Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 658
Filter
1.
Microbiol Resour Announc ; : e0050724, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953336

ABSTRACT

We report the complete genome sequence of Lacticaseibacillus casei LC130, isolated from a healthy human fecal sample and part of the NORDBIOTIC collection. The 2.969 Mb genome of LC130 includes genes potentially involved in lactose metabolism and the production of bacteriocins, peptidases, and polyamines, suggesting potential health benefits.

2.
Article in English | MEDLINE | ID: mdl-38958914

ABSTRACT

Carnobacterium maltaromaticum is a species of lactic acid bacteria (LAB) that has been isolated from various natural environments. It is well-known for producing a diverse spectrum of bacteriocins with potential biotechnological applications. In the present study, a new psychrotolerant strain of C. maltaromaticum CM22 is reported, isolated from a salmon gut sample and producing a variant of the bacteriocin piscicolin 126 that has been named piscicolin CM22. After identification by 16S rRNA gene, this strain has been genomically characterized by sequencing and assembling its complete genome. Moreover, its bacteriocin was purified and characterized. In vitro tests demonstrated that both the strain and its bacteriocin possess antimicrobial activity against several Gram-positive bacteria of interest in human and animal health, such as Listeria monocytogenes, Clostridium perfringens, or Enterococcus faecalis. However, this bacteriocin did not produce any antimicrobial effect on Gram-negative species. The study of its genome showed the genetic structure of the gene cluster that encodes the bacteriocin, showing a high degree of homology to the gene cluster of piscicolin 126 described in other C. maltaromaticum. Although more studies are necessary concerning its functional properties, this new psychrotolerant strain C. maltaromaticum CM22 and its bacteriocin could be considered an interesting candidate with potential application in agri-food industry.

3.
J Fish Dis ; : e13997, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38973153

ABSTRACT

With the emergence of diseases, the U.S. catfish industry is under challenge. Current trends prefer autochthonous bacteria as potential probiotic candidates owing to their adaptability and capacity to effectively colonize the host's intestine, which can enhance production performance and bolster disease resistance. The objective of this study was to isolate an autochthonous bacterium as probiotic for hybrid catfish. Initially, an analysis of the intestinal microbiota of hybrid catfish reared in earthen ponds was conducted for subsequent probiotic development. Twenty lactic acid bacteria were isolated from the digesta of overperforming catfish, and most of the candidates demonstrated probiotic traits, including proteolytic and lipolytic abilities; antagonistic inhibition of catfish enteric bacterial pathogens, negative haemolytic activity and antibiotic susceptibility. Subsequent to this screening process, an isolate of Lactococcus lactis (MA5) was deemed the most promising probiotic candidate. In silico analyses were conducted, and several potential probiotic functions were predicted, including essential amino acids and vitamin synthesis. Moreover, genes for three bacteriocins, lactococcin A, enterolysin A and sactipeptide BmbF, were identified. Lastly, various protectant media for lyophilization of MA5 were assessed. These findings suggest that Lactococcus lactis MA5 can be an autochthonous probiotic from hybrid catfish, holding promise to be further tested in feeding trials.

4.
Insects ; 15(6)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38921144

ABSTRACT

Bees are one of the best-known and, at the same time, perhaps the most enigmatic insects on our planet, known for their organization and social structure, being essential for the pollination of agricultural crops and several other plants, playing an essential role in food production and the balance of ecosystems, being associated with the production of high-value-added inputs, and a unique universe in relation to bees' microbiota. In this review, we summarize information regarding on different varieties of bees, with emphasis on their specificity related to microbial variations. Noteworthy are fructophilic bacteria, a lesser-known bacterial group, which use fructose fermentation as their main source of energy, with some strains being closely related to bees' health status. The beneficial properties of fructophilic bacteria may be extendable to humans and other animals as probiotics. In addition, their biotechnological potential may ease the development of new-generation antimicrobials with applications in biopreservation. The concept of "One Health" brings together fundamental and applied research with the aim of clarifying that the connections between the different components of ecosystems must be considered part of a mega-structure, with bees being an iconic example in that the healthy functionality of their microbiota is directly and indirectly related to agricultural production, bee health, quality of bee products, and the functional prosperity for humans and other animals. In fact, good health of bees is clearly related to the stable functionality of ecosystems and indirectly relates to humans' wellbeing, a concept of the "One Health".

6.
Mar Biotechnol (NY) ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864950

ABSTRACT

This study aimed to investigate the taxonomic and functional patterns of the microbiome associated with Barbour's seahorse (Hippocampus barbouri) using a combination of shotgun metagenomics and bioinformatics. The analyses revealed that Pseudomonadota and Bacillota were the dominant phyla in the seahorse skin microbiome, whereas Pseudomonadota and, to a lesser extent, Bacillota and Bacteroidota were the dominant phyla in the seahorse gut microbiome. Several metabolic pathway categories were found to be enriched in the skin microbiome, including amino acid metabolism, carbohydrate metabolism, cofactor and vitamin metabolism, energy metabolism, nucleotide metabolism, as well as membrane transport, signal transduction, and cellular community-prokaryotes. In contrast, the gut microbiome exhibited enrichment in metabolic pathways associated with the metabolism of terpenoids and polyketides, biosynthesis of other secondary metabolites, xenobiotics biodegradation and metabolism, and quorum sensing. Additionally, although the relative abundance of bacteriocins in the skin and gut was slightly similar, notable differences were observed at the class level. Specifically, class I bacteriocins were found to be more abundant in the skin microbiome, whereas class III bacteriocins were more abundant in the gut microbiome. To the best of our knowledge, this study represents the first comprehensive examination of the taxonomic and functional patterns of the skin and gut microbiome in Barbour's seahorse. These findings can greatly contribute to a deeper understanding of the seahorse-associated microbiome, which can play a pivotal role in predicting and controlling bacterial infections, thereby contributing to the success of aquaculture and health-promoting initiatives.

7.
Microbiome Res Rep ; 3(2): 24, 2024.
Article in English | MEDLINE | ID: mdl-38846023

ABSTRACT

Background: The role of the urobiome in health and disease remains an understudied area compared to the rest of the human microbiome. Enhanced culturing techniques and next-generation sequencing technologies have identified the urobiome as an untapped source of potentially novel antimicrobials. The aim of this study was to screen the urobiome for genes encoding bacteriocin production. Methods: The genomes of 181 bacterial urobiome isolates were screened in silico for the presence of bacteriocin gene clusters using the bacteriocin mining tool BAGEL4 and secondary metabolite screening tool antiSMASH7. Results: From these isolates, an initial 263 areas of interest were identified, manually annotated, and evaluated for potential bacteriocin gene clusters. This resulted in 32 isolates containing 80 potential bacteriocin gene clusters, of which 72% were identified as class II, 13.75% as class III, 8.75% as class I, and 5% as unclassified bacteriocins. Conclusion: Overall, 53 novel variants were discovered, including nisin, gassericin, ubericin, and colicins.

8.
J Appl Microbiol ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38925659

ABSTRACT

AIMS: This study aimed to prospect and isolate LAB from an artisanal cheese production environment, to assess their safety, and to explore their bacteriocinogenic potential against Listeria monocytogenes. METHODS AND RESULTS: Samples were collected from surfaces of an artisanal-cheese production facility and after rep-PCR and 16S rRNA sequencing analysis, selected strains were identified to be belonging to Lactococcus garvieae (1 strain) and Enterococcus faecium (14 isolates, grouped into 3 clusters) associated with different environments (worktables, cheese mold, ripening wooden shelves). All of them presented bacteriocinogenic potential against L. monocytogenes ATCC 7644 and were confirmed as safe (γ-hemolytic, not presenting antibiotic resistance, no mucus degradation properties and no proteolytic or gelatinase enzyme activity). Additionally, cell growth, acidification and bacteriocins production kinetics, bacteriocin stability in relation to different temperatures, pH and chemicals were evaluated. According to performed PCR all studied strains generated positive evidence for presence of entA and entP genes (for production of enterocins A and enterocins P, respectively). However, pediocin PA-1 associated gene were recorded only DNA from E. faecium ST02JL and Lc. garvieae ST04JL. CONCLUSIONS: It is worth considering the application of these safe LAB or their bacteriocins in situ as an alternative means of controlling L. monocytogenes in cheese production environments alone or in combination with other antimicrobials.

9.
Front Microbiol ; 15: 1406904, 2024.
Article in English | MEDLINE | ID: mdl-38939182

ABSTRACT

This review aims to comprehensively chronicle the biosynthesis, classification, properties, and applications of bacteriocins produced by Weissella genus strains, particularly emphasizing their potential benefits in food preservation, human health, and animal productivity. Lactic Acid Bacteria (LAB) are a class of microorganisms well-known for their beneficial role in food fermentation, probiotics, and human health. A notable property of LAB is that they can synthesize antimicrobial peptides known as bacteriocins that exhibit antimicrobial action against both closely related and other bacteria as well. Bacteriocins produced by Weissella spp. are known to exhibit antimicrobial activity against several pathogenic bacteria including food spoilage species, making them highly invaluable for potential application in food preservation and food safety. Importantly, they provide significant health benefits to humans, including combating infections, reducing inflammation, and modulating the gut microbiota. In addition to their applications in food fermentation and probiotics, Weissella bacteriocins show promising prospects in poultry production, processing, and improving animal productivity. Future research should explore the utilization of Weissella bacteriocins in innovative food safety measures and medical applications, emphasizing their potential to combat antibiotic-resistant pathogens, enhance gut microbiota composition and function, and synergize with existing antimicrobial therapies.

10.
Gut Microbes ; 16(1): 2369338, 2024.
Article in English | MEDLINE | ID: mdl-38899682

ABSTRACT

Gut bacteria are known to produce bacteriocins to inhibit the growth of other bacteria. Consequently, bacteriocins have attracted increased attention as potential microbiome-editing tools. In this study we examine the inhibitory spectrum of 75 class II bacteriocins against 48 representative gut microbiota species. The bacteriocins were heterologously expressed in Escherichia coli and evaluated in vitro, ex vivo and in vivo. In vitro assays revealed 22 bacteriocins to inhibit at least one species and showed selective inhibition patterns against species implicated in certain disorders and diseases. Three bacteriocins were selected for ex vivo assessment on mouse feces. Based on 16S rRNA sequencing of the cultivated feces we showed that the two bacteriocins: Actifencin (#13) and Bacteroidetocin A (#22) selectively inhibited the growth of Lactobacillus and Bacteroides, respectively. The probiotic: E. coli Nissle 1917 was engineered to express these two bacteriocins in mice. However, the selective inhibitory patterns found in the in vitro and ex vivo experiments could not be observed in vivo. Our study describes a methodology for heterologous high throughput bacteriocin expression and screening and elucidates the inhibitory patterns of class II bacteriocins on the gut microbiota.


Subject(s)
Anti-Bacterial Agents , Bacteriocins , Escherichia coli , Feces , Gastrointestinal Microbiome , Bacteriocins/genetics , Bacteriocins/pharmacology , Bacteriocins/metabolism , Bacteriocins/biosynthesis , Animals , Mice , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/metabolism , Feces/microbiology , Gastrointestinal Microbiome/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/biosynthesis , RNA, Ribosomal, 16S/genetics , Lactobacillus/genetics , Lactobacillus/metabolism , Lactobacillus/drug effects , Bacteria/genetics , Bacteria/drug effects , Bacteria/metabolism , Bacteria/classification , Gene Expression
11.
Microorganisms ; 12(6)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38930612

ABSTRACT

Aims: This study investigates the activity of the broad-spectrum bacteriocin nisin against a large panel of Gram-negative bacterial isolates, including relevant plant, animal, and human pathogens. The aim is to generate supportive evidence towards the use/inclusion of bacteriocin-based therapeutics and open avenues for their continued development. Methods and Results: Nisin inhibitory activity was screened against a panel of 575 strains of Gram-negative bacteria, encompassing 17 genera. Nisin inhibition was observed in 309 out of 575 strains, challenging the prevailing belief that nisin lacks effectiveness against Gram-negative bacteria. The genera Acinetobacter, Helicobacter, Erwinia, and Xanthomonas exhibited particularly high nisin sensitivity. Conclusions: The findings of this study highlight the promising potential of nisin as a therapeutic agent for several key Gram-negative plant, animal, and human pathogens. These results challenge the prevailing notion that nisin is less effective or ineffective against Gram-negative pathogens when compared to Gram-positive pathogens and support future pursuits of nisin as a complementary therapy to existing antibiotics. Significance and Impact of Study: This research supports further exploration of nisin as a promising therapeutic agent for numerous human, animal, and plant health applications, offering a complementary tool for infection control in the face of multidrug-resistant bacteria.

12.
Arch Microbiol ; 206(6): 269, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767708

ABSTRACT

Bacteriocins are ribosomally synthesized bacterial peptides endowed with antibacterial, antiprotozoal, anticancer and antiviral activities. In the present study, we evaluated the antiviral activities of two bacteriocins, enterocin DD14 (EntDD14) and lacticaseicin 30, against herpes simplex virus type 1 (HSV-1), human coronavirus 229E (HCoV-229E) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Vero, Huh7 and Vero E6 cells, respectively. In addition, the interactions of these bacteriocins with the envelope glycoprotein D of HSV-1 and the receptor binding domains of HCoV-229E and SARS-CoV-2 have been computationally evaluated using protein-protein docking and molecular dynamics simulations. HSV-1 replication in Vero cells was inhibited by EntDD14 and, to a lesser extent, by lacticaseicin 30 added to cells after virus inoculation. EntDD14 and lacticaseicin 30 had no apparent antiviral activity against HCoV-229E; however, EntDD14 was able to inhibit SARS-CoV-2 in Vero E6 cells. Further studies are needed to elucidate the antiviral mechanism of these bacteriocins.


Subject(s)
Antiviral Agents , Bacteriocins , SARS-CoV-2 , Bacteriocins/pharmacology , Chlorocebus aethiops , Animals , Antiviral Agents/pharmacology , Vero Cells , Humans , SARS-CoV-2/drug effects , Virus Replication/drug effects , Herpesvirus 1, Human/drug effects , Herpesvirus 1, Human/physiology , Molecular Docking Simulation , Molecular Dynamics Simulation , Bridged-Ring Compounds
13.
Article in English | MEDLINE | ID: mdl-38713419

ABSTRACT

A multitude of approaches will be required to respond to the threat posed by the emergence and spread of antibiotic resistant pathogens. Bacteriocins have gained increasing attention as a possible alternative to antibiotics, as such peptide antimicrobials have mechanisms of action different from antibiotics and are therefore equally potent against antibiotic resistant bacteria as their susceptible counterparts. A group of bacteriocins known as saposin-like bacteriocins is believed to act directly on the bacterial membrane. Based on seven saposin-like leaderless bacteriocins, we have constructed a library of hybrid peptides containing all combinations of the N- and C-terminal halves of the native bacteriocins. All hybrid peptides were synthesized using in vitro protein expression and assayed for antimicrobial activity towards several pathogens. Of the 42 hybrid peptides, antimicrobial activity was confirmed for 11 novel hybrid peptides. Furthermore, several of the hybrid peptides exhibited altered antimicrobial spectra and apparent increase in potency compared to the peptides from which they were derived. The most promising hybrid, termed ISP26, was then obtained synthetically and shown to inhibit most of the Gram-positive species tested, including opportunistic pathogens and food spoilage bacteria. Additionally, ISP26 was shown to inhibit Acinetobacter, a species of Gram-negative bacteria frequently isolated from nosocomial infections. The activity of the hybrid library provides valuable insights into the design and screening of new active bacteriocins.

14.
Antibiotics (Basel) ; 13(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38786143

ABSTRACT

This review delves into using natural antimicrobials in the dairy industry and examines various sources of these compounds, including microbial, plant, and animal sources. It discusses the mechanisms by which they inhibit microbial growth, for example, by binding to the cell wall's precursor molecule of the target microorganism, consequently inhibiting its biosynthesis, and interfering in the molecule transport mechanism, leading to cell death. In general, they prove to be effective against the main pathogens and spoilage found in food, such as Escherichia coli, Staphylococcus aureus, Bacillus spp., Salmonella spp., mold, and yeast. Moreover, this review explores encapsulation technology as a promising approach for increasing the viability of natural antimicrobials against unfavorable conditions such as pH, temperature, and oxygen exposure. Finally, this review examines the benefits and challenges of using natural antimicrobials in dairy products. While natural antimicrobials offer several advantages, including improved safety, quality, and sensory properties of dairy products, it is crucial to be aware of the challenges associated with their use, such as potential allergenicity, regulatory requirements, and consumer perception. This review concludes by emphasizing the need for further research to identify and develop effective and safe natural antimicrobials for the dairy industry to ensure the quality and safety of dairy products for consumers.

15.
Antibiotics (Basel) ; 13(5)2024 May 13.
Article in English | MEDLINE | ID: mdl-38786166

ABSTRACT

A variety of bacteria, including beneficial probiotic lactobacilli, produce antibacterials to kill competing bacteria. Lactobacilli secrete antimicrobial peptides (AMPs) called bacteriocins and organic acids. In the food industry, bacteriocins, but even whole cell-free supernatants, are becoming more and more important as bio-preservatives, while, in orthopedics, bacteriocins are introducing new perspectives in biomaterials technologies for anti-infective surfaces. Studies are focusing on Lactiplantibacillus plantarum (previously known as Lactobacillus plantarum). L. plantarum exhibits great phenotypic versatility, which enhances the chances for its industrial exploitation. Importantly, more than other lactobacilli, it relies on AMPs for its antibacterial activity. In this study, Response Surface Methodology (RSM) through a Box-Behnken experimental design was used to estimate the optimal conditions for the production of antibacterials by L. plantarum. A temperature of 35 °C, pH 6.5, and an incubation time of 48 h provided the highest concentration of antibacterials. The initial pH was the main factor influencing the production of antibacterials, at 95% confidence level. Thanks to RSM, the titer of antibacterials increased more than 10-fold, this result being markedly higher than those obtained in the very few studies that have so far used similar statistical methodologies. The Box-Behnken design turned out to be a valid model to satisfactorily plan a large-scale production of antibacterials from L. plantarum.

16.
Article in English | MEDLINE | ID: mdl-38743207

ABSTRACT

Enterococcus faecalis CAUM157 (KACC 81148BP), a Gram-positive bacteria isolated from raw cow's milk, was studied for its bacteriocin production. The antimicrobial activity of CAUM157 was attributed to a two-peptide class IIb bacteriocin with potent activity against food-borne pathogen Listeria monocytogenes and periodontal disease-causing pathogens (Prevotella intermedia KCTC 15693 T and Fusobacterium nucleatum KCTC 2488 T). M157 bacteriocins exhibit high temperature and pH stability and resist hydrolytic enzyme degradation and detergent denaturation, potentially due to their structural conformation. Based on amino acid sequence, M157A and M157B were predicted to be 5.176 kDa and 5.182 kDa in size, respectively. However, purified bacteriocins and chemically synthesized N-formylated M157 peptides both showed 5.204 kDa (M157A) and 5.209 kDa (M157B) molecular mass, confirming the formylation of the N-terminal methionine of both peptides produced by strain CAUM157. Furthermore, the strain demonstrated favorable growth and fermentation with minimal bacteriocin production when cultured in whey-based media, whereas a 1.0% tryptone or soytone supplementation resulted in higher bacteriocin production. Although Ent. faecalis CAUM157 innately harbors genes for virulence factors and antimicrobial resistance (e.g., tetracycline and erythromycin), its bacteriocin production is valuable in circumventing the need for live microorganisms, particularly in food applications for pathogen control.

17.
Peptides ; 177: 171220, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38636811

ABSTRACT

Nisin A is a lantibiotic bacteriocin typically produced by strains of Lactococcus lactis. This bacteriocin has been approved as a natural food preservative since the late 1980 s and shows antimicrobial activity against a range of food-borne spoilage and pathogenic microorganisms. The therapeutic potential of nisin A has also been explored increasingly both in human and veterinary medicine. Nisin has been shown to be effective in treating bovine mastitis, dental caries, cancer, and skin infections. Recently, it was demonstrated that nisin has an affinity for the same receptor used by SARS-CoV-2 to enter human cells and was proposed as a blocker of the viral infection. Several nisin variants produced by distinct bacterial strains or modified by bioengineering have been described since the discovery of nisin A. These variants present modifications in the peptide structure, biosynthesis, mode of action, and spectrum of activity. Given the importance of nisin for industrial and therapeutic applications, the objective of this study was to describe the characteristics of the nisin variants, highlighting the main differences between these molecules and their potential applications. This review will be useful to researchers interested in studying the specifics of nisin A and its variants.


Subject(s)
Anti-Bacterial Agents , Nisin , Nisin/chemistry , Nisin/pharmacology , Humans , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Lactococcus lactis/metabolism , Lactococcus lactis/genetics , Cattle , SARS-CoV-2/drug effects , COVID-19 Drug Treatment
18.
Front Microbiol ; 15: 1268216, 2024.
Article in English | MEDLINE | ID: mdl-38638895

ABSTRACT

Introduction: Many lactic acid bacteria (LAB) strains are currently gaining attention in the food industry and various biological applications because of their harmless and functional properties. Given the growing consumer demand for safe food, further research into potential probiotic bacteria is beneficial. Therefore, we aimed to characterize Pediococcus pentosaceus DSPZPP1, a LAB strain isolated from traditional fermented sausages from the Basilicata region of Southern Italy. Methods: In this study, we analyzed the whole genome of the P. pentosaceus DSPZPP1 strain and performed in silico characterization to evaluate its applicability for probiotics and use in the food industry. Results and Discussion: The whole-genome assembly and functional annotations revealed many interesting characteristics of the DSPZPP1 strain. Sequencing raw reads were assembled into a draft genome of size 1,891,398 bp, with a G + C content of 37.3%. Functional annotation identified 1930 protein-encoding genes and 58 RNAs including tRNA, tmRNA, and 16S, 23S, and 5S rRNAs. The analysis shows the presence of genes that encode water-soluble B-group vitamins such as biotin, folate, coenzyme A, and riboflavin. Furthermore, the analysis revealed that the DSPZPP1 strain can synthesize class II bacteriocin, penocin A, adding importance to the food industry for bio-enriched food. The DSPZPP1 genome does not show the presence of plasmids, and no genes associated with antimicrobial resistance and virulence were found. In addition, two intact bacteriophages were identified. Importantly, the lowest probability value in pathogenicity analysis indicates that this strain is non-pathogenic to humans. 16 s rRNA-based phylogenetic analysis and comparative analysis based on ANI and Tetra reveal that the DSPZPP1 strain shares the closest evolutionary relationship with P. pentosaceus DSM 20336 and other Pediococcus strains. Analysis of carbohydrate active enzymes (CAZymes) identified glycosyl transferases (GT) as a main class of enzymes followed by glycoside hydrolases (GH). Our study shows several interesting characteristics of the isolated DSPZPP1 strain from fermented Italian sausages, suggesting its potential use as a promising probiotic candidate and making it more appropriate for selection as a future additive in biopreservation.

19.
Article in English | MEDLINE | ID: mdl-38564170

ABSTRACT

Pediococcus pentosaceus 732, Lactococcus lactis subsp. lactis 431, and Lactococcus lactis 808, bacteriocinogenic strains previously isolated from kimchi and banana, were investigated for their safety, beneficial properties and in vitro inhibition of pathogens such as Listeria monocytogenes ATCC 15313 and Staphylococcus simulans KACC 13241 and Staphylococcus auricularis KACC 13252. The results of performed physiological, biochemical, and biomolecular tests suggest that these strains can be deemed safe, as no virulence genes were detected in their DNA. Notably, only the gad gene associated with GABA production was identified in the DNA isolated of Lc. lactis 808 and Lc. lactis subsp. lactis 431 strains. All tested LAB strains exhibited γ-hemolysins and were non-producers of gelatinase and biogenic amines, which suggested their safety potential. Additionally, they were relatively susceptible to antibiotics except for streptomycin, tobramycin, and vancomycin for Pd. pentosaceus 732. The growth of Pd. pentosaceus 732, Lc. lactis subsp. lactis 431, and Lc. lactis 808 and their survival were minimally affected by up to 3% ox bile and low pH (except pH 2.0 and 4.0). Moreover, these LAB strains were not inhibited by various commercial extracts as well as most of the tested medications tested in the study. They did not produce proteolytic enzymes but exhibited production of D/L-lactic acid and ß-galactosidase. They were also hydrophilic. Furthermore, their survival in artificial saliva, gastric simulation, and enteric passage was measured followed by a challenge test to assess their ability to inhibit the selected oral pathogens in an oral saliva model conditions.

20.
Front Microbiol ; 15: 1337647, 2024.
Article in English | MEDLINE | ID: mdl-38435696

ABSTRACT

Circular bacteriocins form a distinct group of antimicrobial peptides (AMPs) characterized by their unique head-to-tail ligated circular structure and functional properties. They belong to the ribosomally synthesized and post-translationally modified peptide (RiPP) family. The ribosomal origin of these peptides facilitates rapid diversification through mutations in the precursor genes combined with specific modification enzymes. In this study, we primarily explored the bacteriocin engineering potential of circularin A, a circular bacteriocin produced by Clostridium beijerinckii ATCC 25752. Specifically, we employed strategies involving α-helix replacements and disulfide bond introductions to investigate their effects on both biosynthesis and bioactivity of the bacteriocin. The results show the feasibility of peptide engineering to introduce certain structural properties into circularin A through carefully designed approaches. The introduction of cysteines for potential disulfide bonds resulted in a substantial reduction in bacteriocin biosynthesis and/or bioactivity, indicating the importance of maintaining dynamic flexibility of α-helices in circularin A, while reduction of the potential disulfide in one case increased the activity. The 5 α-helices of circularin A were respectively replaced by corresponding helices from another circular peptide, enterocin AS-48, and modestly active peptides were obtained in a few cases. Overall, this study provides valuable insights into the engineering potential of circular bacteriocins as antimicrobial agents, including their structural and functional restrictions and their suitability as peptide engineering scaffolds. This helps to pave the way for the development of novel antimicrobial peptides with tailored properties based on circular bacteriocins.

SELECTION OF CITATIONS
SEARCH DETAIL
...