone depletion usually peaks between September and October, when fortunately, most Antarctic terrestrial vegetation and soil biota is frozen, dormant and protected under snow cover. Similarly, much marine life is protected by sea ice cover. The ozone hole used to close before the onset of Antarctic summer, meaning that most biota were not exposed to severe springtime UV-B fluxes. However, in recent years, ozone depletion has persisted into December, which marks the beginning of austral summer. Early summertime ozone depletion is concerning: high incident UV-B radiation coincident with snowmelt and emergence of vegetation will mean biota is more exposed. The start of summer is also peak breeding season for many animals, thus extreme UV-B exposure (UV index up to 14) may come at a vulnerable time in their life cycle. Climate change, including changing wind patterns and strength, and particularly declining sea ice, are likely to compound UV-B exposure of Antarctic organisms, through earlier ice and snowmelt, heatwaves and droughts. Antarctic field research conducted decades ago tended to study UV impacts in isolation and more research that considers multiple climate impacts, and the true magnitude and timing of current UV increases is needed.


Subject(s)
Biota , Climate Change , Ice Cover , Ozone Depletion , Snow , Antarctic Regions , Animals , Ultraviolet Rays , Seasons , Stratospheric Ozone/analysis
16.
BMC Ecol Evol ; 24(1): 46, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627692

ABSTRACT

BACKGROUND: Tooth replacement patterns of early-diverging ornithischians, which are important for understanding the evolution of the highly specialized dental systems in hadrosaurid and ceratopsid dinosaurs, are poorly known. The early-diverging neornithischian Jeholosaurus, a small, bipedal herbivorous dinosaur from the Early Cretaceous Jehol Biota, is an important taxon for understanding ornithischian dental evolution, but its dental morphology was only briefly described previously and its tooth replacement is poorly known. RESULTS: CT scanning of six specimens representing different ontogenetic stages of Jeholosaurus reveals significant new information regarding the dental system of Jeholosaurus, including one or two replacement teeth in nearly all alveoli, relatively complete tooth resorption, and an increase in the numbers of alveoli and replacement teeth during ontogeny. Reconstructions of Zahnreihen indicate that the replacement pattern of the maxillary dentition is similar to that of the dentary dentition but with a cyclical difference. The maxillary tooth replacement rate in Jeholosaurus is probably 46 days, which is faster than that of most other early-diverging ornithischians. During the ontogeny of Jeholosaurus, the premaxillary tooth replacement rate slows from 25 days to 33 days with similar daily dentine formation. CONCLUSIONS: The tooth replacement rate exhibits a decreasing trend with ontogeny, as in Alligator. In a phylogenetic context, fast tooth replacement and multi-generation replacement teeth have evolved at least twice independently in Ornithopoda, and our analyses suggest that the early-diverging members of the major ornithischian clades exhibit different tooth replacement patterns as an adaption to herbivory.


Subject(s)
Dinosaurs , Tooth , Animals , Phylogeny , Dinosaurs/anatomy & histology , Herbivory , Fossils , Tooth/diagnostic imaging , Tooth/surgery , Tooth/anatomy & histology
17.
Trends Plant Sci ; 29(6): 630-637, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38485646

ABSTRACT

Dioecious plant species exhibit sexual dimorphism in various aspects, including morphology, physiology, life history, and behavior, potentially influencing sex-specific interactions. While it is generally accepted that intersexual interactions in dioecious species are less intense compared with intrasexual interactions, the mechanisms underlying belowground facilitation in intersexual combinations remain less understood. Here, we explore these mechanisms, which encompass resource complementarity, mycorrhizal fungal networks, root exudate-mediated belowground chemical communication, as well as plant-soil feedback. We address the reason for the lack of consistency in the strength of inter- and intrasexual interactions. We also propose that a comprehensive understanding of the potential positive consequences of sex-specific interactions can contribute to maintaining ecological equilibrium, conserving biodiversity, and enhancing the productivity of agroforestry.


Subject(s)
Mycorrhizae , Mycorrhizae/physiology , Plants/microbiology , Plant Roots/physiology , Plant Roots/microbiology , Ecosystem , Plant Physiological Phenomena , Soil
18.
Environ Geochem Health ; 46(4): 132, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38483701

ABSTRACT

We determined the distribution, fate, and health hazards of dimethenamid-P, metazachlor, and pyroxasulfone, the effective pre-emergence herbicides widely used both in urban and agricultural settings globally. The rate-determining phase of sorption kinetics of these herbicides in five soils followed a pseudo-second-order model. Freundlich isotherm model indicated that the herbicides primarily partition into heterogeneous surface sites on clay minerals and organic matter (OM) and diffuse into soil micropores. Principal component analysis revealed that soil OM (R2, 0.47), sand (R2, 0.56), and Al oxides (R2, 0.33) positively correlated with the herbicide distribution coefficient (Kd), whereas clay (R2, ‒ 0.43), silt (R2, ‒ 0.51), Fe oxides (R2, ‒ 0.02), alkaline pH (R2, ‒ 0.57), and EC (R2, ‒ 0.03) showed a negative correlation with the Kd values. Decomposed OM rich in C=O and C-H functional groups enhanced herbicide sorption, while undecomposed/partially-decomposed OM facilitated desorption process. Also, the absence of hysteresis (H, 0.27‒0.88) indicated the enhanced propensity of herbicide desorption in soils. Leachability index (LIX, < 0.02-0.64) and groundwater ubiquity score (GUS, 0.02‒3.59) for the soils suggested low to moderate leaching potential of the herbicides to waterbodies, indicating their impact on water quality, nontarget organisms, and food safety. Hazard quotient and hazard index data for human adults and adolescents suggested that exposure to soils contaminated with herbicides via dermal contact, ingestion, and inhalation poses minimal to no non-carcinogenic risks. These insights can assist farmers in judicious use of herbicides and help the concerned regulatory authorities in monitoring the safety of human and environmental health.


Subject(s)
Herbicides , Soil Pollutants , Humans , Adolescent , Soil , Herbicides/toxicity , Herbicides/analysis , Clay , Farms , Soil Pollutants/analysis , Adsorption , Environmental Health , Oxides
19.
J Environ Radioact ; 275: 107412, 2024 May.
Article in English | MEDLINE | ID: mdl-38498959

ABSTRACT

Metal mining in the Extremadura region was very important in the 19th and 20th centuries. However, due to different reasons the great majority of mines ceased operations, leading to plenty of abandoned mining sites, most of them with on-site waste dumps. Although metal extraction is not radioactive per se, it is considered a NORM activity. In this study, three former mining sites, in which Pb-V-Zn-Ag, Pb-Ag, and Pb-Zn were extracted, were selected to assess the radiological impact on the population and the environment. The external γ exposure was estimated by determining the effective dose and elaborating isodose maps of the sites. The presence of the mining sites increased up to 0.41 mSv/y the effective dose over the surrounding background, which is below the reference value of 1 mSv/y. In only one mining site, the uranium and radium activity concentration of waste dumps were higher than the surrounding soil. The soil to plant (wild grass) transfer factors were similar to other reported values without the influence of NORM activities. So, no enhanced transfer of radionuclides was observed. The radiological impact on the environment was assessed by the risk to non-human biota using the tiered approach developed in ERICA Tool. The sum of the risk quotients of all considered radionuclides in the most conservative Tier 1 was below 1. Total dose rates for several terrestrial Reference Animal and Plants (RAPs) were estimated using Tier 3, obtaining values below 40 µGy/h. Therefore, the impact on non-human biota can be considered as negligible.


Subject(s)
Mining , Radiation Monitoring , Soil Pollutants, Radioactive , Radiation Monitoring/methods , Spain , Soil Pollutants, Radioactive/analysis , Metals/analysis
20.
Food Chem ; 447: 138865, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38461719

ABSTRACT

This study enhances the current limited understanding of the interaction between mercury (Hg) and selenium (Se) species in fish. Rainbow trout (Oncorhynchus mykiss), a model aquaculture fish, was exposed to Hg and Se species through controlled dietary conditions. Over a 6-month feeding trial, the impact of dietary Se on Hg bioaccumulation in fish, including flesh, brain, and liver, was tracked. Twelve dietary conditions were tested, including plant-based diets (0.25 µgSe g-1) and tuna byproduct diets (0.25 µgHg g-1, 8.0 µgSe g-1) enriched with methylmercury and/or Se as selenite or selenomethionine. The tuna byproduct diet resulted in lower Hg levels than the plant-based diets, with muscle Hg content below the European Commission's safe threshold. This study highlights the significant impact of specific Se compounds in the diet, particularly from tuna-based aquafeed, on Hg bioaccumulation. These promising results provide a strong recommendation for future use of fisheries byproducts in sustainable aquafeeds.


Subject(s)
Mercury , Oncorhynchus mykiss , Selenium , Animals , Selenomethionine , Diet/veterinary , Selenious Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...