Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Publication year range
1.
Microorganisms ; 10(6)2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35744741

ABSTRACT

Bacterial panicle blight of rice or bacterial grain rot of rice is a worldwide rice disease. Burkholderia glumae and B. gladioli are the causal agents. The early and accurate detection of seed-borne B. glumae and B. gladioli is critical for domestic and international quarantine and effective control of the disease. Here, genomic analyses revealed that B. gladioli contains five phylogroups and the BG1 primer pair designed to target the 3'-end sequence of a gene encoding a Rhs family protein is specific to B. glumae and two phylogroups within B. gladioli. Using the BG1 primer pair, a 138-bp DNA fragment was amplified only from the tested panicle blight pathogens B. glumae and B. gladioli. An EvaGreen droplet digital PCR (dPCR) assay on detection and quantification of the two pathogens was developed from a SYBR Green real-time quantitative PCR (qPCR). The detection limits of the EvaGreen droplet dPCR on the two pathogens were identical at 2 × 103 colony forming units (CFU)∙mL-1 from bacterial suspensions and 2 × 102 CFU∙seed-1 from rice seeds. The EvaGreen droplet dPCR assay showed 10-fold detection sensitivity of the SYBR Green qPCR and could detect a single copy of the target gene in a 20-µL assay. Together, the SYBR Green qPCR assay allows for routine high-throughput detection of the panicle blight pathogens and the EvaGreen droplet dPCR assay provides a high-sensitive and high-accurate diagnostic method for quarantine of the pathogens.

2.
Rev. argent. microbiol ; 52(4): 51-60, dic. 2020. graf
Article in Spanish | LILACS | ID: biblio-1340920

ABSTRACT

Resumen La demanda de xilanasas fúngicas en los procesos biotecnológicos industriales muestra un claro aumento en todo el mundo, por lo que hay un interés en ajustar las condicionesde producción de xilanasas microbianas. En este estudio se optimizó la capacidad del hongoFusarium solani para producir xilanasas extracelulares con escasa actividad celulolítica medi-ante el dise˜no de Box-Wilson. Se determinaron las mejores condiciones de cultivo para obteneruna preparación enzimática cruda con una actividad xilanolítica significativa y poca actividad celulolítica. En la mayoría de los tratamientos, la actividad xilanolítica fue mayor que laactividad celulolítica. Se observó un efecto negativo sobre la producción de endoxilanasas, xilosidasas y endocelulasas con el aumento de la concentración de xilano. El aumento del tiempode incubación afectó adversamente la producción de endocelulasas y xilosidasas. De acuerdocon el modelo matemático y las pruebas experimentales, es posible producir endoxilanasas conuna actividad endocelulasa mínima aumentando el tiempo de incubación y la concentración desulfato de amonio. Las condiciones de cultivo óptimas para producir una mayor cantidad deendoxilanasas (10,65 U/mg) y mínima cantidad de endocelulasas fueron 2,5% (p/v) de xilano y5, 2 y 0,4 g/l de extracto de levadura, sulfato de amonio y urea, respectivamente, con 120 hde incubación.


Abstract The aim of the present study was to isolate, select and characterize endophytic bacteria in rice inhibiting Burkholderia glumae THT as well as to characterize the genetic diversity and virulence factors in strains of B. glumae and Burkholderia gladioli of rice. Rice plants were collected in 4 departments from the northern region of Peru, isolating endophytic bacteria, aftertissue sterilization, at 30°C (48 h) in Trypticase SoyAgar (TSA), evaluating the antimicrobial activity against B. glumae THT, production of siderophores, resistance of toxoflavine and partial sequencing of the 16S rRNA gene. Furthermore, B. glumae and B. gladioli were isola-ted in selective medium (pH 4.5) at 41 °C/72h. Molecular identification was performed using BOX-PCR and sequencing of the 16S rRNA gene, in addition to the production of extracellular enzymes, motility tests and sensitivity/resistance to bactericides. One hundred and eighty nine (189) endophytic bacteria were isolated, and only 9 strains showed antimicrobial activity against B. glumae THT, highlighting Burkholderia vietnamiensis TUR04-01, B. vietnamiensis TUR04-03 and Bacillus aryabhattai AMH12-02. The strains produced siderophores and at least 55.5% were resistant to toxoflavin. Additionally, 17 strains were grouped into 9 BOX-PCR profiles, where 16 had similarity with B. glumae LMG2196T (100%) and 1 with B. gladioli NBRC 13700T (99.86%). High diversity was found according to geographical origin and virulence factors. In conclusion, strains of the genus Bacillus and Burkholderia are potential biocontrol agents against B. glumae.


Subject(s)
Oryza , Burkholderia , Anti-Infective Agents , Bacillus , Virulence , RNA, Ribosomal, 16S/genetics , Burkholderia/genetics
3.
Phytopathology ; 110(10): 1657-1667, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32852258

ABSTRACT

Bacterial panicle blight of rice is a seedborne disease caused by the bacterium Burkholderia glumae. This disease has affected rice production worldwide and its effects are likely to become more devastating with the continuous increase in global temperatures, especially during the growing season. The bacterium can cause disease symptoms in different tissues and at different developmental stages. In reproductive stages, the bacterium interferes with grain development in the panicles and, as a result, directly affects rice yield. Currently, there are no methods to control the disease because chemical control is not effective and completely resistant cultivars are not available. Thus, a promising approach is the use of antagonistic microorganisms. In this work, we identified one strain of Pseudomonas protegens and one strain of B. cepacia with antimicrobial activity against B. glumae in vitro and in planta. We further characterized the antimicrobial activity of P. protegens and found that this activity is associated with bacterial secretions. Cell-free secretions from P. protegens inhibited the growth of B. glumae in vitro and also prevented B. glumae from causing disease in rice. Although the specific molecules associated with these activities have not been identified, these findings suggest that the secreted fractions from P. protegens could be harnessed as biopesticides to control bacterial panicle blight of rice.


Subject(s)
Oryza , Burkholderia , Plant Diseases , Pseudomonas
4.
Rev Argent Microbiol ; 52(4): 315-327, 2020.
Article in Spanish | MEDLINE | ID: mdl-32147231

ABSTRACT

The aim of the present study was to isolate, select and characterize endophytic bacteria in rice inhibiting Burkholderia glumae THT as well as to characterize the genetic diversity and virulence factors in strains of B. glumae and Burkholderia gladioli of rice. Rice plants were collected in 4 departments from the northern region of Peru, isolating endophytic bacteria, after tissue sterilization, at 30°C (48h) in Trypticase Soy Agar (TSA), evaluating the antimicrobial activity against B. glumae THT, production of siderophores, resistance of toxoflavine and partial sequencing of the 16S rRNA gene. Furthermore, B. glumae and B. gladioli were isolated in selective medium (pH 4.5) at 41°C/72h. Molecular identification was performed using BOX-PCR and sequencing of the 16S rRNA gene, in addition to the production of extracellular enzymes, motility tests and sensitivity/resistance to bactericides. One hundred and eighty nine (189) endophytic bacteria were isolated, and only 9 strains showed antimicrobial activity against B. glumae THT, highlighting Burkholderia vietnamiensis TUR04-01, B. vietnamiensis TUR04-03 and Bacillus aryabhattai AMH12-02. The strains produced siderophores and at least 55.5% were resistant to toxoflavin. Additionally, 17 strains were grouped into 9 BOX-PCR profiles, where 16 had similarity with B. glumae LMG2196T (100%) and 1 with B. gladioli NBRC 13700T (99.86%). High diversity was found according to geographical origin and virulence factors. In conclusion, strains of the genus Bacillus and Burkholderia are potential biocontrol agents against B. glumae.


Subject(s)
Anti-Infective Agents , Burkholderia , Oryza , Bacillus , Burkholderia/genetics , RNA, Ribosomal, 16S/genetics , Virulence
5.
Mol Plant Microbe Interact ; 32(7): 841-852, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30694091

ABSTRACT

Bacterial panicle blight caused by Burkholderia glumae is a major bacterial disease of rice. Our preliminary RNA-seq study showed that a serine metalloprotease gene, prtA, is regulated in a similar manner to the genes for the biosynthesis and transport of toxoflavin, which is a known major virulence factor of B. glumae. prtA null mutants of the virulent strain B. glumae 336gr-1 did not show a detectable extracellular protease activity, indicating that prtA is the solely responsible gene for the extracellular protease activity detected from this bacterium. In addition, inoculation of rice panicles with the prtA mutants resulted in a significant reduction of disease severity compared with the wild-type parent strain, suggesting the requirement of prtA for the full virulence of B. glumae. A double mutant deficient in both serine metalloprotease and toxoflavin (ΔtoxA/prtA-) exhibited a further numeric but not statistically significant decrease of disease development compared with the ΔtoxA strain. Both the prtA-driven extracellular protease activity and the toxoflavin production were dependent on both the tofI/tofR quorum-sensing and the global regulatory gene qsmR, indicating the important roles of the two global regulatory factors for the bacterial pathogenesis by this pathogen.


Subject(s)
Burkholderia , Gene Expression Regulation, Bacterial , Metalloendopeptidases , Virulence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Burkholderia/enzymology , Burkholderia/genetics , Burkholderia/pathogenicity , Metalloendopeptidases/genetics , Metalloendopeptidases/metabolism , Virulence/genetics
6.
Article in English | MEDLINE | ID: mdl-25806356

ABSTRACT

Burkholderia glumae is the chief causal agent for bacterial panicle blight of rice. The acyl-homoserine lactone (AHL)-mediated quorum-sensing (QS) system dependent on a pair of luxI and luxR homologs, tofI and tofR, is the primary cell-to-cell signaling mechanism determining the virulence of this bacterium. Production of toxoflavin, a major virulence factor of B. glumae, is known to be dependent on the tofI/tofR QS system. In our previous study, however, it was observed that B. glumae mutants defective in tofI or tofR produced toxoflavin if they grew on the surface of a solid medium, suggesting that alternative signaling pathways independent of tofI or tofR are activated in that growth condition for the production of toxoflavin. In this study, potential genetic components involved in the tofI- and tofR-independent signaling pathways for toxoflavin production were sought through screening random mini-Tn5 mutants of B. glumae to better understand the intercellular signaling pathways of this pathogen. Fifteen and three genes were initially identified as the potential genetic elements of the tofI- and tofR-independent pathways, respectively. Especially, the ORF (bglu_2g06320) divergently transcribed from toxJ, which encodes an orphan LuxR protein and controls toxoflavin biosynthesis, was newly identified in this study as a gene required for the tofR-independent toxoflavin production and named as toxK. Among those genes, flhD, dgcB, and wzyB were further studied to validate their functions in the tofI-independent toxoflavin production, and similar studies were also conducted with qsmR and toxK for their functions in the tofR-independent toxoflavin production. This work provides a foundation for future comprehensive studies of the intercellular signaling systems of B. glumae and other related pathogenic bacteria.


Subject(s)
Bacterial Proteins/metabolism , Burkholderia/genetics , Quorum Sensing , Signal Transduction , Bacterial Proteins/genetics , Burkholderia/pathogenicity , Burkholderia/physiology , Gene Expression Regulation, Bacterial , Genomics , Onions/microbiology , Plant Diseases/microbiology , Pyrimidinones/metabolism , Triazines/metabolism , Virulence
7.
Mol Plant Pathol ; 15(9): 940-7, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24754446

ABSTRACT

Burkholderia glumae is the major causal agent of bacterial panicle blight of rice, which is a growing disease problem for rice growers worldwide. In our previous study, some B. glumae strains showed pigmentation phenotypes producing at least two (yellow-green and purple) pigment compounds in casein-peptone-glucose agar medium. The B. glumae strains LSUPB114 and LSUPB116 are pigment-deficient mutant derivatives of the virulent and pigment-proficient strain 411gr-6, having mini-Tn5gus insertions in aroA encoding 3-phosphoshikimate 1-carboxyvinyltransferase and aroB encoding 3-dehydroquinate synthase, respectively. Both enzymes are known to be involved in the shikimate pathway, which leads to the synthesis of aromatic amino acids. Here, we demonstrate that aroA and aroB are required for normal virulence in rice and onion, growth in M9 minimal medium and tolerance to UV light, but are dispensable for the production of the phytotoxin toxoflavin. These results suggest that the shikimate pathway is involved in bacterial pathogenesis by B. glumae without a significant role in the production of toxoflavin, a major virulence factor of this pathogen.


Subject(s)
Adaptation, Physiological/genetics , Burkholderia/genetics , Burkholderia/pathogenicity , Genes, Bacterial , Metabolic Networks and Pathways/genetics , Shikimic Acid/metabolism , Ultraviolet Rays , Adaptation, Physiological/radiation effects , Burkholderia/growth & development , Burkholderia/radiation effects , Glycine/analogs & derivatives , Glycine/toxicity , Metabolic Networks and Pathways/radiation effects , Microbial Viability/drug effects , Microbial Viability/radiation effects , Mutation/genetics , Onions/microbiology , Oryza/microbiology , Pigments, Biological/metabolism , Plant Diseases/microbiology , Pyrimidinones/metabolism , Triazines/metabolism , Virulence/radiation effects , Glyphosate
SELECTION OF CITATIONS
SEARCH DETAIL
...