Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 145
Filter
1.
J Anim Sci Biotechnol ; 15(1): 99, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38992763

ABSTRACT

BACKGROUND: Excessive backfat deposition lowering carcass grade is a major concern in the pig industry, especially in most breeds of obese type pigs. The mechanisms involved in adipogenesis and fat accumulation in pigs remain unclear. Lysine 2-hydroxyisobutyrylation (Khib), is a novel protein post-translational modification (PTM), which play an important role in transcription, energy metabolism and metastasis of cancer cells, but its role in adipogenesis and fat accumulation has not been shown. RESULTS: In this study, we first analyzed the modification levels of acetylation (Kac), Khib, crotonylation (Kcr) and succinylation (Ksu) of fibro-adipogenic progenitors (FAPs), myogenic precursors (Myo) and mesenchymal stem cells (MSCs) with varied differentiation potential, and found that only Khib modification in FAPs was significantly higher than that in MSCs. Consistently, in parallel with its regulatory enzymes lysine acetyltransferase 5 (KAT5) and histone deacetylase 2 (HDAC2) protein levels, the Khib levels increased quadratically (P < 0.01) during adipogenic differentiation of FAPs. KAT5 knockdown in FAPs inhibited adipogenic differentiation, while HDAC2 knockdown enhanced adipogenic differentiation. We also demonstrated that Khib modification favored to adipogenic differentiation and fat accumulation by comparing Khib levels in FAPs and backfat tissues both derived from obese-type pigs (Laiwu pigs) and lean-type pigs (Duroc pigs), respectively. Accordingly, the expression patterns of KAT5 and HDAC2 matched well to the degree of backfat accumulation in obese- and lean-type pigs. CONCLUSIONS: From the perspective of protein translational modification, we are the first to reveal the role of Khib in adipogenesis and fat deposition in pigs, and provided new clues for the improvement of fat accumulation and distribution as expected via genetic selection and nutritional strategy in obese-type pigs.

2.
J Anim Sci Technol ; 66(3): 543-554, 2024 May.
Article in English | MEDLINE | ID: mdl-38975586

ABSTRACT

This study investigated the correlation between piglet performance and sow body weight change (BWC) during two gestational periods: 35-70, 70-105, and 35-105 days. A cohort of 70 sows was evaluated for BWC, backfat thickness change (BFC), caliper score change (CALC), feed intake, and weaning-to-estrus interval (WEI). The collected data were then analyzed according to the two specified periods. Our findings highlighted that piglet birth weight, weaning weight, and average daily weight gain (ADG) correlated with sow body characteristics, including BFC and CALC. The strongest correlation was observed with BWC. Piglet mortality was intimately associated with BFC. Piglet birth weight, weaning weight, and ADG showed a positive correlation with sow BWC, particularly during the 35-70 day period. Furthermore, sows displaying a higher BWC during the 70-105 day period, and also exhibiting a higher BW gain from 35-70 days, registered greater piglet weight gains and higher weaning weights. These trends became more apparent as the sow's BWC increased during the 70-105 day period. Piglet mortality increased when the sow exhibited a lower BWC during both the 35-70 and 70-105 day periods. No significant observations were found concerning the number of stillborn piglets, live-born piglets, or weaned piglets, and no interaction effects were detected between these periods. In conclusion, our findings underscore the significance of sow BWC during the early stages of gestation (d 35-70) for enhancing piglet performance from birth to weaning.

3.
Transl Anim Sci ; 8: txae081, 2024.
Article in English | MEDLINE | ID: mdl-38800105

ABSTRACT

Crossbred steers (n = 114, initial BW = 334 kg; SEM = 5 kg) were serially harvested to evaluate the change in carcass composition by feeding cattle 21 or 42 d longer than the 2014 industry average subjective measure of finish, 1.27 cm of 12th rib fat thickness. Carcass ultrasound measurements were collected on 76 steers at 1, 78, and 134 days on feed (DOF) to project appropriate harvest date. Steers were sorted into three harvest groups, and serially harvested at 142, 163, or 185 DOF, with the first harvest date selected based on an estimated 12th rib fat thickness of 1.27 cm via ultrasound measurement. Steers were fed using an individual animal feeding system, to determine individual performance metrics. Steer DMI did not differ (P ≥ 0.31) between harvest groups, while carcass-adjusted ADG and G:F decreased linearly (P ≤ 0.04) as DOF increased. Carcass weight increased linearly (P < 0.01) as DOF increased from 142 to 185 DOF, with steers gaining an additional 36 kg of HCW when fed an additional 42 DOF. Carcass LM area quadratically increased (P = 0.04) to 163 DOF and remained constant to 185 DOF. Marbling score was not different (P = 0.14) between harvest groups; however, the opportunity to grade USDA Premium Choice was improved for steers fed to 185 DOF. Calculated YG and 12th rib fat thickness increased linearly (P < 0.01) as DOF increased, with distributions across YG 1 through 5 differing between harvest groups (P < 0.01), and 185-d carcasses having the greatest frequency of YG 4 carcasses. As cattle are fed for additional DOF, live ADG and G:F decline, while HCW and LM area increase.

4.
J Dairy Sci ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38788843

ABSTRACT

Key factors such as stage of lactation, parity and body fat reserves have been associated with the digital cushion thickness, however, there are discrepancies between the results of previously published studies. The objective of this study was to examine the association of stage of lactation, body fat reserves, parity, and lesion incidence with the digital cushion thickness (DCT) in a large cohort of intensively monitored cows. Across 4 UK farms, 2,352 cows were prospectively enrolled and assessed at 4 time points; before calving (T1-Precalving), immediately post-calving (T2-Calving), in early lactation (T3-Early) and late lactation (T4-Late). At each time point body condition score was recorded, the presence of sole lesions (sole ulcers and sole hemorrhage) and white line lesions were assessed by veterinarians, and an ultrasound image was taken to retrospectively measure the back-fat thickness in the pelvic (BFT) region and the digital cushion on the hind left lateral claw. Mixed effects multivariable linear regression models, with the cow as a random effect were fit to examine the association between explanatory variables and the DCT. Explanatory variables tested were farm, parity, stage of lactation, body condition score, BFT, height, the presence of a lesion at the time of measurement, the chronicity of a lesion during early lactation, predicted maximum daily milk yield and the rate of milk production rise in early lactation. Stage of lactation and farm were both associated with the DCT, however an interaction was present and this DCT pattern of change was farm dependent. Two distinct patterns emerged; one indicated the nadir to occur shortly after calving, the other indicated the nadir to occur during early lactation. Neither back fat thickness nor BCS were significantly associated with the DCT. Heifers displayed thinner digital cushions compared with multiparous cows, however, this effect was dependent on the stage of lactation, with heifers having a thinner digital cushion up until late lactation, by which time the DCT was commensurate with multiparous animals. Sole lesions and white line lesions at the time of measurement were associated with the DCT (sole lesion; Estimate: -0.07mm, 95% CI: -0.14-0.00, P = 0.039, white line lesion; Estimate: 0.28mm, 95% CI: 0.15-0.42, P < 0.001).

5.
J Anim Sci Technol ; 66(1): 115-124, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38618030

ABSTRACT

This study investigated the impact of clay mineral 'illite' (IL) on the growth performance, apparent total tract digestibility, and meat-carcass grade quality in growing-finishing pigs. One hundred fifty pigs were divided into two groups with fifteen pens/group and five pigs/pen, a control group that was fed with a corn-soybean meal-based diet and IL treated group were fed a meal-based diet supplemented with 0.5% IL. Compared to the control, IL supplementation increased average daily feed intake (ADFI) and reduce gain to feed ratio (G:F) in the pigs during days 43 to 70 and 99 to 126 and increased dry matter during days 42 and 126, and backfat thickness on day 98 (p < 0.05). The drip loss was reduced on day 7, meat firmness tended to increase with dietary IL supplementation. In summary, dietary 0.5% IL supplementation improved ADFI, nutrient utilization of dry matter, and firmness and reduced G:F and drip loss of growing-finishing pigs.

6.
J Anim Breed Genet ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38588032

ABSTRACT

Up to now, little has been known about backfat thickness (BFT) in dairy cattle. The objective of this study was to investigate the lactation curve and genetic parameters for BFT as well as its relationship with body condition score (BCS) and milk yield (MKG). For this purpose, a dataset was analysed including phenotypic observations of 1929 German Holstein cows for BFT, BCS and MKG recorded on a single research dairy farm between September 2005 and December 2022. Additionally, pedigree and genomic information was available. Lactation curves were predicted and genetic parameters were estimated for all traits in first to third lactation using univariate random regression models. For BCS, lactation curves had nadirs at 94 DIM, 101 DIM and 107 DIM in first, second and third lactation. By contrast, trajectories of BFT showed lowest values later in lactation at 129 DIM, 117 DIM and 120 DIM in lactation numbers 1 to 3, respectively. Although lactation curves of BCS and BFT had similar shapes, the traits showed distinct sequence of curves for lactation number 2 and 3. Cows in third lactation had highest BCS, whereas highest BFT values were found for second parity animals. Average heritabilities were 0.315 ± 0.052, 0.297 ± 0.048 and 0.332 ± 0.061 for BCS in lactation number 1 to 3, respectively. Compared to that, BFT had considerably higher heritability in all lactation numbers with estimates ranging between 0.357 ± 0.028 and 0.424 ± 0.034. Pearson correlation coefficients between estimated breeding values for the 3 traits were negative between MKG with both BCS (r = -0.245 to -0.322) and BFT (r = -0.163 to -0.301). Correlation between traits BCS and BFT was positive and consistently high (r = 0.719 to 0.738). Overall, the results of this study suggest that BFT and BCS show genetic differences in dairy cattle, which might be due to differences in depletion and accumulation of body reserves measured by BFT and BCS. Therefore, routine recording of BFT on practical dairy farms could provide valuable information beyond BCS measurements and might be useful, for example, to better assess the nutritional status of cows.

7.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38659196

ABSTRACT

The aim of the study was to investigate whether increased inclusion of sugar beet pulp (SBP) alters retention of fat, protein, and energy when backfat (BF) is restored in early- and mid-gestation. In total, 46 sows were fed one of four dietary treatments with increasing inclusion of SBP providing dietary fiber (DF) levels of 119, 152, 185, and 217 g/kg; sows were assigned to one of three feeding strategies (FS; high, medium, and low) depending on BF thickness at mating and again at day 30 for the following month. On days 0, 30, 60, and 108, body weight (BW) and BF thickness were measured and body pools of protein and fat were estimated using the deuterium oxide technique. On days 30 and 60, urine, feces, and blood samples were collected to quantify metabolites, energy, and nitrogen (N) balances. On days 15 and 45, heart rate was recorded to estimate heat energy. At farrowing, total born and weight of the litter were recorded. In early gestation, BW gain (P < 0.01) and body protein retention increased (P < 0.05) with increasing fiber inclusion, while body fat retention increased numerically by 59%. The increase in BF was greatest for sows fed the high FS, intermediate when fed the medium strategy, and negligible for sows fed the lowest FS (P < 0.001). Nitrogen intake, N loss in feces, and N balance increased linearly, whereas N loss in urine tended to decrease with increasing inclusion of fibers in early gestation. Concomitantly, fecal energy output and energy lost as methane increased linearly (P < 0.001), while energy output in urine declined linearly. Total metabolizable energy (ME) intake therefore increased from 36.5 MJ ME/d in the low fiber group to 38.5 MJ ME/d in the high fiber group (P < 0.01). Changing the ME towards more ketogenic energy was expected to favor fat retention rather than protein retention. However, due to increased intake of ME and increased N efficiency with increasing fiber inclusion, the sows gained more weight and protein with increasing fiber inclusion. In conclusion, increased feed intake improved both fat and protein retention, whereas increased DF intake increased protein retention.


Feeding sows sugar beet pulp (SBP) has many known benefits, for example, increased satiety and high fermentability. This study investigates the ability of the sow to utilize energy for fat retention when replacing part of starch with dietary fiber. After a demanding lactation, sows need to restore body fat, and concomitantly avoid excessive protein retention, which will increase energy demand for maintenance and risk of locomotory problems. The hypothesis in this study is that energy from fermented fibers is more efficient for fat retention than dietary starch. In the study, sows had numerically greater fat retention when fed high concentrations of fiber from SBP, but concomitantly sows unintendedly also increased their protein retention, which in turn substantially increased their body weight. Sows were allocated to one of three feeding strategies depending on their body condition score (lean, medium, or fat) in early gestation, and backfat was efficiently restored in most sows within a month. In conclusion, although gestating sows have a high capability to utilize energy from fermentable fiber, they are disposed to protein over fat retention. These aspects need to be addressed in the nutrition of modern genotype sows.


Subject(s)
Animal Feed , Animal Nutritional Physiological Phenomena , Diet , Dietary Fiber , Energy Metabolism , Animals , Dietary Fiber/metabolism , Female , Animal Feed/analysis , Pregnancy , Diet/veterinary , Swine/physiology , Beta vulgaris/chemistry , Adipose Tissue/metabolism
8.
Appl Microbiol Biotechnol ; 108(1): 223, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38376614

ABSTRACT

Pork backfat (PB) contains excessive saturated fatty acids (SFAs), but lacks polyunsaturated fatty acids (PUFAs). Excessive SFAs can be used as a substrate for the growth of certain microorganisms that convert them into PUFAs and monounsaturated fatty acids (MUFAs), and the added value of PB can be enhanced. In this study, Mucor circinelloides CBS 277.49 and Lactiplantacillus plantarum CGMCC 24189 were co-cultured for conversion of PB into fermented pork backfat (FPB) with high level of PUFAs. Our results showed that the content of γ-linolenic acid (GLA) and linoleic acid (LA) in the surface of FPB reached 9.04 ± 0.14 mg/g and 107.31 ± 5.16 mg/g for 7-day fermentation, respectively. To convert the internal SFAs of PB, ultrasound combined with papain was used to promote the penetrative growth of M. circinelloides into the internal PB, and the GLA level in the third layer of fat reached 2.58 ± 0.31 mg/g FPB. The internal growth of M. circinelloides in PB was promoted by adjusting the oxygen rate and ventilation rate through the wind velocity sensor. When the oxygen rate is 2 m/s and the ventilation rate is 18 m3/h, the GLA level in the third layer of fat reached 4.13 ± 1.01 mg/g FPB. To further improve the level of PUFAs in PB, FPB was produced by M. circinelloides at 18 °C. The GLA content on the surface of FPB reached 15.73 ± 1.13 mg/g FPB, and the GLA yield in the second and third layers of fat reached 8.68 ± 1.77 mg/g FPB and 6.13 ± 1.28 mg/g FPB, the LA yield in the second and third layers of fat reached 105.45 ± 5.01 mg/g FPB and 98.46 ± 4.14 mg/g FPB, respectively. These results suggested that excessive SFAs in PB can be converted into PUFAs and provided a new technique for improving PUFAs in FPB. KEY POINTS: • This article achieved the conversion of PUFAs in pork backfat by Mucor circinelloides CBS 277.49 and Lactiplantacillus plantarum CGMCC 24189. • This article solved the internal growth of M. circinelloides CBS277.49 in pork backfat by ultrasound combined with papain. • This article proposed an innovative of promoting the internal growth of M. circinelloides and increasing the PUFAs production by oxygen ventilation in pork backfat.


Subject(s)
Mucor , Pork Meat , Red Meat , Swine , Animals , Papain , Fatty Acids, Unsaturated , Linoleic Acid , Oxygen
9.
Anim Genet ; 55(1): 134-139, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38098441

ABSTRACT

This study aimed at identifying genes associated with loin muscle area (LMA), loin muscle depth (LMD) and backfat thickness (BFT). We performed single-trait and multi-trait genome-wide association studies (GWASs) after genotyping 685 Duroc × (Landrace × Yorkshire) (DLY) pigs using the Geneseek Porcine 50K SNP chip. In the single-trait GWASs, we identified two, eight and two significant SNPs associated with LMA, LMD and BFT, respectively, and searched genes within the 1 Mb region near the significant SNPs with relevant functions as candidate genes. Consequently, we identified one (DOCK5), three (PID1, PITX2, ELOVL6) and three (CCR1, PARP14, CASR) promising candidate genes for LMA, LMD and BFT, respectively. Moreover, the multi-trait GWAS identified four significant SNPs associated with the three traits. In conclusion, the GWAS analysis of LMA, LMD and BFT in a DLY pig population identified several associated SNPs and candidate genes, further deepening our understanding of the genetic basis of these traits, and they may be useful for marker-assisted selection to improve the three traits in DLY pigs.


Subject(s)
Genome-Wide Association Study , Quantitative Trait Loci , Swine , Animals , Muscles , Phenotype , Polymorphism, Single Nucleotide
10.
Anim Biotechnol ; 35(1): 2272172, 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37966129

ABSTRACT

Mitochondrial DNA (mtDNA) variations and associated effects on economic traits have been widely reported in farm animals, as these genetic polymorphisms can affect the efficiency of energy production and cell metabolism. In studies related to metabolism, the deposition of fat was highly correlated with mitochondria. However, the effect of mtDNA polymorphisms on porcine backfat thickness (BFT) remained unclear. In this study, 243 pigs were collected to analyse the relationship between BFT and mtDNA polymorphisms. There were considerable differences in BFT, ranging from 5 mm to 18 mm. MtDNA D-loop sequencing discovered 48 polymorphic sites. Association analysis revealed that 30 variations were associated with BFT (P < 0.05). The polymorphism m.794A > G showed the maximum difference in BFT between A and G carriers, which differed at ∼2.5 mm (P < 0.001). The 48 polymorphic sites generated 22 haplotypes (H1-H22), which clustered into 4 haplogroups (HG1-HG4). HG1 had a lower BFT value than other three haplogroups (P < 0.01), whereas H4 in HG1 exhibited the lowest BFT of all haplotypes analyzed (P < 0.01). The results of this study highlight an association between mtDNA polymorphisms and BFT, and suggest the potential application of mtDNA in pig molecular breeding practices.


Subject(s)
Genome, Mitochondrial , Swine/genetics , Animals , Genome, Mitochondrial/genetics , Polymorphism, Single Nucleotide , Haplotypes/genetics , Phenotype , DNA, Mitochondrial/genetics
11.
Trop Anim Health Prod ; 55(6): 393, 2023 Nov 04.
Article in English | MEDLINE | ID: mdl-37923850

ABSTRACT

A total of 32 Landlly crossbred sows were categorized into three groups based on their body condition score (BCS) on the 90th day of gestation viz. low, moderate, and high body condition groups. BCS assessments were subsequently conducted on the 102nd day, at farrowing, and on the 7th, 17th, 27th, and 42nd day postpartum, along with measurements of ultrasonic backfat thickness and body weight. Key reproductive performance traits, including total number born (TNB) and alive (TLA), stillbirths, mummification, and litter weight at birth and weaning, were recorded. Several physiological, health, biochemical, and hematological parameters were also estimated at different lactation stages. Analysis of the data revealed that TNB, TLA (P<0.04), and weaned piglets (P<0.01), as well as litter weight at birth (P<0.08) and weaning (P<0.08), were significantly higher in the low BCS group. Meanwhile, the weaning to estrous interval (P<0.04) was optimized in the high and moderate BCS groups. However, sows with high body condition exhibited higher stillbirths and pre-weaning mortality. Additionally, the order of increasing body condition correlated with superior colostrum quality, characterized by higher IgG levels (P<0.02), and increased average milk yield during early and mid-lactation (P<0.03). A high occurrence of postpartum dysgalactia syndrome (PDS) was evident in obese sows (P<0.001). Moreover, a positive correlation was found between the body condition of sows at late gestation and cortisol concentration throughout lactation across the three BCS groups (P<0.0001). Furthermore, a strong positive correlation was observed between the postpartum serum concentration of T3 (thyroid hormone) (P<0.002) and the prepartum body condition of sows. Based on these findings, maintaining sows with a moderate body condition (BCS of 3) and a backfat thickness of 21 mm in the breeding herd is recommended for enhancing profitability and productivity at the farm level.


Subject(s)
Stillbirth , Swine Diseases , Pregnancy , Swine , Animals , Female , Birth Weight , Stillbirth/veterinary , Diet/veterinary , Reproduction , Lactation , Weaning , Litter Size
12.
Animals (Basel) ; 13(19)2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37835754

ABSTRACT

The late gestation period is crucial for fetal growth and development, impacting swine enterprises' profitability. Various nutritional strategies have been explored to enhance reproductive performance in sows, but findings regarding birth weight and litter size have been inconsistent. This study investigated the effects of increased feeding allowance during the late gestation period on the reproductive performance and farrowing behavior of primiparous and multiparous sows. A total of 28 sows (Landrace × Yorkshire) were used in this experiment, and fed 2.50 kg/d or 3.50 kg/d from 84 days of gestation until farrowing. Farrowing behavior was monitored using a DeepEyesTM M3SEN camera. The data were analyzed using the 2 × 2 factorial within Statistical Analysis System (SAS, 2011, Version 9.3) software. The results indicated that regardless of the parity number, sows fed a high diet exhibited a numerical increase in the total number of born piglets and a significant increase in milk yield (p = 0.014) and piglet birthweight (p = 0.023). Backfat thickness loss was significantly higher in sows with a 2.50 kg feeding allowance (p = 0.022), and the total number of piglets born, live births, and litter size were numerically higher in sows fed 3.50 kg per day. Moreover, stillborn piglets, mortality rate, and re-estrus days were numerically lower in sows with a high feeding allowance. The diet and parity did not individually affect the average duration of farrowing and farrowing intervals. However, the duration of postural changes in sows after farrowing was significantly reduced (p = 0.012). The principal component analysis revealed 81.40% and 80.70% differences upon partial least-squares discriminant analysis. Therefore, increasing feeding allowance during the late gestation period, regardless of parity, could positively influence sows' reproductive performance and piglets' growth performance during the lactation phase.

13.
Animals (Basel) ; 13(20)2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37894022

ABSTRACT

The study aimed to assess the effect of supplementation of pig diet with the Bokashi probiotic on the fatty acid profile of longissimus lumborum (LL) muscles and backfat. The research involved 120 hybrid pigs deriving from Naïma sows and P-76 boars. The experimental group's pigs received probiotics in their feed (containing Saccharomyces cerevisiae, Lactobacillus casei, and Lactobacillus plantarum). To analyze the fatty acid profile in intramuscular fat (IMF) of LL and backfat, 24 pig carcasses from the control group and 26 from the probiotic-supplemented group were randomly selected. Probiotic supplementation increased the Atherogenic Index, reduced the proportion of C20:4, and increased C12:0 and C18:2 n-6 in IMF LL, without affecting ΣSFA, ΣMUFA, and ΣPUFA. In backfat, probiotic supplementation decreased C18:1 and C18:2 n-6 proportion and increased C18:3 n-3, C20:3 n-6, and C20:4 n-6. These changes resulted in significantly higher ΣMUFA, ΣPUFA, PUFA Σn-3/Σn-6, and lower Saturation Index (SI). From a consumer health and technological point of view, probiotic supplementation improved the lipid profile of backfat to a greater extent than LL muscle. Bokashi, at a dose of 3 g/kg of feed in the last stage of pig production, had no significant effect on the fatty acid profile of the meat.

14.
Front Genet ; 14: 1234757, 2023.
Article in English | MEDLINE | ID: mdl-37662841

ABSTRACT

Fat deposition is an economically important trait in pigs. Ningxiang pig, one of the four famous indigenous breeds in China, is characterized by high fat content. The underlying gene expression pattern in different developmental periods of backfat tissue remains unclear, and the purpose of this investigation is to explore the potential molecular regulators of backfat tissue development in Ningxiang pigs. Backfat tissue (three samples for each stage) was initially collected from different developmental stages (60, 120, 180, 240, 300, and 360 days after birth), and histological analysis and RNA sequencing (RNA-seq) were then conducted. Fragments per kilobase of transcript per million (FPKM) method was used to qualify gene expressions, and differentially expressed genes (DEGs) were identified. Furthermore, strongly co-expressed genes in modules, which were named by color, were clustered by Weighted gene co-expression network analysis (WGCNA) based on dynamic tree cutting algorithm. Gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) enrichment were subsequently implemented, and hub genes were described in each module. Finally, QPCR analysis was employed to validate RNA-seq data. The results showed that adipocyte area increased and adipocyte number decreased with development of backfat tissue. A total of 1,024 DEGs were identified in five comparison groups (120 days vs. 60 days, 180 days vs. 120 days, 240 days vs. 180 days, 300 days vs. 240 days, and 360 days vs. 300 days). The turquoise, red, pink, paleturquoise, darkorange, and darkgreen module had the highest correlation coefficient with 60, 120, 180, 240, 300, and 360 days developmental stage, while the tan, black and turquoise module had strong relationship with backfat thickness, adipocyte area, and adipocyte number, respectively. Thirteen hub genes (ACSL1, ACOX1, FN1, DCN, CHST13, COL1A1, COL1A2, COL6A3, COL5A1, COL14A1, OAZ3, DNM1, and SELP) were recognized. ACSL1 and ACOX1 might perform function in the early developmental stage of backfat tissue (60 days), and FN1, DCN, COL1A1, COL1A2, COL5A1, COL6A3, and COL14A1 have unignorable position in backfat tissue around 120 days developmental stage. Besides, hub genes SELP and DNM1 in modules significantly associated with backfat thickness and adipocyte area might be involved in the process of backfat tissue development. These findings contribute to understand the integrated mechanism underlying backfat tissue development and promote the progress of genetic improvement in Ningxiang pigs.

15.
Animals (Basel) ; 13(13)2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37444036

ABSTRACT

Two studies evaluated the productive characteristics of young Nellore heifers receiving different days on feed (DOF) to determine the biological slaughter endpoint. In Experiment 1 (Exp. 1), fifty-one Nellore heifers [324 ± 19.3 kg of body weight (BW); 16 ± 1 months] were split into three DOF lengths (45, 75, or 105 days), while in Experiment 2 (Exp. 2), thirty-six Nellore heifers (362 ± 25.5 kg of BW; 18 ± 1 months of age) were split into three DOF lengths (45, 90, or 135 days). In both studies, all animals were distributed in complete randomized blocks according to initial BW and stratified via carcass ultrasound. The diet was supplied ad libitum, allowing 3% of refusals. The point at which the animals achieved 25% of ether extract of shrunk body weight (EESBW) was defined as the biological endpoint. Thus, relationships were made between some characteristics obtained in both studies. Positive linear relationships were found between backfat thickness (BFT) vs. EESBW (p < 0.001, r = 0.84) and BFT vs. body weight (p < 0.001, r = 0.77). Our results suggest that the biological slaughter endpoint for young Nellore heifers is 6.97 mm of backfat thickness or 402 kg shrunk body weight, corresponding to around 75 DOF.

16.
Genes (Basel) ; 14(6)2023 06 13.
Article in English | MEDLINE | ID: mdl-37372438

ABSTRACT

The pig industry is significantly influenced by complex traits such as growth rate and fat deposition, which have substantial implications for economic returns. Over the years, remarkable genetic advancements have been achieved through intense artificial selection to enhance these traits in pigs. In this study, we aimed to investigate the genetic factors that contribute to growth efficiency and lean meat percentages in Large White pigs. Specifically, we focused on analyzing two key traits: age at 100 kg live weight (AGE100) and backfat thickness at 100 kg (BF100), in three distinct Large White pig populations-500 Canadian, 295 Danish, and 1500 American Large White pigs. By employing population genomic techniques, we observed significant population stratification among these pig populations. Utilizing imputed whole-genome sequencing data, we conducted single population genome-wide association studies (GWAS) as well as a combined meta-analysis across the three populations to identify genetic markers associated with the aforementioned traits. Our analyses highlighted several candidate genes, such as CNTN1-which has been linked to weight loss in mice and is potentially influential for AGE100-and MC4R, which is associated with obesity and appetite and may impact both traits. Additionally, we identified other genes-namely, PDZRN4, LIPM, and ANKRD22-which play a partial role in fat growth. Our findings provide valuable insights into the genetic basis of these important traits in Large White pigs, which may inform breeding strategies for improved production efficiency and meat quality.


Subject(s)
Genome-Wide Association Study , Genome , Animals , Canada , Genome-Wide Association Study/methods , Genomics , Phenotype , Swine/genetics
17.
Food Sci Anim Resour ; 43(3): 531-539, 2023 May.
Article in English | MEDLINE | ID: mdl-37181219

ABSTRACT

The objective of this study was to determine the effects of quality grade (QG), and back-fat thickness on the carcass traits and meat quality properties of Hanwoo steers. Fifty carcasses were sorted into two QG (QG 1+ and 1) and three back-fat thickness (<10 mm, 10 to 19 mm and ≥19 mm) groups. After investigating the carcass traits (rib eye, back-fat thickness, weight, color, yield index, maturity, marbling score, and texture), the longissimus lumborum muscles from the carcass groups were collected and analyzed for meat quality (pH, color, cooking loss, and moisture), texture profiles [Warner-Bratzler shear force (WBSF), and tensile tests], and fatty acid. Results showed that marbling score (p<0.001), moisture (p<0.05) and tensile tests values (p<0.05) had a significant differences between QG1+ and QG1. No differences in pH, color traits, cooking loss and WBSF values occurred between the QG groups. Regarding the back-fat thickness effect, we observed that the carcass weight, yield index (p<0.001), yield grade (p<0.001) and marbling score (p<0.05) had a significant differences among the back-fat thickness groups. Regarding the meat quality, moisture content and WBSF values (p<0.01) among the back-fat thickness groups. The back-fat thickness did not affect the pH, color, cooking loss and tensile tests. The QG and back-fat thickness did not affect the fatty acids contents (p>0.05). It may be concluded that the carcass traits and meat quality were significantly affected the QG and back-fat thickness.

18.
Animals (Basel) ; 13(6)2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36978600

ABSTRACT

A crucial goal of reducing backfat thickness (BFT) is to indirectly improve feed conversion efficiency. This phenotype has been reported in certain papers; however, the molecular mechanism has yet to be fully revealed. Two extreme BFT groups, consisting of four Qinchuan cattle, were chosen for this study. We performed metabolite and transcriptome analyses of blood from cattle with a high BFT (H-BFT with average = 1.19) and from those with a low BFT (L-BFT with average = 0.39). In total, 1106 differentially expressed genes (DEGs) and 86 differentially expressed metabolites (DEMs) were identified in the extreme trait. In addition, serum ceramide was strongly correlated with BFT and could be used as a potential biomarker. Moreover, the most notable finding was that the functional genes (SMPD3 and CERS1) and metabolite (sphingosine 1-phosphate (S1P)) were filtered out and significantly enriched in the processes related to the sphingolipid metabolism. This investigation contributed to a better understanding of the subcutaneous fat depots in cattle. In general, our results indicated that the sphingolipid metabolism, involving major metabolites (serum ceramide and S1P) and key genes (SMPD3 and CERS1), could regulate BFT through blood circulation.

19.
Vet Sci ; 10(3)2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36977238

ABSTRACT

Feet infrared temperature is associated with feet health and may affect the reproductive performance of sows. In total, 137, 98 and 114 replacement gilts were selected at the age of weaning from 3 herds-A, B and C-with different genetic lines. Dorsal claw length was measured, and anisodactylia was measured in all four feet, at weaning age, and at those gilts that completed their first and second farrowing. At the first and second farrowing stage, the infrared temperature distribution, dew/claw length and backfat thickness were measured concurrently with claw lesion and mobility score evaluation. The maximum temperature significantly differed (p < 0.01) among herds, in the rear feet and in all four feet at the first and second farrowing respectively. Claw lengths statistically differed among herds at all stages (p < 0.05). Anisodactylia in rear feet was lower in herd A (p < 0.05) at weaning, and in herd C at the first and second farrowing (p < 0.05). In addition, the claw lesion score, mobility, backfat thickness and reproductive performance statistically differed among herds (p < 0.05). It is shown that even at an early stage of their reproductive life, claw length differences exist in replacement gilts of different genetic lines.

20.
Foods ; 12(4)2023 Feb 05.
Article in English | MEDLINE | ID: mdl-36832765

ABSTRACT

Food fat content is one of the most controversial factors from a consumer's point of view. Aim: (1) The trends in consumer attitudes towards pork and the fat and meat compositions in Duroc and Altai meat breeds and Livny and Mangalitsa meat and fat breeds were studied. (2) Methods: Netnographic studies were used to assess Russian consumer purchasing behavior. Protein, moisture, fat, backfat fatty acid content from pigs, longissimus muscles, and backfat from (A) Altai, (L) Livny, and (M) Russian Mangalitsa breeds were compared with those from (D) Russian Duroc. Raman spectroscopy and histology were applied to the backfat analysis. (3) Results: The attitude of Russian consumers to fatty pork is contradictory: consumers note its high fat content as a negative factor, but the presence of fat and intramuscular fat is welcomed because consumers positively associate them with better taste, tenderness, flavor, and juiciness. The fat of the 'lean' D pigs did not show a "healthy" fatty acid ratio, while the n-3 PUFA/n-6 PUFA ratio in the fat of the M pigs was the best, with significant amounts of short-chain fatty acids. The highest UFA content, particularly omega 3 and omega 6 PUFA, was found in the backfat of A pigs with a minimum SFA content. The backfat of L pigs was characterized by a larger size of the adipocytes; the highest monounsaturated and medium chain fatty acid contents and the lowest short-chain fatty acid content; the ratio of omega 3 to omega 6 was 0.07, and the atherogenicity index in L backfat was close to that of D, despite the fact that D pigs are a meat type, while L pigs are a meat and fat type. On the contrary, the thrombogenicity index in L backfat was even lower than the D one. (4) Conclusions: Pork from local breeds can be recommended for functional food production. The requirement to change the promotion strategy for local pork consumption from the position of dietary diversity and health is stated.

SELECTION OF CITATIONS
SEARCH DETAIL
...