Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Publication year range
1.
Ann Biomed Eng ; 45(6): 1487-1495, 2017 06.
Article in English | MEDLINE | ID: mdl-28194660

ABSTRACT

A novel apparatus for the multifaceted evaluation of artery function was developed. It measures endothelial and smooth muscle functions and the pressure-strain elastic modulus (E p). A rigid airtight chamber with an ultrasound probe was attached to the upper arm to manipulate the transmural pressure of the brachial artery. Endothelial function was measured via a standard flow-mediated dilation (FMD) protocol. Smooth muscle function was evaluated via a myogenic contraction of the artery following the application of negative pressure to the chamber and was named pressure-mediated contraction (PMC). E p was obtained by measuring the instantaneous increase in the artery diameter following the negative pressure application. The PMC and FMD values had a significant negative correlation with age, indicating that the age-related decrease in FMD is caused by the decay of endothelial and smooth muscle function. A consideration of PMC may help improve the accuracy of artery function measurement. E p in subjects aged >40 years was found to be significantly higher in the supra-physiological pressure range than in the physiological one (p = 0.02); this did not occur in younger subjects. Artery stiffening may begin in the supra-physiological range, and this stiffness may also be used for the diagnosis of atherosclerosis.


Subject(s)
Brachial Artery/physiology , Muscle, Smooth, Vascular/physiology , Adult , Aged , Arterial Pressure , Female , Humans , Male , Middle Aged , Young Adult
2.
Article in Japanese | WPRIM (Western Pacific) | ID: wpr-371470

ABSTRACT

The effect of changes in vascular transmural pressure upon differential digital plethysmogram (delta DPG) was studied in seven normal subjects. Changes in vascular transmural pressure were produced by the gravitational potential energy change (GPEC method) of an extremity from the heart level. Delta DPG which was characteristic of stability, discrimination and low speed record by modified devices was applied for the experiments including postural, static and dynamic exercises. Room temperature during experiments was kept constant. The Delta DPG-P wave amplitude in maximal elevation of upper and lower extremities (mean±S. D., n) increased to 162.3±33.5% (38) and 176.7±33.4% (12), respectively, and that in maximal lowering of upper and lower extremities decreased to 36.9±10.5% (35) and 37.5±12.6% (15), respectively. These data reveal that the GPEC method may be useful for the determination of arteriolar sensitivity in humans.

SELECTION OF CITATIONS
SEARCH DETAIL
...