ABSTRACT
The present study aimed to develop a fermented soy beverage containing fruit by-products and probiotics and to evaluate the impact of this product on the composition and metabolic activity of the human intestinal microbiota using an in vitro simulation model of the intestinal conditions (TIM-2). Therefore, the present study was divided into three stages. Stage I was based on obtaining, processing and physical-chemical, microbiological and functional characterization of fruit by-products (acerola, orange, mango, and passion fruit) and soybean (okara), as well as amaranth flour. Additionally, the ability to use these vegetable by-products and amaranth flour by probiotic and non-probiotic strains was evaluated. The results showed that the acerola byproduct presented the highest dietary fibre content (48.46 g/100 g) among the by-products tested, as well as amaranth flour. Orange and passion fruit by-products were the substrates that most promoted the growth of bacterial populations, including strains of Escherichia coli and Clostridium perfringens. On the other hand, the acerola by-product was the substrate that showed the highest selectivity for beneficial bacteria. Also, in this stage, ten probiotic strains (seven lactobacilli and three bifidobacteria) and three starter strains (Streptococcus thermophilus) were tested for their ability to deconjugate bile salts and for proteolytic activity against milk and soy proteins. The results showed that none of the tested strain showed proteolytic ability against milk and soybean proteins. In addition, the probiotic strains Lactobacillus acidophilus LA-5 and Bifidobacterium longum BB-46 deconjugated more types of bile acids tested, and the strains of S. thermophilus tested showed no ability to deconjugate bile salts. Next, the acerola by-product (ABP) and the probiotic strains LA-5 and BB-46 were selected to continue stage II of the study (development of a fermented soy beverage). For this purpose, a 23 factorial design was used, in a total of 8 trials with three replicates of each one, and the effects of the probiotic strains and the acerola by-product on the physical-chemical, microbiological, and sensory characteristics of these fermented soy beverages were evaluated. At the same time, probiotic viability and survival under in vitro gastrointestinal (GI) simulated conditions were evaluated in fermented soy beverage (FSB). The results showed that the presence of BB-46 and ABP affected the sensory acceptability of FSB negatively. ABP also led to significant differences in the texture profile of the FSB (P<0.05). Populations of probiotic strains ranged from 7.0 to 8.2 log CFU equivalent/mL during 28 days of refrigerated storage (4° C) of FBS, and the co-culture (LA-5+BB-46) and the ABP did not affect the viability of both microorganisms significantly (P> 0.05). However, ABP increased the survival of BB-46 under in vitro simulated GI conditions significantly. For stage III, a 22 experimental design was performed. To evaluate the impact of these FBS on the composition and metabolic activity of the intestinal microbiota of lean and obese humans, a validated in vitro model called TIM-2 was used, available at the Maastricht University (Venlo, The Netherlands), which simulates normal conditions of the lumen of the proximal colon, with all parameters controlled by a computer. Samples were collected from TIM-2 to quantify probiotic microorganisms (LA-5 and BB-46), Lactobacillus spp., Bifidobacterium spp., and total bacteria, using the quantitative PCR method (qPCR) and the intestinal microbiota profile was determined using an Illumina Mysec Next Generation Sequencing (NGS) method. Concentrations of shortchain fatty acids and branched-chain fatty acids and lactate produced by the different microbiotas during fermentation in TIM-2 were also determined. The results showed that the lean microbiota presented the high production of acetate and lactate than the microbiota of obese individuals. Significant reductions in Bifidobacterium populations in the lean microbiota were observed at 0 and 48 h of an assay for all experimental meals, except for the meal that had the probiotic combination (LA-5 and BB-46) and the ABP supplementation, which showed an increased total Bifidobacterium and Lactobacillus populations throughout the experimental period for both microbiotas tested. The FSB supplemented with ABP presented the best characteristics regarding the modulation of the obese microbiota, with an increase in Bifidobacterium spp. and Lactobacillus spp. Additionally, after 48 hours of intervention in TIM-2, the obese microbiota was apparently similar to the lean microbiota, showing a beneficial modulation of this microbiota. The results suggest that the fermented soy beverage supplemented with the acerola by-product and the probiotic strains may present beneficial health effects. However, clinical studies are required to complement and confirm the results observed in the in vitro assays
O presente trabalho visou desenvolver uma bebida fermentada de soja adicionada de resíduos de frutas e suplementada com cepas probióticas e avaliar o impacto desse produto sobre a composição e a atividade metabólica da microbiota intestinal humana, utilizando um modelo de simulação in vitro das condições intestinais (TIM-2). Para tanto, o presente trabalho foi dividido em três etapas. A etapa I foi baseada na obtenção, processamento e caracterização físico-química, microbiológica e funcional de subprodutos de frutas (acerola, laranja, manga e maracujá) e soja (okara), bem como da farinha de amaranto. Adicionalmente, a capacidade de utilização desses subprodutos vegetais e da farinha de amaranto por cepas probióticas e não probióticas foi avaliada. Os resultados mostraram que o subproduto de acerola apresentou o maior conteúdo de fibras alimentares totais (48,46 g/100 g) dentre os subprodutos testados, bem como a farinha de amaranto. Os subprodutos de laranja e maracujá foram os substratos que mais promoveram a multiplicação das populações bacterianas, incluindo das cepas de Escherichia coli e Clostridium perfringens. Por outro lado, o subproduto de acerola foi o substrato que apresentou a maior seletividade para bactérias benéficas. Ainda nessa etapa, dez cepas probióticas (sete lactobacilos e três bifidobacterias) e três cepas starter (Streptococcus thermophilus) foram testadas quanto à sua capacidade de desconjugação de sais biliares e atividade proteolítica frente às proteínas do leite e da soja. Os resultados revelaram que nenhuma cepa testada apresentou capacidade de proteólise das proteínas do leite e da soja. Adicionalmente, as cepas probióticas Lactobacillus acidophilus LA-5 e Bifidobacterium longum BB-46 desconjugaram a maior quantidade de ácidos biliares testados e as cepas de S. thermophilus testadas não apresentaram capacidade de desconjugação de sais biliares. Após a análise dos resultados da etapa I, o resíduo de acerola (ABP) e as cepas probióticas LA-5 e BB-46 foram selecionadas para dar continuidade à etapa II do estudo(desenvolvimento de uma bebida fermentada a base de soja). Para esse fim, foi utilizado um delineamento experimental do tipo fatorial 23, totalizando 8 ensaios com três repetições de cada, e foram avaliados os efeitos das cepas probióticas e do subproduto de acerola sobre as características físico-químicas, microbiológicas e sensoriais dessas bebidas fermentadas de soja. Paralelamente, foram realizadas análises da sobrevivência das cepas probióticas frente às condições gastrintestinais simuladas in vitro nas bebidas fermentadas de soja (FSB). Os resultados mostraram que a presença de BB-46 e ABP afetaram negativamente a aceitabilidade sensorial das FSB. O ABP também levou a diferenças significativas no perfil de textura das FSB (P<0,05). As populações das cepas probióticas nas diferentes formulações de FSB variaram de 7,0 a 8,2 log de UFC equivalente/mL durante os 28 dias de armazenamento (4 ºC) e a co-cultura (LA-5+BB-46) e o ABP não afetaram (P>0,05) a viabilidade de ambos os microrganismos. No entanto, ABP aumentou significativamente a sobrevivência de BB-46 frente às condições gastrintestinais sumuladas in vitro. Para a etapa III do presente estudo, um delineamento experimental fatorial 22 foi realizado. Para a avaliação do impacto dessas FSB sobre a composição e atividade metabólica da microbiota intestinal de humanos eutróficos e obesos, foi utilizado um modelo in vitro TIM-2 na Maastricht University (Venlo, Holanda), que simula as condições normais do lúmen do cólon proximal, com todos os parâmetros controlados por um computador. Amostras foram coletadas do TIM-2 para a quantificação dos microrganismos probióticos (LA-5 e BB-46), Lactobacillus spp., Bifidobacterium spp. e bactérias totais, utilizando o método de PCR quantitativo (qPCR), e o perfil da microbiota intestinal foi determinado utilizando Next-Generation Sequencing (NGS) Illumina Mysec. A concentração de ácidos graxos de cadeia curta e de cadeia ramificada e lactato produzidos pelas diferentes microbiotas durante a fermentação no TIM-2 também foi determinada. Os resultados mostraram que a microbiota de humanos eutróficos apresentou uma alta produção de acetato e lactato em comparação com a microbiota de obesos. Reduções significativas das populações de Bifidobacterium na microbiota de eutróficos foram observadas entre 0 e 48 h de ensaio para todas as refeições experimentais, exceto para a refeição que apresentou a combinação probiótica (LA-5 e BB-46) e a suplementação com ABP, que apresentou aumento de Bifidobacterium e Lactobacillus totais durante todo o período de análise para ambas as microbiotas testadas. As FSB suplementadas com ABP apresentaram os melhores resultados em relação à modulação da microbiota de humanos obesos, com o aumento Bifidobacterium spp. e Lactobacillus spp. Adicionalmente, após 48 horas de intervenção no TIM-2, a microbiota de obesos foi aparentemente similar à microbiota de eutróficos, mostrando uma modulação benéfica dessa microbiota. Os resultados sugerem que as bebidas fermentadas de soja suplementadas com o subproduto de acerola e cepas probióticas podem apresentar efeitos benéficos à saúde. No entanto, estudos clínicos são necessários para complementar e confirmar os resultados observados nos ensaios in vitro