Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 103
Filter
1.
Sci Rep ; 14(1): 13719, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877088

ABSTRACT

The northern Red Sea (NRS) is considered an extended continental region that has resulted in a rift system. Gravity and bathymetry data were used to estimate the Moho depth and the elastic thickness Te of the lithosphere beneath the NRS region to characterize its flexural rigidity and understand its mechanical behavior. Focusing on the Mabahiss Deep in NRS, we analyzed the lithosphere's flexural rigidity. The observed long-wavelength positive Bouguer anomaly is attributed to crustal thinning and lithospheric mantle uplift. The crustal thickness varies from 28 km in coastal areas to 24 km beneath the axial rift, supporting a regional compensation model over the Airy model. Forward modeling suggests that the optimal model explaining the regional Bouguer anomaly is a flexural model with Te equal to 7 km, indicating a weak and irregular continental crust. The primary factor contributing to this weakness is heating activity. Given the weakened state of the crust and the ongoing extension in the region, the NRS rift could evolve into a rupture, potentially leading to the formation of oceanic crust.

2.
Proc Natl Acad Sci U S A ; 121(25): e2401440121, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38875145

ABSTRACT

At fast-spreading centers, faults develop within the axial summit trough (AST; 0 to 250 m around the axis) primarily by diking-induced deformation originating from the axial magma lens (AML). The formation of the prominent abyssal-hill-bounding faults beyond the axial high (>2,000 m) is typically associated with the unbending of the lithosphere as it cools and spreads away from the AST. The presence of faults is rarely mapped between these two thermally distinct zones, where the lithosphere is still too hot for the faults to be linked with the process of thermal cooling and outside of the AST where the accretional diking process dominates the ridge axis. Here, we reveal a remarkable vertical alignment between the distinct morphological features of the magma body and the orientation of these faults, by comparison of 3-D seismic imagery and bathymetry data collected at the East Pacific Rise (EPR) 9°50'N. The spatial coincidence and asymmetric nucleation mode of the mapped faults represent the most direct evidence for magmatically induced faulting near the ridge axis, providing pathways for hydrothermalism and magma emplacement, helping to build the crust outside of the AST. The high-resolution seafloor and subsurface images also enable revised tectonic strain estimates, which shows that the near-axis tectonic component of seafloor spreading at the EPR is an order of magnitude smaller than previously thought with close to negligible contribution of lava buried faults to spreading.

3.
Proc Natl Acad Sci U S A ; 121(21): e2400232121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38748585

ABSTRACT

The shape of the ocean floor (bathymetry) and the overlaying sediments provide the largest carbon sink throughout Earth's history, supporting ~one to two orders of magnitude more carbon storage than the oceans and atmosphere combined. While accumulation and erosion of these sediments are bathymetry dependent (e.g., due to pressure, temperature, salinity, ion concentration, and available productivity), no systemic study has quantified how global and basin scale bathymetry, controlled by the evolution of tectonics and mantle convection, affects the long-term carbon cycle. We reconstruct bathymetry spanning the last 80 Myr to describe steady-state changes in ocean chemistry within the Earth system model LOSCAR. We find that both bathymetry reconstructions and representative synthetic tests show that ocean alkalinity, calcite saturation state, and the carbonate compensation depth (CCD) are strongly dependent on changes in shallow bathymetry (ocean floor ≤600 m) and on the distribution of the deep marine regions (>1,000 m). Limiting Cenozoic evolution to bathymetry alone leads to predicted CCD variations spanning 500 m, 33 to 50% of the total observed variations in the paleoproxy records. Our results suggest that neglecting bathymetric changes leads to significant misattribution to uncertain carbon cycle parameters (e.g., atmospheric CO2 and water column temperature) and processes (e.g., biological pump efficiency and silicate-carbonate riverine flux). To illustrate this point, we use our updated bathymetry for an Early Paleogene C cycle case study. We obtain carbonate riverine flux estimates that suggest a reversal of the weathering trend with respect to present-day, contrasting with previous studies, but consistent with proxy records and tectonic reconstructions.

4.
Environ Res ; 252(Pt 3): 118858, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38609066

ABSTRACT

Crucial to the Earth's oceans, ocean currents dynamically react to various factors, including rotation, wind patterns, temperature fluctuations, alterations in salinity and the gravitational pull of the moon. Climate change impacts coastal ecosystems, emphasizing the need for understanding these currents. This study explores multibeam echosounder (MBES), specifically R2-Sonic 2020 instrument, offering detailed seabed information. Investigating coral reefs, rocky reefs and artificial reefs aimed to map seafloor currents movement and their climate change responses. MBES data viz. Bathymetry and backscatter were classified and acoustic doppler current profiler (ADCP) ground data were validated using random forest regression. Results indicated high precision in currents speed measurement i.e. coral reefs with 0.96, artificial reefs with 0.94 and rocky reefs with 0.97. Currents direction accuracy was notable in coral reefs with 0.85, slightly lower in rocky reefs with 0.72 and artificial reefs with 0.60. Random forest identified sediment and backscatter as key for speed prediction while direction relies on bathymetry, slope and aspect. The study emphasizes integrating sediment size, backscatter, bathymetry and ADCP data for seafloor current analysis. This multibeam data on sediments and currents support better marine spatial planning and determine biodiversity patterns planning in the reef area.


Subject(s)
Climate Change , Coral Reefs , Water Movements , Environmental Monitoring/methods , Acoustics , Doppler Effect
5.
Sci Rep ; 14(1): 8008, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38580707

ABSTRACT

The Regional Indian Ocean model based on Modular Ocean Model (MOM4p1) was used to understand the importance of a realistic representation of bathymetry on Ocean General Circulation. The model has 1/4° uniform horizontal resolution and is forced with Coordinated Ocean-Ice Reference Experiments (CORE-II) inter-annual forcing with two simulations named BLND (realistic bathymetry) and OM3 (smoothed bathymetry), which only differ in the representation of bathymetry for the years 1992-2005. We also used recent reanalysis products from ORAS5 and SODA3 and ADCP observation to compare the subsurface currents. We show that by the inclusion of realistic bathymetry, there is a significant improvement in the upper ocean salinity, temperature, and currents, particularly near the coast. The salinity and temperature of the upper ocean are very close to the observed value near the coast. The bias in the salinity and temperature was reduced to half in BLND simulation compared to OM3, which led to a more realistic East India Coastal Current (EICC). We show the first evidence of a basin-wide cyclonic gyre over the Bay of Bengal at 1000 m depth during spring, which is just opposite to that of a basin-wide anti-cyclonic gyre at the surface. We found the presence of poleward EICC during spring at 1000 m and 2000 m depth, which is opposite to that of the surface. The presence of this deeper EICC structure is completely absent during fall. We show the presence of a boundary current along the coast of Andaman and Nicobar Island at a depth of 2000 m. The observed Wyrtki Jet (WJ) magnitude and spatial structure are most realistically reproduced in BLND simulation as compared to OM3 simulations. Both ORAS5 and SODA reanalysis products underestimate the WJ magnitude. The presence of the Maldives Islands is responsible for the westward extent of Equatorial Under Current (EUC). The presence of Maldives also creates wakes on the leeward side in the EUC zonal current. During fall, EUC is better defined in the eastern Equatorial Indian Ocean and lies at a depth of between 50 and 100 m, unlike its spring counterpart, in which its core is located slightly deeper, between 100 and 150 m depth. During peak summer months, June-July, a strong eastward zonal jet is present at 1000 m depth, similar to Wyrtki Jet (WJ). Inter-monsoon Jets, i.e., spring and fall jets, are also seen but are in the opposite direction, i.e., westward, unlike eastward in WJ.

6.
Mar Pollut Bull ; 201: 116180, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38430677

ABSTRACT

The Sambia Peninsula (Kaliningrad region) is historically well known for its amber mining. The 2019 year was the last year of direct overburden disposal into the Baltic Sea as a part of technological amber mining process. The extremely high-suspended particulate matter concentrations during that disposal were recorded immediately after the discharge of significant volumes of pulp and reached 200 mg/L. The impact of pulp discharge had sequentially suppressed plankton communities development due to the high content of suspended solids and afterwards stimulated plankton development due to the glauconite infusion. Cladocera were the most sensitive group to the effects of suspended matter. According to the preliminary forecast, when the pulp discharge stops, the restoration of plankton communities may take from 1 to 2 seasons to 1 year for different groups. This is due to the timing of the removal of fine suspended particulate matter from sediments and the possibility of secondary entry during resuspension.


Subject(s)
Amber , Ecosystem , Plankton , Particulate Matter , Baltic States , Environmental Monitoring , Geologic Sediments
7.
Ecol Evol ; 14(3): e10921, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38435015

ABSTRACT

Tropical ecosystems are challenging for pinnipeds due to fluctuating food availability. According to previous research, the Galapagos sea lion (GSL, Zalophus wollebaeki) adopts trophic flexibility to face such conditions. However, this hypothesis comes from studies using traditional methods (hard-parts analysis of scat and isotopic analysis from tissue). We studied the diet of five rookeries in the southeastern Galapagos bioregion (which harbors the highest GSL density), via DNA-metabarcoding of scat samples. The DNA-metabarcoding approach may identify consumed prey with a higher taxonomic resolution than isotopic analysis, while not depending on hard-parts remaining through digestion. Our study included five different rookeries to look for evidence of trophic flexibility at the bioregional level. We detected 98 prey OTUs (124 scats), mostly assigned to bony-fish taxa; we identified novel prey items, including a shark, rays, and several deep-sea fish. Our data supported the trophic flexibility of GSL throughout the studied bioregion since different individuals from the same rookery consumed prey coming from different habitats and trophic levels. Significant diet differentiations were found among rookeries, particularly between Punta Pitt and Santa Fe. Punta Pitt rookery, with a more pronounced bathymetry and lower productivity, was distinguished by a high trophic level and consumption of a high proportion of deep-sea prey; meanwhile, Santa Fe, located in more productive, shallow waters over the shelf, consumed a high proportion of epipelagic planktivorous fish. Geographic location and heterogeneous bathymetry of El Malecon, Española, and Floreana rookeries would allow the animals therein to access both, epipelagic prey over the shelf, and deep-sea prey out of the shelf; this would lead to a higher prey richness and diet variability there. These findings provide evidence of GSL adopting a trophic flexibility to tune their diets to different ecological contexts. This strategy would be crucial for this endangered species to overcome the challenges faced in a habitat with fluctuating foraging conditions.

8.
Mov Ecol ; 12(1): 21, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38491373

ABSTRACT

BACKGROUND: Ecological and physical conditions vary with depth in aquatic ecosystems, resulting in gradients of habitat suitability. Although variation in vertical distributions among individuals provides evidence of habitat selection, it has been challenging to disentangle how processes at multiple spatio-temporal scales shape behaviour. METHODS: We collected thousands of observations of depth from > 300 acoustically tagged adult Chinook salmon Oncorhynchus tshawytscha, spanning multiple seasons and years. We used these data to parameterize a machine-learning model to disentangle the influence of spatial, temporal, and dynamic oceanographic variables while accounting for differences in individual condition and maturation stage. RESULTS: The top performing machine learning model used bathymetric depth ratio (i.e., individual depth relative to seafloor depth) as a response. We found that bathymetry, season, maturation stage, and spatial location most strongly influenced Chinook salmon depth. Chinook salmon bathymetric depth ratios were deepest in shallow water, during winter, and for immature individuals. We also identified non-linear interactions among covariates, resulting in spatially-varying effects of zooplankton concentration, lunar cycle, temperature and oxygen concentration. CONCLUSIONS: Our results suggest Chinook salmon vertical habitat use is a function of ecological interactions, not physiological constraints. Temporal and spatial variation in depth distributions could be used to guide management decisions intended to reduce fishery impacts on Chinook salmon. More generally, our findings demonstrate how complex interactions among bathymetry, seasonality, location, and life history stage regulate vertical habitat selection.

9.
Sensors (Basel) ; 23(23)2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38067689

ABSTRACT

In the field of water depth inversion using imagery, the commonly used methods are based on water reflectance and wave extraction. Among these methods, the Optical Bathymetry Method (OBM) is significantly influenced by bottom sediment and climate, while the wave method requires a specific study area. This study introduces a method combining the FFT and spatial profile measurement to invert the wavelength of the wave bathymetry method (WBM), which enhances accuracy and reduces workload. The method was applied to remote sensing images of Sanya Bay in China, obtained from the Worldview satellite. The average error of the inverted depth results after applying the wavelength inversion technique was 15.9%, demonstrating consistency with the depth measurements obtained through the OBM in clear water of the bay. The WBM has notable advantages over the OBM, as it is unaffected by water quality. In addition, the influence of wave period on the accuracy of water depth retrieval was theoretically evaluated, revealing that a larger wave period leads to a better depth measurement. The depth measurement from two images with different wave periods aligned with the theoretical analysis. These results showcase the applicability and potential of the WBM for accurately estimating water depth in various coastal environments.

10.
HardwareX ; 16: e00492, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38148972

ABSTRACT

Water monitoring faces challenges that are driven by the infrastructure, protection, financial resources, science and innovation policies, among others. A modular, low-cost, fully open-source and small-sized Unmanned Surface Vessel (USV) called EMAC-USV (EMAC: Estación de Monitoreo Ambiental Costero), is proposed for monitoring bathymetry and water quality parameters (i.e. temperature, suspended solids concentration and hydrocarbon concentration) in complex water scenarios. A detailed description of each part of the platform as well as all electronic connections and functioning is presented.The field works were carried out in two small waste stabilization ponds and in a portion of the main tidal channel of the Bahía Blanca port. The EMAC-USV is the result of a cautious design, regarding the balancing performance, communications, payload capacity, among others.

11.
Environ Res ; 239(Pt 2): 117314, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37805186

ABSTRACT

Coastal ecosystems are facing heightened risks due to human-induced climate change, including rising water levels and intensified storm events. Accurate bathymetry data is crucial for assessing the impacts of these threats. Traditional data collection methods can be cost-prohibitive. This study investigates the feasibility of using freely accessible Landsat and Sentinel satellite imagery to estimate bathymetry and its correlation with hydrographic chart soundings in Port Klang, Malaysia. Through analysis of the blue and green spectral bands from the Landsat 8 and Sentinel 2 datasets, a bathymetry map of Port Klang's seabed is generated. The precision of this derived bathymetry is evaluated using statistical metrics like Root Mean Square Error (RMSE) and the coefficient of determination. The results reveal a strong statistical connection (R2 = 0.9411) and correlation (R2 = 0.7958) between bathymetry data derived from hydrographic chart soundings and satellite imagery. This research not only advances our understanding of employing Landsat imagery for bathymetry assessment but also underscores the significance of such assessments in the context of climate change's impact on coastal ecosystems. The primary goal of this research is to contribute to the comprehension of Landsat imagery's utility in bathymetry evaluation, with the potential to enhance safety protocols in seaport terminals and provide valuable insights for decision-making concerning the management of coastal ecosystems amidst climate-related challenges. The findings of this research have practical implications for a wide range of stakeholders involved in coastal management, environmental protection, climate adaptation and disaster preparedness.


Subject(s)
Ecosystem , Satellite Imagery , Humans , Climate Change , Conservation of Natural Resources , Water
12.
Sensors (Basel) ; 23(17)2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37687831

ABSTRACT

Coastal shallow water environments (<5 m) are extremely biodiverse and dynamic yet are often mapped too infrequently or at too low resolutions to capture the important processes occurring in these regions. Common forms of coastal surveying can leave gaps in data in the shallow water zone due to optical instrument capabilities and a vessel's ability to navigate in this region. One solution to these issues is an autonomous hovercraft that can fly over land and water and begin surveying at sub-meter water depths, bridging the gap between common optical and acoustic surveying methods. The craft's autonomy is tested via four autonomous flight paths, or missions, and the desired path is compared to both the observed heading and direction of motion. Although the accuracy for each track in the mission varies, most headings and directions of motion of the hovercraft are within 50 degrees of the desired direction. A single-beam echo sounder was used to map the bathymetry of the study site, showing a gently sloping beach.

13.
Sensors (Basel) ; 23(17)2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37687939

ABSTRACT

The utilization of multibeam sonar systems has significantly facilitated the acquisition of underwater bathymetric data. However, efficiently processing vast amounts of multibeam point cloud data remains a challenge, particularly in terms of rejecting massive outliers. This paper proposes a novel solution by implementing a cone model filtering method for multibeam bathymetric point cloud data filtering. Initially, statistical analysis is employed to remove large-scale outliers from the raw point cloud data in order to enhance its resistance to variance for subsequent processing. Subsequently, virtual grids and voxel down-sampling are introduced to determine the angles and vertices of the model within each grid. Finally, the point cloud data was inverted, and the custom parameters were redefined to facilitate bi-directional data filtering. Experimental results demonstrate that compared to the commonly used filtering method the proposed method in this paper effectively removes outliers while minimizing excessive filtering, with minimal differences in standard deviations from human-computer interactive filtering. Furthermore, it yields a 3.57% improvement in accuracy compared to the Combined Uncertainty and Bathymetry Estimator method. These findings suggest that the newly proposed method is comparatively more effective and stable, exhibiting great potential for mitigating excessive filtering in areas with complex terrain.

14.
Sci Total Environ ; 905: 167296, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37742973

ABSTRACT

Deltas and estuaries are formed through periods of marine transgression and regression, which are the continuity of a river and provide key information about its evolution. However, many of the world's deltas are increasingly exposed to the impacts of human activities. While changes affecting the subaerial parts of deltas have been intensively studied, much less is known of their subaqueous parts, the understanding of which is important in gauging overall potential delta vulnerability. This research evaluates the bathymetric changes in the submerged delta of the Turia river (Western Mediterranean, Spain) before and after the extreme flood event of 1957, after which the riverbed was diverted. Three nautical charts were processed (1878, 1988 and 2022), including georeferencing and Digital Elevation Model (DEM) generation. In order to evaluate changes before and after the event, models for 1878-1988 and 1988-2022 were compared and differences were quantified in order to assess erosion and aggradation trends. The results indicate a more aggradated submerged delta in the surroundings of the old river mouth, favored by the high sediment availability since the end of the Little Ice Age (LIA), and the presence of a smaller delta next to its current river mouth to the south of the harbor of Valencia. Bathymetric reconstructions also made it possible to map some incisions in the inner continental shelf as river channels that migrated eastwards when the sea level was lower during MIS 2. Finally, the comparison of bathymetric models also revealed the scarcity of sediments on the current shelf since 1988, which is attributed to anthropogenic action. The successive extensions of the harbor are increasingly distorting the distribution of sediments along the coast and are thus remodeling seabed sediment distribution. Knowing the sedimentation in deltaic systems means better predicting future alterations due to increased anthropization and of the climate change.

15.
Sensors (Basel) ; 23(18)2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37765881

ABSTRACT

This study introduces a prototype end-to-end Simulator software tool for simulating two-dimensional satellite multispectral imagery for a variety of satellite instrument models in aquatic environments. Using case studies, the impact of variable sensor configurations on the performance of value-added products for challenging applications, such as coral reefs and cyanobacterial algal blooms, is assessed. This demonstrates how decisions regarding satellite sensor design, driven by cost constraints, directly influence the quality of value-added remote sensing products. Furthermore, the Simulator is used to identify situations where retrieval algorithms require further parameterization before application to unsimulated satellite data, where error sources cannot always be identified or isolated. The application of the Simulator can verify whether a given instrument design meets the performance requirements of end-users before build and launch, critically allowing for the justification of the cost and specifications for planned and future sensors. It is hoped that the Simulator will enable engineers and scientists to understand important design trade-offs in phase 0/A studies easily, quickly, reliably, and accurately in future Earth observation satellites and systems.

16.
J Nonlinear Sci ; 33(5): 96, 2023.
Article in English | MEDLINE | ID: mdl-37601550

ABSTRACT

This work involves theoretical and numerical analysis of the thermal quasi-geostrophic (TQG) model of submesoscale geophysical fluid dynamics (GFD). Physically, the TQG model involves thermal geostrophic balance, in which the Rossby number, the Froude number and the stratification parameter are all of the same asymptotic order. The main analytical contribution of this paper is to construct local-in-time unique strong solutions for the TQG model. For this, we show that solutions of its regularised version α-TQG converge to solutions of TQG as its smoothing parameter α→0 and we obtain blow-up criteria for the α-TQG model. The main contribution of the computational analysis is to verify the rate of convergence of α-TQG solutions to TQG solutions as α→0, for example, simulations in appropriate GFD regimes.

17.
Sensors (Basel) ; 23(12)2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37420612

ABSTRACT

Depth data and the digital bottom model created from it are very important in the inland and coastal water zones studies and research. The paper undertakes the subject of bathymetric data processing using reduction methods and examines the impact of data reduction according to the resulting representations of the bottom surface in the form of numerical bottom models. Data reduction is an approach that is meant to reduce the size of the input dataset to make it easier and more efficient for analysis, transmission, storage and similar. For the purposes of this article, test datasets were created by discretizing a selected polynomial function. The real dataset, which was used to verify the analyzes, was acquired using an interferometric echosounder mounted on a HydroDron-1 autonomous survey vessel. The data were collected in the ribbon of Lake Klodno, Zawory. Data reduction was conducted in two commercial programs. Three equal reduction parameters were adopted for each algorithm. The research part of the paper presents the results of the conducted analyzes of the reduced bathymetric datasets based on the visual comparison of numerical bottom models, isobaths, and statistical parameters. The article contains tabular results with statistics, as well as the spatial visualization of the studied fragments of numerical bottom models and isobaths. This research is being used in the course of work on an innovative project that aims to develop a prototype of a multi-dimensional and multi-temporal coastal zone monitoring system using autonomous, unmanned floating platforms at a single survey pass.


Subject(s)
Algorithms , Surveys and Questionnaires
18.
Sensors (Basel) ; 23(11)2023 May 25.
Article in English | MEDLINE | ID: mdl-37299802

ABSTRACT

This paper presents an assessment of the quality of selected filtration methods for the postprocessing of multibeam echosounder data. In this regard, the methodology used in the quality assessment of these data is an important factor. One of the most important final products derived from bathymetric data is the digital bottom model (DBM). Therefore, quality assessment is often based on factors related to it. In this paper, we propose some quantitative and qualitative factors to perform these assessments, and we analyze a few selected filtration methods as examples. This research makes use of real data gathered in real environments, preprocessed with typical hydrographic flow. The methods presented in this paper may be used in empirical solutions, and the filtration analysis may be useful for hydrographers choosing a filtration method for DBM interpolation. The results showed that both data-oriented and surface-oriented methods can be used in data filtration and that various evaluation methods show different perspectives on data filtration quality assessment.


Subject(s)
Software
19.
Sensors (Basel) ; 23(9)2023 Apr 23.
Article in English | MEDLINE | ID: mdl-37177419

ABSTRACT

The bathymetric surveys executed with a use of small survey vessels in limited water areas, including offshore areas, require precise determination of the geospatial coordinates of the seabed which is a synthesis of, among others, determining the position coordinates and measuring the depth. Inclination of the seabed and the declining depth make manoeuvring of the sounding vessel, e.g., a hydrographic motorboat or Unmanned Survey Vehicle (USV), in shallow water impossible. Therefore, it is important to determine the minimal depth for the survey resulting from the draught of the sounding vessel and the limits of the sounding area. The boundaries also result from the dimensions of the sounding vessel, its manoeuvring parameters and local water level. Type of the echosounder used in the bathymetric survey is a decisive factor for the sounding profile planning and the distances between them and the survey vessel for the possibility performing the measurements in shallow water. Electronic Navigational Chart (ENC) was used to determine the water area's boundaries, and the safety contours were determined on the basis of the built Digital Sea Bottom Model (DSBM). The safety contour, together with the vessel's dimensions, its manoeuvring parameters and the hydrometeorological conditions, limit the offshore area in which the measurement can be performed. A method of determining boundaries of the survey performed by a USV equipped with SingleBeam EchoSounder (SBES) on survey lines perpendicular to the coastal line are presented in the paper in order to cover the water area with the highest amount of measurement data, with the USV's navigational safety taken into consideration. The measurements executed on the municipal beach served verification of the DSBM.

20.
Ecol Evol ; 13(4): e10006, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37091558

ABSTRACT

As a potential anti-predatory defensive structure, the shell ornamentation of marine calcifiers is usually used to understand the macro coevolution of the interactions between predators and preys. Marine calcifiers' shell ornamentation complexity is generally believed to vary negatively with latitude and water depth. In this paper, we explored the association between shell ornamentation and latitude/bathymetry using the latest global database of living brachiopods. We found that (1) ~59% of living brachiopods species are characterized by smooth shells and that (2) there is no statistically significant linear trend, either positive or negative, between the ornamentation index and latitudes nor with water depths. Both findings are puzzling for living brachiopods as they are sharply contrasted to the patterns of fossil brachiopods whereby the latter, especially Paleozoic brachiopods, are known to exhibit (1) a much greater ornamentation diversity and (2) (at least for the geological periods that have been studied) a linear latitudinal gradient of ornamentation complexity existed. The reasons why living brachiopods have such a high proportion of smooth or weakly ornamented shells and fail to demonstrate an unequivocal linear latitudinal ornamentation gradient were explored and are linked to a multitude of potential factors rather than uniquely only to the predation pressure. Among these, the most plausible factor seems to be the cryptic (refuge-type) habitats (e.g., deep waters, cold polar regions, and submarine rock caves) that living brachiopods have been adapted to due to their low metabolism, where predation pressure is low, allowing brachiopods to enact the predator avoidance strategy rather than having to manufacture robust shell ornamentation to survive in an otherwise highly engaged predator-prey global marine ecosystem.

SELECTION OF CITATIONS
SEARCH DETAIL
...