Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 201
Filter
1.
Sci Total Environ ; 953: 176086, 2024 Nov 25.
Article in English | MEDLINE | ID: mdl-39260509

ABSTRACT

Understanding the current situation and risk of environmental contamination by anti-influenza drugs in aquatic environments is key to prevent the unexpected emergence and spread of drug-resistant viruses. However, few reports have been focused on newer drugs that have recently been introduced in clinical settings. In this study, the behaviour of the prodrug baloxavir marboxil (BALM)-the active ingredient of Xofluza, an increasingly popular anti-influenza drug-and its pharmacologically active metabolite baloxavir (BAL) in the aquatic environment was evaluated. Additionally, their presence in urban rivers and a wastewater treatment plant (WWTP) in the Yodo River basin was investigated and compared with those of the major anti-influenza drugs used to date (favipiravir (FAV), peramivir (PER), laninamivir (LAN), and its active metabolite, laninamivir octanoate (LANO), oseltamivir (OSE), and its active metabolite, oseltamivir carboxylate (OSEC), and zanamivir (ZAN)) to comprehensively assess their environmental fate in the aquatic environment. The results clearly showed that BALM, FAV, and BAL were rapidly degraded through photolysis (2-h, 0.6-h, and 0.4-h half-lives, respectively), followed by LAN, which was gradually biodegraded (7-h half-life). In addition, BALM and BAL decreased by up to 47 % after 4 days and 34 % after 2 days of biodegradation in river water. However, the remaining conventional drugs, except for LANO (<1 % after 10 days), were persistent, being transported from the upstream to downstream sites. The LogKd values for the rates of sorption of BALM (0.5-1.6) and BAL (1.8-3.1) on river sediment were higher than those of conventional drugs (-0.5 to 1.7). Notably, all anti-influenza drugs were effectively removed by ozonation (>90-99.9 % removal) after biological treatment at a WWTP. Thus, these findings suggest the importance of introducing ozonation to reduce pollution loads in rivers and the environmental risks associated with drug-resistant viruses in aquatic environments, thereby promoting safe river environments.


Subject(s)
Antiviral Agents , Environmental Monitoring , Rivers , Triazines , Water Pollutants, Chemical , Antiviral Agents/analysis , Japan , Water Pollutants, Chemical/analysis , Rivers/chemistry , Triazines/analysis , Morpholines/analysis , Pyridones/analysis , Pyridines/analysis , Dibenzothiepins , Oseltamivir/analysis , Pyrans/analysis , Wastewater/chemistry , Pyrazines/analysis
2.
Expert Opin Drug Saf ; : 1-9, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39234783

ABSTRACT

OBJECTIVE: Baloxavir marboxil (hereafter referred to as baloxavir) is the only cap-dependent endonuclease inhiabitor approved for the treatment and prevention of influenza. However, as a new drug marketed in 2018, the long-term safety of baloxavir in large sample population was unclear. This study aims to evaluate baloxavir-associated adverse events (AEs) through data mining of the international pharmacovigilance database of US FDA Adverse Event Reporting System (FAERS). METHODS: Disproportionality analysis was conducted to assess the association between baloxavir and its AEs. Data were collected from FAERS from March 2018 to June 2023. After standardizing the data, signal quantification techniques including ROR, PRR, BCPNN and MGPS were used for analysis. RESULTS: A total of 49 significant baloxavir-related preferred terms (PTs) in 20 system organ classes (SOCs) were identified in our data analysis. Compared to baloxavir's FDA label, some new PTs emerged, with the top 10 being pneumonia, loss of consciousness, rhabdomyolysis, seizure, altered state of consciousness, hepatic function abnormal, delirium, depressed level of consciousness, encephalopathy and cardio-respiratory arrest. CONCLUSION: In clinical application of baloxavir, attention should be paid to the new AE signals in addition to the those recorded in the labels, so as to ensure the safety of the patients.

4.
Influenza Other Respir Viruses ; 18(9): e70002, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39189087

ABSTRACT

This retrospective cohort study analyzed data from a Japanese health insurance database to assess the effectiveness of baloxavir (n = 4822) for preventing severe events compared with oseltamivir (n = 10,523) in patients with influenza B. The primary endpoint was hospitalization incidence (Days 2-14). The secondary endpoints included intravenous antibacterial drug use, pneumonia hospitalization, heart failure hospitalization, inhalational oxygen requirement, and use of other anti-influenza drugs. The hospitalization incidence was significantly lower with baloxavir (0.15% vs. 0.37%; risk ratio: 2.48, 95% confidence interval: 1.13-5.43). Pneumonia and additional anti-influenza therapy were also less frequent with baloxavir, thus supporting its use. Trial Registration: UMIN Clinical Trials Registry Study ID: UMIN000051382.


Subject(s)
Antiviral Agents , Dibenzothiepins , Influenza B virus , Influenza, Human , Morpholines , Oseltamivir , Outpatients , Pyridones , Triazines , Humans , Influenza, Human/drug therapy , Dibenzothiepins/therapeutic use , Oseltamivir/therapeutic use , Antiviral Agents/therapeutic use , Male , Retrospective Studies , Female , Middle Aged , Adult , Pyridones/therapeutic use , Morpholines/therapeutic use , Triazines/therapeutic use , Aged , Influenza B virus/drug effects , Young Adult , Adolescent , Hospitalization/statistics & numerical data , Child , Pyridines/therapeutic use , Japan/epidemiology , Child, Preschool , Treatment Outcome , Infant , Aged, 80 and over
5.
Infect Dis Ther ; 13(9): 2071-2087, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39150658

ABSTRACT

INTRODUCTION: This study sought to evaluate the cost-effectiveness of baloxavir marboxil compared with oseltamivir or no antiviral treatment from a US payer perspective using data from a real-world US administrative claims study. Given baloxavir's ability to rapidly stop viral shedding, the potential health economic implications of a baloxavir-induced population-level reduction in viral transmission was also explored. METHODS: A decision tree cost-effectiveness model was developed for seasonal influenza (2018-2020) using a lifetime time horizon with 3.0% discounting for costs and quality-adjusted life-years (QALYs). Patients aged ≥ 12 years could receive baloxavir, oseltamivir or no antiviral treatment. Patient characteristics, complications, and costs were derived from the Merative™ MarketScan® Research Databases including US commercial claims and Medicare and Medicaid Supplemental databases. A scenario analysis explored the impact of reduced viral transmission with baloxavir. RESULTS: In the base case analysis, baloxavir was cost-effective within a willingness-to-pay threshold of US$100,000/QALY compared with oseltamivir [incremental cost-effectiveness ratio (ICER), $6813/QALY gained] or no antiviral treatment (ICER, $669/QALY gained). The net monetary benefit (NMB) of baloxavir was $1180 and $6208 compared with oseltamivir and no treatment, respectively. The NMB of baloxavir increased linearly with reductions in viral transmission, where a 5% transmission reduction yielded an NMB of $2592 versus oseltamivir and $7621 versus no treatment. Baloxavir became dominant (more effective and less costly, with ICERs < 0) starting with a 12.0% reduction in viral transmission versus oseltamivir and 6.0% versus no antiviral treatment. CONCLUSION: Baloxavir was cost-effective compared with oseltamivir or no antiviral treatment. The potential of baloxavir to reduce viral transmission offers a substantial economic benefit from a US payer perspective.


Baloxavir is a prescription medicine that reduces the duration of flu symptoms and reduces the likelihood of complications from the flu, including serious complications that may require hospitalization. Baloxavir may reduce the spread of the flu to healthy people by reducing the amount and duration of virus shedding from infected people. We designed a model to estimate the cost benefits of using baloxavir versus another flu treatment, known as oseltamivir, or no flu treatment at all. Using baloxavir led to more cost savings than oseltamivir or no treatment for people in the US who have commercial health insurance. Baloxavir was even more cost-effective in the scenario where it reduced the number of flu cases (transmission benefit). This could ultimately have a meaningful benefit across a large health insurance population.

6.
Front Microbiol ; 15: 1428095, 2024.
Article in English | MEDLINE | ID: mdl-39109213

ABSTRACT

Introduction: Baloxavir Marboxil is a per oral small-molecule antiviral for the treatment of influenza. While the efficacy and safety of Baloxavir Marboxil have been thoroughly characterized across an extensive clinical trial, studies on the effectiveness of Baloxavir Marboxil in a real-world setting are still scarce. Methods: We conducted an ambispective, observational, multi-center study that enrolled uncomplicated in-fluenza outpatients treated with Baloxavir Marboxil or Oseltamivir in East China. The primary endpoint was time from treatment to alleviation of all influenza symptoms (TTAIS). The secondary endpoints included time from treatment to alleviation of fever (TTAF) and household transmission during the duration of influenza. Results: A total of 509 patients were enrolled. The median TTAIS in the Baloxavir Marboxil group and the Oseltamivir group was 28.0 h (IQR, 20.0 to 50.0) and 48.0 h (IQR, 30.0 to 67.0), respectively. The median TTAF in the Baloxavir Marboxil group and the Oseltamivir group was 18 h (IQR, 10.0-24.0) and 30.0 h (IQR, 19.0-48.0). In the COX multivariable analysis, Baloxavir Marboxil reduced the duration of influenza symptoms (HR = 1.36 [95%CI:1.12-1.64], p = 0.002) and the duration of fever (HR = 1.93 [95%CI:1.48-2.52], p < 0.001) compared to Oseltamivir. When antiviral drugs were given within 12-48 h after symptom onset, the Baloxavir Marboxil group had a significantly shorter TTAIS compared to the Oseltamivir group. There was no significant difference in the rate of adverse events between the two group (p = 0.555). Discussion: Baloxavir Marboxil was superior to Oseltamivir in alleviating influenza symptoms in outpatients with uncomplicated influenza. Our findings suggested that compared to Oseltamivir, Baloxavir Marboxil might be more appropriate for patients with influenza 12- 48 h after symptom onset.

7.
Front Pediatr ; 12: 1418321, 2024.
Article in English | MEDLINE | ID: mdl-39135856

ABSTRACT

Objectives: To evaluate the safety and effectiveness of baloxavir marboxil (baloxavir) and oseltamivir in pediatric influenza patients in China. Methods: Patients filling a prescription for baloxavir or oseltamivir within 48 h following an influenza-related outpatient visit were identified in Children's Hospital of Fudan University in China between March 2023 and December 2023. Outcomes were assessed after antiviral treatment and included the incidence of adverse reactions and the duration of fever and other flu symptoms. Results: A total of 1430 patients infected with influenza A were collected and 865 patients (baloxavir: n = 420; oseltamivir: n = 445) finally included. The incidence of adverse reactions of nausea and vomiting was significantly different between the baloxavir group (2.38%) and the oseltamivir group (12.13%) [P < 0.001, OR = 4.2526, 95%CI (2.0549, 9.6080)]. No differences in other adverse reactions were observed between the two groups. The mean duration of fever in baloxavir group (1.43d) was significantly shorter than that in oseltamivir group (2.31d) [P < 0.001, 95%CI (0.7815, 0.9917)]. There were no differences in the mean duration of nasal congestion and runny nose, sore throat, cough, and muscle soreness between two groups. Conclusions: The incidence of nausea and vomiting is lower with baloxavir compared to oseltamivir, and the duration for complete fever reduction is shorter with baloxavir than with oseltamivir. The results indicate that baloxavir is well tolerated and effective in Chinese children.

8.
Antiviral Res ; 229: 105956, 2024 09.
Article in English | MEDLINE | ID: mdl-38969237

ABSTRACT

Baloxavir marboxil (baloxavir), approved as an anti-influenza drug in Japan in March 2018, can induce reduced therapeutic effectiveness due to PA protein substitutions. We assessed PA substitutions in clinical samples from influenza-infected children and adults pre- and post-baloxavir treatment, examining their impact on fever and symptom duration. During the 2022-2023 influenza season, the predominant circulating influenza subtype detected by cycling-probe RT-PCR was A(H3N2) (n = 234), with a minor circulation of A(H1N1)pdm09 (n = 10). Of the 234 influenza A(H3N2) viruses collected prior to baloxavir treatment, 2 (0.8%) viruses carry PA/I38T substitution. One virus was collected from a toddler and one from an adult, indicating the presence of viruses with reduced susceptibility to baloxavir, without prior exposure to the drug. Of the 54 paired influenza A(H3N2) viruses collected following baloxavir treatment, 8 (14.8%) viruses carried E23 K/G, or I38 M/T substitutions in PA. Variant calling through next-generation sequencing (NGS) showed varying proportions (6-100 %), a polymorphism and a mixture of PA/E23 K/G, and I38 M/T substitutions in the clinical samples. These eight viruses were obtained from children aged 7-14 years, with a median fever duration of 16.7 h and a median symptom duration of 93.7 h, which were similar to those of the wild type. However, the delayed viral clearance associated with the emergence of PA substitutions was observed. No substitutions conferring resistance to neuraminidase inhibitors were detected in 37 paired samples collected before and following oseltamivir treatment. These findings underscore the need for ongoing antiviral surveillance, informing public health strategies and clinical antiviral recommendations for seasonal influenza.


Subject(s)
Amino Acid Substitution , Antiviral Agents , Dibenzothiepins , Drug Resistance, Viral , Influenza A Virus, H3N2 Subtype , Influenza, Human , Morpholines , Pyridones , Triazines , Viral Proteins , Humans , Dibenzothiepins/therapeutic use , Dibenzothiepins/pharmacology , Influenza, Human/drug therapy , Influenza, Human/virology , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/drug effects , Influenza A Virus, H3N2 Subtype/enzymology , Triazines/therapeutic use , Triazines/pharmacology , Japan , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Morpholines/therapeutic use , Drug Resistance, Viral/genetics , Child , Adult , Child, Preschool , Adolescent , Viral Proteins/genetics , RNA-Dependent RNA Polymerase/genetics , Female , Male , Thiepins/therapeutic use , Thiepins/pharmacology , Infant , Middle Aged , Seasons , Pyridines/therapeutic use , Pyridines/pharmacology , Young Adult , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/drug effects , Aged
9.
Antiviral Res ; 229: 105959, 2024 09.
Article in English | MEDLINE | ID: mdl-38986873

ABSTRACT

Avian influenza outbreaks, including ones caused by highly pathogenic A(H5N1) clade 2.3.4.4b viruses, have devastated animal populations and remain a threat to humans. Risk elements assessed for emerging influenza viruses include their susceptibility to approved antivirals. Here, we screened >20,000 neuraminidase (NA) or polymerase acidic (PA) protein sequences of potentially pandemic A(H5Nx), A(H7Nx), and A(H9N2) viruses that circulated globally in 2010-2023. The frequencies of NA or PA substitutions associated with reduced inhibition (RI) or highly reduced inhibition (HRI) by NA inhibitors (NAIs) (oseltamivir, zanamivir) or a cap-dependent endonuclease inhibitor (baloxavir) were low: 0.60% (137/22,713) and 0.62% (126/20,347), respectively. All tested subtypes were susceptible to NAIs and baloxavir at sub-nanomolar concentrations. A(H9N2) viruses were the most susceptible to oseltamivir, with IC50s 3- to 4-fold lower than for other subtypes (median IC50: 0.18 nM; n = 22). NA-I222M conferred RI of A(H5N1) viruses by oseltamivir (with a 26-fold IC50 increase), but NA-S246N did not reduce inhibition. PA-E23G, PA-K34R, PA-I38M/T, and the previously unreported PA-A36T caused RI by baloxavir in all subtypes tested. Avian A(H9N2) viruses endemic in Egyptian poultry predominantly acquired PA-I38V, which causes only a <3-fold decrease in the baloxavir EC50 and fails to meet the RI criteria. PA-E199A/D in A(H7Nx) and A(H9N2) viruses caused a 2- to 4-fold decrease in EC50 (close to the borderline for RI) and should be closely monitored. Our data indicate antiviral susceptibility is high among avian influenza A viruses with pandemic potential and present novel markers of resistance to existing antiviral interventions.


Subject(s)
Antiviral Agents , Birds , Dibenzothiepins , Drug Resistance, Viral , Enzyme Inhibitors , Genotype , Influenza A virus , Influenza in Birds , Neuraminidase , Oseltamivir , Pyridones , Triazines , Neuraminidase/antagonists & inhibitors , Neuraminidase/genetics , Antiviral Agents/pharmacology , Influenza in Birds/virology , Animals , Enzyme Inhibitors/pharmacology , Dibenzothiepins/pharmacology , Drug Resistance, Viral/genetics , Pyridones/pharmacology , Influenza A virus/drug effects , Influenza A virus/genetics , Influenza A virus/enzymology , Triazines/pharmacology , Oseltamivir/pharmacology , Birds/virology , Morpholines/pharmacology , Endonucleases/antagonists & inhibitors , Endonucleases/genetics , Endonucleases/metabolism , Influenza A Virus, H9N2 Subtype/drug effects , Influenza A Virus, H9N2 Subtype/genetics , Viral Proteins/genetics , Viral Proteins/antagonists & inhibitors , Influenza A Virus, H5N1 Subtype/drug effects , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/enzymology , Zanamivir/pharmacology , Phenotype , Humans , Inhibitory Concentration 50
10.
Antiviral Res ; 229: 105961, 2024 09.
Article in English | MEDLINE | ID: mdl-39002800

ABSTRACT

Baloxavir acid (BXA) is a pan-influenza antiviral that targets the cap-dependent endonuclease of the polymerase acidic (PA) protein required for viral mRNA synthesis. To gain a comprehensive understanding on the molecular changes associated with reduced susceptibility to BXA and their fitness profile, we performed a deep mutational scanning at the PA endonuclease domain of an A (H1N1)pdm09 virus. The recombinant virus libraries were serially passaged in vitro under increasing concentrations of BXA followed by next-generation sequencing to monitor PA amino acid substitutions with increased detection frequencies. Enriched PA amino acid changes were each introduced into a recombinant A (H1N1)pdm09 virus to validate their effect on BXA susceptibility and viral replication fitness in vitro. The I38 T/M substitutions known to confer reduced susceptibility to BXA were invariably detected from recombinant virus libraries within 5 serial passages. In addition, we identified a novel L106R substitution that emerged in the third passage and conferred greater than 10-fold reduced susceptibility to BXA. PA-L106 is highly conserved among seasonal influenza A and B viruses. Compared to the wild-type virus, the L106R substitution resulted in reduced polymerase activity and a minor reduction of the peak viral load, suggesting the amino acid change may result in moderate fitness loss. Our results support the use of deep mutational scanning as a practical tool to elucidate genotype-phenotype relationships, including mapping amino acid substitutions with reduced susceptibility to antivirals.


Subject(s)
Amino Acid Substitution , Antiviral Agents , Dibenzothiepins , Drug Resistance, Viral , Influenza A Virus, H1N1 Subtype , Morpholines , Pyridones , Triazines , Viral Proteins , Virus Replication , Dibenzothiepins/pharmacology , Drug Resistance, Viral/genetics , Antiviral Agents/pharmacology , Influenza A Virus, H1N1 Subtype/drug effects , Influenza A Virus, H1N1 Subtype/genetics , Triazines/pharmacology , Virus Replication/drug effects , Pyridones/pharmacology , Humans , Morpholines/pharmacology , Viral Proteins/genetics , Animals , Thiepins/pharmacology , RNA-Dependent RNA Polymerase/genetics , High-Throughput Nucleotide Sequencing , Dogs , Madin Darby Canine Kidney Cells , Influenza, Human/virology , Influenza, Human/drug therapy , Oxazines/pharmacology
11.
Front Pharmacol ; 15: 1391003, 2024.
Article in English | MEDLINE | ID: mdl-39050747

ABSTRACT

Background: Oseltamivir and baloxavir marboxil are the two primary oral drugs approved by the Food and Drug Administration (FDA) for treating influenza. Limited real-world evidence exists on their adverse events in children. The purpose of this study was to explore the adverse event (AE) profiles of oseltamivir and baloxavir marboxil in children based on the U.S. Food and Drug Administration Adverse Event Reporting System (FAERS) database. Methods: FAERS reports were collected and analyzed from the first quarter of 2019 to the third quarter of 2023. Disproportionality analyses, including the reporting odds ratio (ROR), the proportional reporting ratio (PRR), the Bayesian confidence propagation neural network (BCPNN), and the multi-item gamma Poisson shrinker (MGPS) algorithms, were employed in data mining to quantify the signals of oseltamivir and baloxavir marboxil-related AEs. Results: A total of 464 reports of AEs to oseltamivir as the "primary suspect (PS)" and 429 reports of AEs to baloxavir marboxil as the "PS" were retrieved in pediatric patients. A total of 100 oseltamivir-induced AE signals were detected in 17 system organ classes (SOCs), and 11 baloxavir marboxil-induced AE signals were detected in 6 SOCs after complying with the four algorithms simultaneously. Categorized and summarized by the number of reports of involvement in each SOC, the top 3 for oseltamivir were psychiatric disorders, gastrointestinal disorders, general disorders and site-of-administration conditions, respectively. The top 3 for baloxavir marboxil were injury, poisoning and surgical complications, general disorders and site of administration conditions, and psychiatric disorders, respectively. Conclusion: Our study identifies potential new AE signals for oseltamivir and provides a broader understanding of the safety of oseltamivir and baloxavir marboxil in children.

12.
J Pharm Biomed Anal ; 249: 116387, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39083919

ABSTRACT

Baloxavir marboxil (BXM) is a cap-dependent nucleic acid endonuclease inhibitor, which exerts its antiviral effects after being metabolized to its active form baloxavir acid (BXA). Ethylenediamine tetra-acetic acid (EDTA) and heparin are the two most used anticoagulants in clinical blood sample collection to estimate drug levels in plasma. However, compared to heparin plasma, there is a lack of clinical pharmacokinetic data of BXA using EDTA anticoagulant tubes for blood collection. In the present study, an efficient, rapid, and sensitive ultra-high performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS) method was developed and validated for simultaneous quantification of BXM and its active metabolite BXA in human plasma with its isotopic baloxavir-d5 (BXA-d5) as internal standard (IS). Plasma samples (50 µL) were undergone using acetonitrile containing 0.1 % formic acid a precipitant. Chromatographic separation was achieved by a Waters XBridge®C8 (2.1 mm × 50 mm, 2.5 µm) column. The gradient mobile phase was 0.1 % formic acid in water (A, pH 2.8) and 0.1 % formic acid in acetonitrile (B) and delivered at a flow rate of 0.6 mL/min for 4.5 min. BXM and BXA were monitored using a positive electrospray triple quadrupole mass spectrometer (TRIPLE QUAD™ 6500+) via multiple reaction monitoring mode. The mass-to-charge ratios (m/z) were 572.2→247.0, 484.2→247.0 and 489.2→252.0 for BXM, BXA, and BXA-d5 (IS). Calibration curves exhibited excellent linearity in the range of 0.1-10 ng/mL for BXM (r2 > 0.996), and 0.3-300 ng/mL for BXA (r2 > 0.998). Within-run and between-run precisions in coefficients of variations were less than 11.62 % for BXM and less than 7.47 % for BXA, and accuracies in relative error were determined to be within -7.78 % to 5.70 % for BXM and -6.67 % to 8.56 % for BXA. Extraction recovery efficiency was 92.76 % for BXM, 95.32 % for BXA, and 99.26 % for BXA-d5, respectively. The matrix effect of BXM and BXA was in line with the requirements, where the relative deviation of the accuracy was less than 6.67 % and the precision was less than 6.69 %. The validated efficient and simple UHPLC-MS/MS method was successfully used in the pharmacokinetic study of BXM and BXA in healthy human volunteers with K2EDTA and heparin tubes for blood collection. EDTA might compete with BXA for chelating metal ions and thereby decrease the plasma ratio in whole blood, leading to approximately 50 % lower measurement of pharmacokinetic parameters as compared with those obtained from heparin plasma anticoagulant tubes.


Subject(s)
Anticoagulants , Dibenzothiepins , Oxazines , Pyridines , Pyridones , Tandem Mass Spectrometry , Humans , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Anticoagulants/blood , Anticoagulants/pharmacokinetics , Dibenzothiepins/pharmacokinetics , Dibenzothiepins/blood , Pyridones/pharmacokinetics , Pyridones/blood , Pyridines/pharmacokinetics , Pyridines/blood , Oxazines/pharmacokinetics , Oxazines/blood , Morpholines/pharmacokinetics , Morpholines/blood , Triazines/pharmacokinetics , Triazines/blood , Reproducibility of Results , Edetic Acid/pharmacokinetics , Limit of Detection , Heparin/blood , Heparin/pharmacokinetics
13.
Int J Antimicrob Agents ; 64(3): 107281, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39047913

ABSTRACT

OBJECTIVES: Immunocompromised patients may experience prolonged shedding of influenza virus potentially leading to severe infections. Alternatives to monotherapy with neuraminidase inhibitors should be evaluated to entirely suppress viral replication and prevent drug-resistant mutations. METHODS: We investigated the clinical and virological evolution in a case of persistent influenza A and human coronavirus OC43 (HCoV-OC43) coinfection in a hematopoietic stem cell transplant recipient after different therapeutic strategies. RESULTS: Successive oseltamivir and zanamivir monotherapies failed to control both infections, with positive results persisting for over 110 days each. This led to the emergence of highly resistant oseltamivir strains due to neuraminidase mutations (E119V and R292K) followed by a deletion (del245-248), while maintaining sensitivity to zanamivir. The intra-host viral diversity data showed that the treatments impacted viral diversity of influenza virus, but not of HCoV-OC43. Considering the patient's underlying condition and the impact of prolonged viral shedding on pulmonary function, eradicating the influenza virus was necessary. A 10-day regimen combining zanamivir and baloxavir-marboxil effectively controlled influenza virus replication and was associated with the clearance of HCoV-OC43, finally resulting in comprehensive respiratory recovery. CONCLUSION: These observations underscore the importance of further investigating combination treatments as the primary approach to achieve influenza eradication in immunocompromised patients.


Subject(s)
Antiviral Agents , Dibenzothiepins , Hematopoietic Stem Cell Transplantation , Influenza, Human , Morpholines , Pyridones , Triazines , Zanamivir , Humans , Zanamivir/therapeutic use , Zanamivir/pharmacology , Hematopoietic Stem Cell Transplantation/adverse effects , Antiviral Agents/therapeutic use , Antiviral Agents/pharmacology , Influenza, Human/drug therapy , Influenza, Human/virology , Pyridones/therapeutic use , Dibenzothiepins/therapeutic use , Morpholines/therapeutic use , Triazines/therapeutic use , Triazines/pharmacology , Coronavirus OC43, Human/drug effects , Coronavirus OC43, Human/genetics , Drug Resistance, Viral/genetics , Influenza A virus/drug effects , Influenza A virus/genetics , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Immunocompromised Host , Male , Drug Therapy, Combination , Middle Aged , Virus Shedding/drug effects , Virus Replication/drug effects , Female
14.
Expert Rev Pharmacoecon Outcomes Res ; 24(8): 953-966, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38850520

ABSTRACT

BACKGROUND: Baloxavir marboxil is an oral, single-dose, cap-dependent endonuclease inhibitor that reduces the duration of influenza symptoms and rapidly stops viral shedding. We developed a susceptible, exposed, infected, recovered (SEIR) model to inform a cost-effectiveness model (CEM) of baloxavir versus oseltamivir or no antiviral treatment in the UK. RESEARCH DESIGN AND METHODS: The SEIR model estimated the attack rates among otherwise healthy and high-risk individuals in seasonal and pandemic settings. The CEM assumed that a proportion of infected patients would receive antiviral treatment. Results were reported at the population level (per 10,000 at risk of infection). RESULTS: The SEIR model estimated greater reductions in infections with baloxavir. In a seasonal setting, baloxavir provided incremental cost-effectiveness ratios (ICERs) of £1884 per quality-adjusted life-year (QALY) gained versus oseltamivir and a dominant cost-effectiveness position versus no antiviral treatment in the total population; ICERs of £2574/QALY versus oseltamivir and £128/QALY versus no antiviral treatment were seen in the high-risk population. Baloxavir was also cost-effective versus oseltamivir or no antiviral treatment and reduced population-level health system occupancy concerns during a pandemic. CONCLUSION: Baloxavir treatment resulted in the fewest influenza cases and was cost-effective versus oseltamivir or no antiviral treatment from a UK National Health Service perspective.


Baloxavir marboxil ('baloxavir') is a prescription medicine for people who become ill with influenza (or 'the flu') that can reduce how long flu symptoms last and the likelihood of complications from the flu that may require going to the hospital. Baloxavir can also reduce the amount and duration of virus shed by infected individuals thus potentially slow or stop the flu from spreading to healthy people. We studied differences in reducing predicted flu infections between baloxavir and another flu treatment, known as oseltamivir, or no flu treatment at all. Treatment with baloxavir resulted in fewer flu infections in the UK population than oseltamivir or no treatment. We then studied how these differences might affect costs between baloxavir and oseltamivir or no treatment at a population level in the UK. Overall, in the majority of scenarios explored in the model, baloxavir was cost-effective as an antiviral treatment for people with the flu in the UK.


Subject(s)
Antiviral Agents , Cost-Benefit Analysis , Dibenzothiepins , Influenza, Human , Morpholines , Oseltamivir , Pandemics , Pyridones , Quality-Adjusted Life Years , Seasons , Triazines , Humans , Dibenzothiepins/economics , Influenza, Human/drug therapy , Influenza, Human/economics , Oseltamivir/economics , Oseltamivir/administration & dosage , Antiviral Agents/economics , Antiviral Agents/administration & dosage , Triazines/economics , Triazines/therapeutic use , Triazines/administration & dosage , United Kingdom , Pyridones/economics , Morpholines/economics , Morpholines/administration & dosage , Pandemics/economics , Dioxanes/economics , Models, Economic , Pyridines/economics , Pyridines/therapeutic use , Pyridines/administration & dosage , Virus Shedding/drug effects , Cost-Effectiveness Analysis
15.
Antiviral Res ; 228: 105938, 2024 08.
Article in English | MEDLINE | ID: mdl-38897317

ABSTRACT

We compared the duration of fever in children infected with A(H1N1)pdm09, A(H3N2), or influenza B viruses following treatment with baloxavir marboxil (baloxavir) or neuraminidase inhibitors (NAIs) (oseltamivir, zanamivir, or laninamivir). This observational study was conducted at 10 outpatient clinics across 9 prefectures in Japan during the 2012-2013 and 2019-2020 influenza seasons. Patients with influenza rapid antigen test positive were treated with one of four anti-influenza drugs. The type/subtype of influenza viruses were identified from MDCK or MDCK SIAT1 cell-grown samples using two-step real-time PCR. Daily self-reported body temperature after treatment were used to evaluate the duration of fever by treatment group and various underlying factors. Among 1742 patients <19 years old analyzed, 452 (26.0%) were A(H1N1)pdm09, 827 (48.0%) A(H3N2), and 463 (26.0%) influenza B virus infections. Among fours treatment groups, baloxavir showed a shorter median duration of fever compared to oseltamivir in univariate analysis for A(H1N1)pdm09 virus infections (baloxavir, 22.0 h versus oseltamivir, 26.7 h, P < 0.05; laninamivir, 25.5 h, and zanamivir, 25.0 h). However, this difference was not significant in multivariable analyses. For A(H3N2) virus infections, there were no statistically significant differences observed (20.3, 21.0, 22.0, and 19.0 h) uni- and multivariable analyses. For influenza B, baloxavir shortened the fever duration by approximately 15 h than NAIs (20.3, 35.0, 34.3, and 34.1 h), as supported by uni- and multivariable analyses. Baloxavir seems to have comparable clinical effectiveness with NAIs on influenza A but can be more effective for treating pediatric influenza B virus infections than NAIs.


Subject(s)
Antiviral Agents , Dibenzothiepins , Fever , Guanidines , Influenza A Virus, H1N1 Subtype , Influenza A Virus, H3N2 Subtype , Influenza B virus , Influenza, Human , Morpholines , Oseltamivir , Pyrans , Pyridones , Sialic Acids , Triazines , Zanamivir , Humans , Influenza, Human/drug therapy , Influenza, Human/virology , Antiviral Agents/therapeutic use , Antiviral Agents/pharmacology , Influenza B virus/drug effects , Influenza B virus/genetics , Child , Zanamivir/therapeutic use , Zanamivir/analogs & derivatives , Zanamivir/pharmacology , Triazines/therapeutic use , Triazines/pharmacology , Guanidines/therapeutic use , Influenza A Virus, H3N2 Subtype/drug effects , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H1N1 Subtype/drug effects , Pyridones/therapeutic use , Dibenzothiepins/therapeutic use , Japan , Female , Male , Child, Preschool , Oseltamivir/therapeutic use , Fever/drug therapy , Fever/virology , Adolescent , Morpholines/therapeutic use , Infant , Seasons , Thiepins/therapeutic use , Thiepins/pharmacology , Oxazines/therapeutic use , Time Factors , Benzoxazines/therapeutic use
16.
Heliyon ; 10(11): e32120, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38912445

ABSTRACT

A straightforward, reliable, and cost-effective spectrofluorimetric approach has been established for the analysis of baloxavir marboxil (BXM) in raw material, tablets, as well as spiked human plasma. The approach relies on BXM's quenching impact on acetoxymercuric fluorescein (AMF) fluorescence intensity. To improve the reaction, factors such as AMF's concentration, solution's pH, diluting solvents, and reaction time were examined and optimized. Linearity, range, accuracy, precision, LOD, and LOQ were all verified in compliance with ICH criteria. The concentration range was shown to be linear between 0.2 and 2 µg/mL. The technique was effectively utilized for BXM analysis in both its tablet as well as spiked human plasma, with mean % recoveries of 101 ± 0.36 and 98.77 ± 0.65, respectively. Two assessment models (AGREE and RGB-12) were used to compare the proposed process's greenness and sustainability to four previously published chromatographic techniques. Higher green and sustainability qualities were declared by the suggested approach than by earlier ones.

17.
Emerg Infect Dis ; 30(7): 1410-1415, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38916572

ABSTRACT

Since May 2023, a novel combination of neuraminidase mutations, I223V + S247N, has been detected in influenza A(H1N1)pdm09 viruses collected in countries spanning 5 continents, mostly in Europe (67/101). The viruses belong to 2 phylogenetically distinct groups and display ≈13-fold reduced inhibition by oseltamivir while retaining normal susceptibility to other antiviral drugs.


Subject(s)
Antiviral Agents , Drug Resistance, Viral , Influenza A Virus, H1N1 Subtype , Influenza, Human , Neuraminidase , Oseltamivir , Phylogeny , Oseltamivir/pharmacology , Oseltamivir/therapeutic use , Influenza A Virus, H1N1 Subtype/drug effects , Influenza A Virus, H1N1 Subtype/genetics , Humans , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Influenza, Human/virology , Influenza, Human/drug therapy , Influenza, Human/epidemiology , Neuraminidase/antagonists & inhibitors , Neuraminidase/genetics , Drug Resistance, Viral/genetics , Mutation
18.
Expert Opin Pharmacother ; 25(9): 1163-1174, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38935495

ABSTRACT

INTRODUCTION: Influenza affects individuals of all ages and poses a significant threat during pandemics, epidemics, and sporadic outbreaks. Neuraminidase inhibitors (NAIs) are currently the first choice in the treatment and prevention of influenza, but their use can be hindered by viral resistance. AREAS COVERED: This review summarizes current NAIs pharmacological profiles, their current place in therapy, and the mechanisms of viral resistance and outlines possible new indications, ways of administration, and novel candidate NAIs compounds. EXPERT OPINION: NAIs represent a versatile group of compounds with diverse administration methods and pharmacokinetics. While the prevalence of influenza virus resistance to NAIs remains low, there is heightened vigilance due to the pandemic potential of influenza. Several novel NAIs and derivatives are currently under assessment at various stages of development for the treatment and prevention of influenza.


Subject(s)
Antiviral Agents , Drug Resistance, Viral , Enzyme Inhibitors , Influenza, Human , Neuraminidase , Humans , Neuraminidase/antagonists & inhibitors , Influenza, Human/drug therapy , Antiviral Agents/therapeutic use , Antiviral Agents/pharmacology , Enzyme Inhibitors/therapeutic use , Enzyme Inhibitors/pharmacology , Drug Development , Animals
19.
BMC Infect Dis ; 24(1): 446, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724914

ABSTRACT

BACKGROUND AND OBJECTIVES: Amidst limited influenza treatment options, evaluating the safety of Oseltamivir and Baloxavir Marboxil is crucial, particularly given their comparable efficacy. This study investigates post-market safety profiles, exploring adverse events (AEs) and their drug associations to provide essential clinical references. METHODS: A meticulous analysis of FDA Adverse Event Reporting System (FAERS) data spanning the first quarter of 2004 to the fourth quarter of 2022 was conducted. Using data mining techniques like reporting odds ratio (ROR), proportional reporting ratio, Bayesian Confidence Propagation Neural Network, and Multiple Gamma Poisson Shrinkage, AEs related to Oseltamivir and Baloxavir Marboxil were examined. Venn analysis compared and selected specific AEs associated with each drug. RESULTS: Incorporating 15,104 Oseltamivir cases and 1,594 Baloxavir Marboxil cases, Wain analysis unveiled 21 common AEs across neurological, psychiatric, gastrointestinal, dermatological, respiratory, and infectious domains. Oseltamivir exhibited 221 significantly specific AEs, including appendicolith [ROR (95% CI), 459.53 (340.88 ∼ 619.47)], acne infantile [ROR (95% CI, 368.65 (118.89 ∼ 1143.09)], acute macular neuroretinopathy [ROR (95% CI), 294.92 (97.88 ∼ 888.64)], proctitis [ROR (95% CI), 245.74 (101.47 ∼ 595.31)], and Purpura senile [ROR (95% CI), 154.02 (81.96 ∼ 289.43)]. designated adverse events (DMEs) associated with Oseltamivir included fulminant hepatitis [ROR (95% CI), 12.12 (8.30-17.72), n=27], ventricular fibrillation [ROR (95% CI), 7.68 (6.01-9.83), n=64], toxic epidermal necrolysis [ROR (95% CI), 7.21 (5.74-9.05), n=75]. Baloxavir Marboxil exhibited 34 specific AEs, including Melaena [ROR (95% CI), 21.34 (14.15-32.18), n = 23], cystitis haemorrhagic [ROR (95% CI), 20.22 (7.57-54.00), n = 4], ileus paralytic [ROR (95% CI), 18.57 (5.98-57.71), n = 3], and haemorrhagic diathesis [ROR (95% CI), 16.86 (5.43-52.40)), n = 3]. DMEs associated with Baloxavir Marboxil included rhabdomyolysis [ROR (95% CI), 15.50 (10.53 ∼ 22.80), n = 26]. CONCLUSION: Monitoring fulminant hepatitis during Oseltamivir treatment, especially in patients with liver-related diseases, is crucial. Oseltamivir's potential to induce abnormal behavior, especially in adolescents, necessitates special attention. Baloxavir Marboxil, with lower hepatic toxicity, emerges as a potential alternative for patients with liver diseases. During Baloxavir Marboxil treatment, focused attention on the occurrence of rhabdomyolysis is advised, necessitating timely monitoring of relevant indicators for those with clinical manifestations. The comprehensive data aims to provide valuable insights for clinicians and healthcare practitioners, facilitating an understanding of the safety profiles of these influenza treatments in real-world scenarios.


Subject(s)
Adverse Drug Reaction Reporting Systems , Antiviral Agents , Dibenzothiepins , Morpholines , Oseltamivir , Pharmacovigilance , Triazines , United States Food and Drug Administration , Humans , Dibenzothiepins/adverse effects , Triazines/adverse effects , United States , Oseltamivir/adverse effects , Antiviral Agents/adverse effects , Female , Male , Morpholines/adverse effects , Adult , Middle Aged , Adverse Drug Reaction Reporting Systems/statistics & numerical data , Adolescent , Pyridones/adverse effects , Young Adult , Aged , Influenza, Human/drug therapy , Child , Triazoles/adverse effects , Thiepins/adverse effects , Pyrazines/adverse effects , Pyridines/adverse effects , Child, Preschool , Oxazines/adverse effects
20.
Influenza Other Respir Viruses ; 18(5): e13302, 2024 May.
Article in English | MEDLINE | ID: mdl-38706384

ABSTRACT

BACKGROUND: The transmission of influenza virus in households, especially by children, is a major route of infection. Prior studies suggest that timely antiviral treatment of ill cases may reduce infection in household contacts. The aim of the study was to compare the effects of oseltamivir (OTV) and baloxavir marboxil (BXM) treatment of index cases on the secondary attack rate (SAR) of influenza within household. METHODS: A post hoc analysis was done in BLOCKSTONE trial-a placebo-controlled, double-blinded post-exposure prophylaxis of BXM. Data were derived from the laboratory-confirmed index cases' household contacts who received placebo in the trial and also from household members who did not participate in the trial but completed illness questionnaires. To assess the SAR of household members, multivariate analyses adjusted for factors including age, vaccination status, and household size were performed and compared between contacts of index cases treated with BXM or OTV. RESULTS: In total, 185 index cases (116 treated with BXM and 69 treated with OTV) and 410 household contacts (201 from trial, 209 by questionnaire) were included. The Poisson regression modeling showed that the SAR in household contacts of index cases treated with BXM and OTV was 10.8% and 18.5%, respectively; the adjusted relative reduction in SAR was 41.8% (95% confidence interval: 1.0%-65.7%, p = 0.0456) greater with BXM than OTV. Similar reductions were found in contacts from the trial and those included by questionnaire. CONCLUSION: BXM treatment of index cases appeared to result in a greater reduction in secondary household transmission than OTV treatment.


Subject(s)
Antiviral Agents , Dibenzothiepins , Family Characteristics , Influenza, Human , Morpholines , Oseltamivir , Post-Exposure Prophylaxis , Pyridones , Triazines , Humans , Influenza, Human/drug therapy , Influenza, Human/prevention & control , Influenza, Human/transmission , Pyridones/therapeutic use , Antiviral Agents/therapeutic use , Triazines/therapeutic use , Dibenzothiepins/therapeutic use , Female , Male , Oseltamivir/therapeutic use , Adult , Adolescent , Child , Middle Aged , Young Adult , Post-Exposure Prophylaxis/methods , Child, Preschool , Morpholines/therapeutic use , Thiepins/therapeutic use , Double-Blind Method , Infant , Pyridines/therapeutic use , Aged , Oxazines/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL