Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 587
Filter
1.
Methods Mol Biol ; 2833: 161-183, 2024.
Article in English | MEDLINE | ID: mdl-38949710

ABSTRACT

Outbreaks are a risk to public health particularly when pathogenic, hypervirulent, and/or multidrug-resistant organisms (MDROs) are involved. In a hospital setting, vulnerable populations such as the immunosuppressed, intensive care patients, and neonates are most at risk. Rapid and accurate outbreak detection is essential to implement effective interventions in clinical areas to control and stop further transmission. Advances in the field of whole genome sequencing (WGS) have resulted in lowered costs, increased capacity, and improved reproducibility of results. WGS now has the potential to revolutionize the investigation and management of outbreaks replacing conventional genotyping and other discrimination systems. Here, we outline specific procedures and protocols to implement WGS into investigation of outbreaks in healthcare settings.


Subject(s)
Disease Outbreaks , Genomics , Whole Genome Sequencing , Humans , Whole Genome Sequencing/methods , Genomics/methods , Genome, Bacterial
2.
BMC Microbiol ; 24(1): 251, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977975

ABSTRACT

OBJECTIVES: To study the effect of agitation and temperature on biofilm formation (cell aggregates embedded within a self-produced matrix) by pathogenic bacteria isolated from Raw cow milk (RCM). METHODS: A 40 RCM samples were gathered from eight dairy farms in Riyadh, Saudi Arabia. After bacterial culturing and isolation, gram staining was performed, and all pathogenic, identified using standard criteria established by Food Standards Australia New Zealand (FSANZ), and non-pathogenic bacteria were identified using VITEK-2 and biochemical assays. To evaluate the effects of temperature and agitation on biofilm formation, isolated pathogenic bacteria were incubated for 24 h under the following conditions: 4 °C with no agitation (0 rpm), 15 °C with no agitation, 30 °C with no agitation, 30 °C with 60 rpm agitation, and 30 °C with 120 rpm agitation. Then, biofilms were measured using a crystal violet assay. RESULTS: Of the eight farm sites, three exhibited non-pathogenic bacterial contamination in their raw milk samples. Of the total of 40 raw milk samples, 15/40 (37.5%; from five farms) were contaminated with pathogenic bacteria. Overall, 346 bacteria were isolated from the 40 samples, with 329/346 (95.1%) considered as non-pathogenic and 17/346 (4.9%) as pathogenic. Most of the isolated pathogenic bacteria exhibited a significant (p < 0.01) increase in biofilm formation when grown at 30 °C compared to 4 °C and when grown with 120 rpm agitation compared to 0 rpm. CONCLUSION: Herein, we highlight the practices of consumers in terms of transporting and storing (temperature and agitation) can significantly impact on the growth of pathogens and biofilm formation in RCM.


Subject(s)
Bacteria , Biofilms , Milk , Temperature , Animals , Biofilms/growth & development , Milk/microbiology , Cattle , Bacteria/isolation & purification , Bacteria/classification , Bacteria/growth & development , Saudi Arabia , Food Microbiology , Bacterial Physiological Phenomena
3.
J Hazard Mater ; 476: 135133, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38986408

ABSTRACT

Earthworms can redistribute soil microbiota, and thus might affect the profile of virulence factor genes (VFGs) which are carried by pathogens in soils. Nevertheless, the knowledge of VFG profile in the earthworm guts and its interaction with earthworm gut microbiome is still lacking. Herein, we characterized earthworm gut and soil microbiome and VFG profiles in natural and agricultural ecosystems at a national scale using metagenomics. VFG profiles in the earthworm guts significantly differed from those in the surrounding soils, which was mainly driven by variations of bacterial communities. Furthermore, the total abundance of different types of VFGs in the earthworm guts was about 20-fold lower than that in the soils due to the dramatic decline (also by approximately 20-fold) of VFG-carrying bacterial pathogens in the earthworm guts. Additionally, five VFGs related to nutritional/metabolic factors and stress survival were identified as keystones merely in the microbe-VFG network in the earthworm guts, implying their pivotal roles in facilitating pathogen colonization in earthworm gut microhabitats. These findings suggest the potential roles of earthworms in reducing risks related to the presence of VFGs in soils, providing novel insights into earthworm-based bioremediation of VFG contamination in terrestrial ecosystems.

4.
Environ Sci Technol ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38989840

ABSTRACT

A. butzleri is an underappreciated emerging global pathogen, despite growing evidence that it is a major contributor of diarrheal illness. Few studies have investigated the occurrence and public health risks that this organism possesses from waterborne exposure routes including through stormwater use. In this study, we assessed the prevalence, virulence potential, and primary sources of stormwater-isolated A. butzleri in fecally contaminated urban stormwater systems. Based on qPCR, A. butzleri was the most common enteric bacterial pathogen [25%] found in stormwater among a panel of pathogens surveyed, including Shiga-toxin producing Escherichia coli (STEC) [6%], Campylobacter spp. [4%], and Salmonella spp. [<1%]. Concentrations of the bacteria, based on qPCR amplification of the single copy gene hsp60, were as high as 6.2 log10 copies/100 mL, suggesting significant loading of this pathogen in some stormwater systems. Importantly, out of 73 unique stormwater culture isolates, 90% were positive for the putative virulence genes cadF, ciaB, tlyA, cjl349, pldA, and mviN, while 50-75% of isolates also possessed the virulence genes irgA, hecA, and hecB. Occurrence of A. butzleri was most often associated with the human fecal pollution marker HF183 in stormwater samples. These results suggest that A. butzleri may be an important bacterial pathogen in stormwater, warranting further study on the risks it represents to public health during stormwater use.

5.
Front Microbiol ; 15: 1387114, 2024.
Article in English | MEDLINE | ID: mdl-38841057

ABSTRACT

Persistent infection caused by biofilm is an urgent in medicine that should be tackled by new alternative strategies. Low efficiency of classical treatments and antibiotic resistance are the main concerns of the persistent infection due to biofilm formation which increases the risk of morbidity and mortality. The gene expression patterns in biofilm cells differed from those in planktonic cells. One of the promising approaches against biofilms is nanoparticle (NP)-based therapy in which NPs with multiple mechanisms hinder the resistance of bacterial cells in planktonic or biofilm forms. For instance, NPs such as silver (Ag), zinc oxide (ZnO), titanium dioxide (TiO2), copper oxide (Cu), and iron oxide (Fe3O4) through the different strategies interfere with gene expression of bacteria associated with biofilm. The NPs can penetrate into the biofilm structure and affect the expression of efflux pump, quorum-sensing, and adhesion-related genes, which lead to inhibit the biofilm formation or development. Therefore, understanding and targeting of the genes and molecular basis of bacterial biofilm by NPs point to therapeutic targets that make possible control of biofilm infections. In parallel, the possible impact of NPs on the environment and their cytotoxicity should be avoided through controlled exposure and safety assessments. This study focuses on the biofilm-related genes that are potential targets for the inhibition of bacterial biofilms with highly effective NPs, especially metal or metal oxide NPs.

6.
Exp Appl Acarol ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869727

ABSTRACT

The aim of this study was to determine the level of infection of Ixodes ricinus ticks with pathogens (Borrelia spp., Rickettsia spp., and Anaplasma spp.) collected from Lacerta agilis and Zootoca vivipara lizards in the urban areas of Wroclaw (SW Poland). The study was carried out in July-August 2020. Lizards were caught by a noose attached to a pole or by bare hands, identified by species, and examined for the presence of ticks. Each lizard was then released at the site of capture. Ticks were removed with tweezers, identified by species using keys, and molecular tests were performed for the presence of pathogens. From 28 lizards (17 specimens of Z. vivipara and 11 specimens of L. agilis) a total of 445 ticks, including 321 larvae and 124 nymphs, identified as I. ricinus were collected. A larger number of ticks were obtained from L. agilis compared to Z. vivipara. Molecular tests for the presence of pathogens were performed on 445 specimens of I. ricinus. The nested PCR method for the fla gene allowed the detection of Borrelia spp. in 9.4% of ticks, and it was higher in ticks from L. agilis (12.0%) than from Z. vivipara (1.0%). The RFLP method showed the presence of three species, including two belonging to the B. burgdorferi s.l. complex (B. lusitaniae and B. afzelii), and B. miyamotoi. The overall level of infection of Rickettsia spp. was 19.3%, including 27.2% in ticks collected from Z. vivipara and 17.0% from L. agilis. Sequencing of randomly selected samples confirmed the presence of R. helvetica. DNA of Anaplasma spp. was detected only in one pool of larvae collected from L. agilis, and sample sequencing confirmed the presence of (A) phagocytophilum. The research results indicate the important role of lizards as hosts of ticks and their role in maintaining pathogens in the environment including urban agglomeration as evidenced by the first recorded presence of (B) miyamotoi and (A) phagocytophilum in I. ricinus ticks collected from L. agilis. However, confirmation of the role of sand lizards in maintaining (B) miyamotoi and A. phagocytophilum requires more studies and sampling of lizard tissue.

7.
Phytopathology ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916945

ABSTRACT

'Candidatus Liberibacter asiaticus', the putative causal agent of citrus greening disease is transmitted by the Asian citrus psyllid, Diaphorina citri in a propagative, circulative, and persistent manner. Unfortunately, 'Ca. L. asiaticus' is not yet available in pure culture to carry out Koch's postulates and to confirm its etiology. When a pure culture is available, an assay to test its infectivity in both the insect vector and the plant host will be crucial. Herein, we described a transmission assay based on the use of phloem sap extracted from infected citrus plants and topical feeding to D. citri nymphs. Phloem sap was collected by centrifugation, diluted with 0.1 M phosphate buffer pH 7.4 containing 20% (w/v) sucrose and 0.1% ascorbic acid (w/v) as an antioxidant, and delivered to third through fifth instar nymphs by placing droplets on the mouthparts. Nymphs unfolded the stylets and acquired the phloem sap containing the bacterial pathogen. Nymphs were then placed onto Citrus macrophylla seedlings (ten nymphs/seedling) for an inoculation period of two weeks. A transmission rate of up to 80% was recorded at six months post-inoculation. The method could be a powerful tool to test the transmissibility of the bacterial pathogen after various treatments to reduce the viability of the bacteria or to block its transmission. In addition, it might be a potent assay to achieve Koch's postulates if a pure culture of 'Ca. L. asiaticus' becomes available.

8.
Microorganisms ; 12(6)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38930545

ABSTRACT

Bacteria (including disinfection- and antibiotic-resistant bacteria) are abundant in the consumer water cycle, where they may cause disease, and lead to biofouling and infrastructure damage in distributions systems, subsequently resulting in significant economic losses. Bacteriophages and their associated enzymes may then offer a biological control solution for application within the water sector. Lytic bacteriophages are of particular interest as biocontrol agents as their narrow host range can be exploited for the targeted removal of specific bacteria in a designated environment. Bacteriophages can also be used to improve processes such as wastewater treatment, while bacteriophage-derived enzymes can be applied to combat biofouling based on their effectiveness against preformed biofilms. However, the host range, environmental stability, bacteriophage resistance and biosafety risks are some of the factors that need to be considered prior to the large-scale application of these bacterial viruses. Characteristics of bacteriophages that highlight their potential as biocontrol agents are thus outlined in this review, as well as the potential application of bacteriophage biocontrol throughout the consumer water cycle. Additionally, the limitations of bacteriophage biocontrol and corresponding mitigation strategies are outlined, including the use of engineered bacteriophages for improved host ranges, environmental stability and the antimicrobial re-sensitisation of bacteria. Finally, the potential public and environmental risks associated with large-scale bacteriophage biocontrol application are considered, and alternative applications of bacteriophages to enhance the functioning of the consumer water cycle, including their use as water quality or treatment indicators and microbial source tracking markers, are discussed.

9.
Microorganisms ; 12(6)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38930618

ABSTRACT

The study focused on the hunting practices and potentially pathogenic bacterial species among European fallow deer (Dama dama). Within a five-year period, three hunting grounds from Western Romania were examined. During this period, a total of 1881 deer were hunted, and 240 samples were collected by rectal and nasal swabbing from 120 carcasses. Bacterial strains were identified utilizing bacteriological assays and the Vitek® 2 Compact system. Notably, the Socodor hunting ground exhibited a significant difference in harvesting quotas between the bucks (Group M) and does/yearlings (Group F), favoring the latter. In the Chișineu Criș-Salișteanca hunting ground, a likely correlation in harvesting quotas between the two groups was observed. The identified potentially pathogenic bacteria were Escherichia coli, Salmonella spp., Staphylococcus aureus, Listeria monocytogenes and Enterococcus faecium. These results highlight the importance of effectively managing the deer population and recognize the potential for Dama dama to spread zoonotic pathogens, emphasizing the necessity of adopting a One Health approach and maintaining ongoing surveillance of this game species' population dynamics.

10.
Phytopathology ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829831

ABSTRACT

Rapid detection of plant diseases before they escalate can improve disease control. Our team has developed rapid nucleic acid extraction methods with microneedles (MN) and combined these with LAMP assays for pathogen detection in the field. In this work, we developed LAMP assays for early blight (Alternaria linariae, A. alternata, and A. solani) and bacterial spot of tomato (Xanthomonas perforans) and validated these LAMP assays and two previously developed LAMP assays for tomato spotted wilt virus and late blight. Tomato plants were inoculated and disease severity was measured. Extractions were performed using MN and LAMP assays were run in tubes (with hydroxynaphthol blue) on a heat block or on a newly designed microfluidic slide chip on a heat block or a slide heater. Fluorescence on the microfluidic chip slides was visualized using EvaGreen and photographed on a smartphone. Plants inoculated with X. perforans or tomato spotted wilt virus tested positive prior to visible disease symptoms, while P. infestans and A. linariae were detected at the time of visual disease symptoms. LAMP assays were more sensitive than PCR and the limit of detection was 1 pg of DNA for both A. linariae and X. perforans. The LAMP assay designed for early blight detected all three species of Alternaria that infect tomato and is thus an Alternaria spp. assay. This study demonstrates the utility of rapid MN extraction followed by LAMP on a microfluidic chip for rapid diagnosis of four important tomato pathogens.

11.
Phytopathology ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829919

ABSTRACT

It is essential to have a thorough knowledge of the genetic variation among different strains of Xanthomonas citri pv. citri (Xcc), which is responsible for causing citrus bacterial canker. This understanding is important for studying disease characteristics, population structure, and evolution and ultimately for developing sustainable methods of control. A total of 48 strains obtained from citrus production areas in Burkina Faso in 2012, 2020, and 2021 were subjected to polymerase chain reaction (PCR) tests using specific primers. The aim was to examine the distribution of type 3 effectors (T3E) and determine the geographical origins of the strains. The examination of the distribution of type 3 non-transcription-activator-like effectors (TALEs) revealed a broader range of strains obtained in 2020 and 2021 than in 2012. However, all the strains possessed a shared set of three genes, specifically, XopE2, XopN, and AvrBs2. Furthermore, all examined effectors were observed in the Bobo-Dioulasso region. Regarding the characterization of TALEs, two profiles containing two to three TALEs were discovered. Profile 1, consisting of two TALEs, was found in 37 Xcc strains, whereas Profile 2, comprising three TALEs, was detected in 11 strains. Among the three TALEs (A, B, and C) that were identified, TALEs B and C were present in all the strains. The correlation matrix indicated a positive association between the T3E content of strains and the duration of their isolation. Principal component analysis revealed a limited organization of the strains under investigation.

12.
Environ Int ; 188: 108753, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38761431

ABSTRACT

Fermentation broth from fruit and vegetable waste (FFVW) has demonstrated remarkable ability as a soil amendment and in reducing antibiotic resistance genes (ARGs) pollution. However, the potential of FFVW to mitigate other microbial contamination such as human bacterial pathogens (HBPs) and virulence factor genes (VFGs), which are closely associated with human health, remains unknown. In this study, metagenomic analysis revealed that FFVW reduced the HBPs with high-risk of ARGs and VFGs including Klebsiella pneumoniae (reduced by 40.4 %), Mycobacterium tuberculosis (reduced by 21.4 %) and Streptococcus pneumoniae (reduced by 38.7 %). Correspondingly, VFG abundance in soil decreased from 3.40 copies/cell to 2.99 copies/cell. Further analysis illustrated that these was mainly attributed to the inhibition of quorum sensing (QS). FFVW reduced the abundance of QS signals, QS synthesis genes such as rpaI and luxS, as well as receptor genes such as rpfC and fusK, resulting in a decreased in risk of ARGs and VFGs. The pure culture experiment revealed that the expression of genes related to QS, VFGs, ARGs and mobile genetic elements (MGEs) were downregulated in Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli and K. pneumoniae treated by FFVW, consistent with the result of metagenomic analysis. This study suggested an environmentally friendly approach for controlling soil VFGs/ARGs-carrying HBPs, which is crucial for both soil and human health under the framework of "One Health".


Subject(s)
Fruit , Quorum Sensing , Soil Microbiology , Vegetables , Quorum Sensing/drug effects , Vegetables/microbiology , Fruit/microbiology , Humans , Fermentation , Bacteria/genetics , Virulence Factors/genetics , Soil/chemistry
13.
Biosensors (Basel) ; 14(5)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38785684

ABSTRACT

The rapid and sensitive detection of pathogenic bacteria is becoming increasingly important for the timely prevention of contamination and the treatment of infections. Biosensors based on nucleic acid aptamers, integrated with optical, electrochemical, and mass-sensitive analytical techniques, have garnered intense interest because of their versatility, cost-efficiency, and ability to exhibit high affinity and specificity in binding bacterial biomarkers, toxins, and whole cells. This review highlights the development of aptamers, their structural characterization, and the chemical modifications enabling optimized recognition properties and enhanced stability in complex biological matrices. Furthermore, recent examples of aptasensors for the detection of bacterial cells, biomarkers, and toxins are discussed. Finally, we explore the barriers to and discuss perspectives on the application of aptamer-based bacterial detection.


Subject(s)
Aptamers, Nucleotide , Bacteria , Biosensing Techniques , Humans , Electrochemical Techniques , Biomarkers
14.
Environ Monit Assess ; 196(6): 547, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38743188

ABSTRACT

Foodborne illnesses caused by the consumption of contaminated foods have frequent occurrences in developing countries. The incorporation of contaminated water in food processes, preparation, and serving is directly linked to several gastrointestinal infections. Keeping in view, this study was conducted to assess the microbial quality of both drinking water sources and commonly consumed fresh ready-to-eat (RTE) foods in the region. The drinking water samples from water sources and consumer points, as well as food samples from canteens, cafes, hotels, and restaurants, were collected for the microbiological analysis. Fifty-five percent (n = 286) of water samples were found to be positive for total coliforms with MPN counts ranging from 3 to 2600 (100 ml) -1. E. coli was detected in nearly 30% of the total water samples. Overall, 65% tap water samples were found unsatisfactory, followed by submersible (53%), filter (40%), and WTP (30%) sources. Furthermore, the examination of RTE foods (n = 80) found that 60% were of unsatisfactory microbial quality with high aerobic plate counts. The salads were the most contaminated category with highest mean APC 8.3 log CFU/g followed by pani puri, chats, and chutneys. Presence of coliforms and common enteropathogens was observed in both water and food samples. The detected isolates from the samples were identified as Enterobacter spp., Klebsiella spp., Pseudomonas aeruginosa, Salmonella spp., Shigella spp., and Staphylococcus spp. Based on these findings, microbiological quality was found compromised and this may pose hazard to public health. This exploratory study in the Punjab region also suggests that poor microbiological quality of water sources can be an important source of contamination for fresh uncooked RTE foods, thus transferring pathogens to the food chain. Therefore, only safe potable drinking water post-treatment should be used at all stages.


Subject(s)
Drinking Water , Fast Foods , Food Microbiology , Water Microbiology , Drinking Water/microbiology , India , Fast Foods/microbiology , Bacteria/isolation & purification , Bacteria/classification , Food Contamination/analysis , Environmental Monitoring , Humans , Escherichia coli/isolation & purification
15.
Infect Immun ; 92(6): e0002024, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38775488

ABSTRACT

The endocannabinoid system (ECS), initially identified for its role in maintaining homeostasis, particularly in regulating brain function, has evolved into a complex orchestrator influencing various physiological processes beyond its original association with the nervous system. Notably, an expanding body of evidence emphasizes the ECS's crucial involvement in regulating immune responses. While the specific role of the ECS in bacterial infections remains under ongoing investigation, compelling indications suggest its active participation in host-pathogen interactions. Incorporating the ECS into the framework of bacterial pathogen infections introduces a layer of complexity to our understanding of its functions. While some studies propose the potential of cannabinoids to modulate bacterial function and immune responses, the outcomes inherently hinge on the specific infection and cannabinoid under consideration. Moreover, the bidirectional relationship between the ECS and the gut microbiota underscores the intricate interplay among diverse physiological processes. The ECS extends its influence far beyond its initial discovery, emerging as a promising therapeutic target across a spectrum of medical conditions, encompassing bacterial infections, dysbiosis, and sepsis. This review comprehensively explores the complex roles of the ECS in the modulation of bacteria, the host's response to bacterial infections, and the dynamics of the microbiome. Special emphasis is placed on the roles of cannabinoid receptor types 1 and 2, whose signaling intricately influences immune cell function in microbe-host interactions.


Subject(s)
Bacterial Infections , Cannabinoids , Endocannabinoids , Gastrointestinal Microbiome , Host-Pathogen Interactions , Endocannabinoids/metabolism , Humans , Bacterial Infections/immunology , Bacterial Infections/microbiology , Animals , Host-Pathogen Interactions/immunology , Cannabinoids/metabolism , Cannabinoids/pharmacology
16.
Biomedicines ; 12(5)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38790956

ABSTRACT

Antimicrobial resistance (AMR), caused by microbial infections, has become a major contributor to morbid rates of mortality worldwide and a serious threat to public health. The exponential increase in resistant pathogen strains including Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) poses significant hurdles in the health sector due to their greater resistance to traditional treatments and medicines. Efforts to tackle infectious diseases caused by resistant microbes have prompted the development of novel antibacterial agents. Herein, we present selenium and copper oxide monometallic nanoparticles (Se-MMNPs and CuO-MMNPs), characterized using various techniques and evaluated for their antibacterial potential via disc diffusion, determination of minimum inhibitory concentration (MIC), antibiofilm, and killing kinetic action. Dynamic light scattering (DLS), scanning electron microscopy (SEM/EDX), and X-ray diffraction (XRD) techniques confirmed the size-distribution, spherical-shape, stability, elemental composition, and structural aspects of the synthesized nanoparticles. The MIC values of Se-MMNPs and CuO-MMNPs against S. aureus and E. coli were determined to be 125 µg/mL and 100 µg/mL, respectively. Time-kill kinetics studies revealed that CuO-MMNPs efficiently mitigate the growth of S. aureus and E. coli within 3 and 3.5 h while Se-MMNPs took 4 and 5 h, respectively. Moreover, CuO-MMNPs demonstrated better inhibition compared to Se-MMNPs. Overall, the proposed materials exhibited promising antibacterial activity against S. aureus and E. coli pathogens.

17.
Phytopathology ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809758

ABSTRACT

Bacterial spot caused by Xanthomonas spp. is an economically important disease of pepper causing significant yield losses in Taiwan. Monitoring the pathogen population on a continuous basis is necessary for developing disease management strategies. We analyzed a collection of xanthomonad strains isolated from pepper in Taiwan between 1989 and 2019. Among the sequenced genomes, sixty-five were identified as Xanthomonas euvesicatoria and ten were X. perforans. Thirty-five X. euvesicatoria and ten X. perforans strains were copper tolerant, whereas only five X. euvesicatoria and none of the X. perforans strains were tolerant to streptomycin. Nine X. euvesicatoria strains were amylolytic, which is considered an unusual characteristic for X. euvesicatoria. Bayesian analysis of the population structure based on core gene SNPs clustered the strains into five clusters for X. euvesicatoria and three clusters for X. perforans. One X. perforans cluster, designated as TP-2019, appears to be a novel genetic cluster based on core genes, accessory gene content, and effector profile. This knowledge of pathogen diversity with whole genomic information will be useful in future comparative studies and in improving breeding programs to develop disease-resistant cultivars and other disease management options.

18.
Molecules ; 29(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38731579

ABSTRACT

Trehalose is a naturally occurring, non-reducing saccharide widely distributed in nature. Over the years, research on trehalose has revealed that this initially thought simple storage molecule is a multifunctional and multitasking compound protecting cells against various stress factors. This review presents data on the role of trehalose in maintaining cellular homeostasis under stress conditions and in the virulence of bacteria and fungi. Numerous studies have demonstrated that trehalose acts in the cell as an osmoprotectant, chemical chaperone, free radical scavenger, carbon source, virulence factor, and metabolic regulator. The increasingly researched medical and therapeutic applications of trehalose are also discussed.


Subject(s)
Trehalose , Trehalose/pharmacology , Trehalose/metabolism , Humans , Animals , Fungi/metabolism , Fungi/drug effects , Bacteria/metabolism , Bacteria/drug effects , Homeostasis/drug effects , Stress, Physiological/drug effects
19.
Phytopathology ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748545

ABSTRACT

Citrus canker disease, caused by Xanthomonas citri subsp. citri, poses a significant threat to global citrus production. The control of the disease in the field relies mainly on the use of conventional tools such as copper compounds, which are harmful to the environment and could lead to bacterial resistance. This scenario stresses the need for new and sustainable technologies to control phytopathogens, representing a key challenge in developing studies that translate basic into applied knowledge. During infection, X. citri subsp. citri secretes a transcriptional activator-like effector that enters the nucleus of plant cells, activating the expression of the canker susceptibility gene LATERAL ORGAN BOUNDARIES 1 (LOB1). In this study, we explored the use of antisense oligonucleotides (ASOs) with phosphorothioate modifications to transiently inhibit the gene expression of CsLOB1 in Citrus sinensis. We designed and validated three potential ASO sequences, which led to a significant reduction in disease symptoms compared to the control. The selected ASO3-CsLOB1 significantly decreased the expression level of CsLOB1 when delivered through two distinct delivery methods and the reduction of the symptoms ranged from approximately 15% to 83%. Notably, plants treated with ASO3 did not exhibit an increase in symptoms development over the evaluation period. This study highlights the efficacy of ASO technology, based on short oligonucleotide chemically modified sequences, as a promising tool for controlling phytopathogens without the need for genetic transformation or plant regeneration. Our results demonstrate the potential of ASOs as a biotechnological tool for the management of citrus canker disease.

20.
Phytopathology ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38749069

ABSTRACT

The previous studies revealed that the type VI secretion system (T6SS) has an essential role in bacterial competition and virulence in many gram-negative bacteria. However, the role of T6SS in virulence in Pectobacterium atrosepticum remains controversial. We examined a closely related strain, PccS1, and discovered that its T6SS comprises a single copy cluster of 17 core genes with a higher identity to homologs from P. atrosepticum. Through extensive phenotypic and functional analyses of over 220 derivatives of PccS1, we found that three of the five VgrGs could be classified into group I VgrGs. These VgrGs interacted with corresponding DUF4123 domain proteins, which were secreted outside of the membrane and were dependent on either T6SS or T4SS. This interaction directly governed virulence and competition. Meanwhile, supernatant proteomic analyses with stains defective in T6SS or/and T4SS confirm that effectors, such as FhaB, were secreted redundantly to control the virulence and suppress host callose-deposition in the course of infection. Notably, this redundant secretion mechanism between T6SS and T4SS is believed to be the first of its kind in bacteria.

SELECTION OF CITATIONS
SEARCH DETAIL
...