Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 528
Filter
1.
Sci Rep ; 14(1): 15046, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38951601

ABSTRACT

The cotton whitefly, Bemisia tabaci, is considered as a species complex with 46 cryptic species, with Asia II-1 being predominant in Asia. This study addresses a significant knowledge gap in the characterization of odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) in Asia II-1. We explored the expression patterns of OBPs and CSPs throughout their developmental stages and compared the motif patterns of these proteins. Significant differences in expression patterns were observed for the 14 OBPs and 14 CSPs of B. tabaci Asia II-1, with OBP8 and CSP4 showing higher expression across the developmental stages. Phylogenetic analysis reveals that OBP8 and CSP4 form distinct clades, with OBP8 appearing to be an ancestral gene, giving rise to the evolution of other odorant-binding proteins in B. tabaci. The genomic distribution of OBPs and CSPs highlights gene clustering on the chromosomes, suggesting functional conservation and evolutionary events following the birth-and-death model. Molecular docking studies indicate strong binding affinities of OBP8 and CSP4 with various odour compounds like ß-caryophyllene, α-pinene, ß-pinene and limonene, reinforcing their roles in host recognition and reproductive functions. This study elaborates on our understanding of the putative roles of different OBPs and CSPs in B. tabaci Asia II-1, hitherto unexplored. The dynamics of the expression of OBPs and CSPs and their interactions with odour compounds offer scope for developing innovative methods for controlling this global invasive pest.


Subject(s)
Hemiptera , Insect Proteins , Phylogeny , Receptors, Odorant , Animals , Hemiptera/metabolism , Hemiptera/genetics , Receptors, Odorant/genetics , Receptors, Odorant/metabolism , Receptors, Odorant/chemistry , Insect Proteins/metabolism , Insect Proteins/genetics , Insect Proteins/chemistry , Gene Expression Regulation, Developmental , Molecular Docking Simulation , Polycyclic Sesquiterpenes/metabolism , Limonene/metabolism , Sesquiterpenes/metabolism
2.
Pest Manag Sci ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38984846

ABSTRACT

BACKGROUND: Elucidating fitness cost associated with field-evolved insect resistance to insecticide is of particular importance to current sustainable pest control. The global pest whitefly Bemisia tabaci has developed resistance to many members of neonicotinoids, but little is known about whitefly resistance to neonicotinoid nitenpyram and its associated fitness cost. Using insecticide bioassay and life-table approach, this study aims to investigate nitenpyram resistance status in field-collected whitefly populations, and to explore whether such resistance is accompanied by a fitness cost. RESULTS: The bioassay results revealed that 14 of 29 whitefly populations displayed moderate to extremely high resistance to nitenpyram, demonstrating a widespread field-evolved resistance to nitenpyram. This field-evolved resistance in the whitefly has increased gradually over the past 3 years from 2021 to 2023. Further life-table study showed that two resistant whitefly populations exhibited longer developmental time, shorter lifespans of adult, and lower fecundity compared with the most susceptible population. The relative fitness cost of the two resistant populations was calculated as 0.69 and 0.56 by using net productive rate R0, which suggests that nitenpyram resistance comes with fitness cost in the whitefly, especially on reproduction. CONCLUSION: Overall, these results represent field-evolved high resistance to nitenpyram in the whitefly. The existing fitness costs associated with nitenpyram resistance are helpful to propose a suitable strategy for sustainable control of whiteflies by rotation or mixture of insecticide with different modes of action. © 2024 Society of Chemical Industry.

3.
Plants (Basel) ; 13(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38931079

ABSTRACT

In tropical countries, combating leaf curl disease in hot peppers has become important in improvement programs. Leaf curl disease is caused by whitefly (Bemisia tabaci) transmitted begomoviruses, which mainly include chilli leaf curl virus (ChiLCV). However, multiple begomoviruses have also been found to be associated with this disease. The Capsicum annuum line, DLS-Sel-10, was found to be a tolerant source against this disease during field screening. In this study, we characterized the resistance of DLS-sel-10 against chilli leaf curl virus (ChiLCV) in comparison to the susceptible cultivar Phule Mukta (PM), focusing on the level, stage, and nature of resistance. Comprehensive investigations involved screening of DLS-Sel-10 against the whitefly vector ChiLCV. The putative tolerant line displayed reduced virus infection at the seedling stage, with increasing resistance during vegetative, flowering, and fruiting stages. Both DLS-Sel-10 and PM could be infected with ChiLCV, although DLS-Sel-10 remained symptomless. Insect feeding assays revealed DLS-Sel-10 as a less preferred host for whiteflies compared to PM. In conclusion, DLS-Sel-10 demonstrated tolerance not only to ChiLCV but also served as an unfavorable host for the whitefly vector. The study highlighted an age-dependent increase in tolerance within DLS-Sel-10, showcasing its potential for effective leaf curl disease management in chilli.

4.
Insects ; 15(6)2024 May 29.
Article in English | MEDLINE | ID: mdl-38921114

ABSTRACT

Bemisia tabaci (Gennadius) is one of the most important invasive species in China, with strong insecticide resistance and thermotolerance. In this study, we investigated the effects of elevated temperature on the tolerance of B. tabaci MEMA1 to abamectin (AB) and thianethixam (TH) insecticides. We firstly cloned two new CYP450 genes from B. tabaci MEAM1, including one CYP6 family gene (BtCYP6k1) and one CYP305 family gene (BtCYP305a1). The expression patterns of the two BtCYP450 genes were compared in response to high-temperature stress and insecticide exposure, and RNAi was then used to demonstrate the role that these two genes play in insecticide tolerance. The results showed that expression of the two BtCYP450 genes could be induced by exposure to elevated temperature or insecticide, but this gene expression could be inhibited to a certain extent when insects were exposed to the combined effects of high temperature and insecticide treatment. For AB treatment, the expression of the two BtCYP450 genes reached the lowest level when insects were exposed to a temperature of 41 °C and treated with AB (combined effects of temperature and insecticide). In contrast, TH treatment showed a general decrease in the expression of the two BtCYP450 genes with exposure to elevated temperatures. These findings suggest that insecticide tolerance in B. tabaci MEAM1 could be mediated by high temperatures. This study provides a prospective method for the more effective application of insecticides for the control of B. tabaci in the field.

5.
Insects ; 15(6)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38921151

ABSTRACT

Synthetic insecticides used to control Bemisia tabaci include organophosphorus, pyrethroids, insect growth regulators, nicotinoids, and neonicotinoids. Among these, neonicotinoids have been used continuously, which has led to the emergence of high-level resistance to this class of chemical insecticides in the whitefly, making whitefly management difficult. The adipokinetic hormone gene (AKH) and reactive oxygen species (ROS) play roles in the development of insect resistance. Therefore, the roles of AKH and ROS in imidacloprid resistance in Bemisia tabaci Mediterranean (MED; formerly biotype Q) were evaluated in this study. The expression level of AKH in resistant B. tabaci MED was significantly lower than that in sensitive B. tabaci (MED) (p < 0.05). AKH expression showed a decreasing trend. After AKH silencing by RNAi, we found that ROS levels as well as the expression levels of the resistance gene CYP6CM1 and its upstream regulatory factors CREB, ERK, and P38 increased significantly (p < 0.05); additionally, whitefly resistance to imidacloprid increased and mortality decreased (p < 0.001). These results suggest that AKH regulates the expression of resistance genes via ROS in Bemisia tabaci.

6.
Insects ; 15(6)2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38921153

ABSTRACT

The sweetpotato whitefly, Bemisia tabaci MEAM1, is a pest known to significantly impact tomato development and yields through direct damage and virus transmission. To manage this pest, the current study compared the effectiveness of various insecticide rotations. Field trials included rotations involving synthetic insecticides, biochemicals, and microbial agents, applied according to their highest labeled concentrations. The results indicated that while standard synthetic insecticides consistently reduced whitefly egg and nymph counts significantly, microbial biopesticide rotations also achieved reductions, although less consistently. This study demonstrated that while traditional chemical treatments remain highly effective, microbial biopesticides containing Beauveria bassiana and Cordyceps javanica present a viable alternative to manage MEAM1 in tomato fields. The data generated in this study provided baseline information for further investigations to determine the potential for optimizing integrated pest management (IPM) and insecticide resistance management (IRM) strategies by incorporating microbial biopesticides in rotations with a variety of modes of action to sustainably manage B. tabaci MEAM1 populations in agricultural settings.

7.
PeerJ ; 12: e17386, 2024.
Article in English | MEDLINE | ID: mdl-38832032

ABSTRACT

Cassava (Manihot esculenta) is among the most important staple crops globally, with an imperative role in supporting the Sustainable Development Goal of 'Zero hunger'. In sub-Saharan Africa, it is cultivated mainly by millions of subsistence farmers who depend directly on it for their socio-economic welfare. However, its yield in some regions has been threatened by several diseases, especially the cassava brown streak disease (CBSD). Changes in climatic conditions enhance the risk of the disease spreading to other planting regions. Here, we characterise the current and future distribution of cassava, CBSD and whitefly Bemisia tabaci species complex in Africa, using an ensemble of four species distribution models (SDMs): boosted regression trees, maximum entropy, generalised additive model, and multivariate adaptive regression splines, together with 28 environmental covariates. We collected 1,422 and 1,169 occurrence records for cassava and Bemisia tabaci species complex from the Global Biodiversity Information Facility and 750 CBSD occurrence records from published literature and systematic surveys in East Africa. Our results identified isothermality as having the highest contribution to the current distribution of cassava, while elevation was the top predictor of the current distribution of Bemisia tabaci species complex. Cassava harvested area and precipitation of the driest month contributed the most to explain the current distribution of CBSD outbreaks. The geographic distributions of these target species are also expected to shift under climate projection scenarios for two mid-century periods (2041-2060 and 2061-2080). Our results indicate that major cassava producers, like Cameron, Ivory Coast, Ghana, and Nigeria, are at greater risk of invasion of CBSD. These results highlight the need for firmer agricultural management and climate-change mitigation actions in Africa to combat new outbreaks and to contain the spread of CBSD.


Subject(s)
Hemiptera , Manihot , Plant Diseases , Manihot/parasitology , Animals , Hemiptera/physiology , Plant Diseases/parasitology , Plant Diseases/statistics & numerical data , Africa/epidemiology , Crops, Agricultural/growth & development , Crops, Agricultural/parasitology
8.
J Econ Entomol ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748560

ABSTRACT

Bemisia tabaci Middle East-Asia Minor 1 (MEAM1) is a significant pest that damages a wide range of high-value vegetable crops in south Florida. This pest has demonstrated the ability to develop resistance to various insecticide groups worldwide. Monitoring the resistance levels of MEAM1 populations and maintaining baseline susceptibility data are crucial for the long-term effectiveness of insecticide management strategies. We conducted serial dilution bioassays on 15 field populations of MEAM1 collected in south Florida to assess their resistance to 4 key insecticides: afidopyropen, cyantraniliprole, dinotefuran, and flupyradifurone. To quantify resistance levels, resistance ratios (RR) were generated by comparing the LC50 values of field populations to those of a known susceptible MEAM1 colony reared in the laboratory. Our findings reveal that all field-collected populations were susceptible to dinotefuran (RR 1-8) and flupyradifurone (RR 2-8). While over 80% of the populations tested were susceptible to afidopyropen (RR 1-9), 2 populations exhibited low (RR 38) and moderate resistance (RR 51), respectively. In contrast, most of the populations (57%) showed low to moderate resistance to cyantraniliprole (RR 21-78), and the remaining populations were susceptible (RR 3-10). The 2 populations with resistance to afidopyropen also exhibited moderate resistance to cyantraniliprole. Further research in this direction can aid in refining insecticide resistance management programs in Florida and other regions where B. tabaci MEAM1 is a major pest. Exploring the implications of these findings will be essential for insecticide use and integrated pest management strategies in south Florida.

9.
Front Plant Sci ; 15: 1376284, 2024.
Article in English | MEDLINE | ID: mdl-38807782

ABSTRACT

Begomoviruses (family Geminiviridae) are known for causing devastating diseases in fruit, fibre, pulse, and vegetable crops throughout the world. Begomoviruses are transmitted in the field exclusively through insect vector whitefly (Bemisia tabaci), and the frequent outbreaks of begomoviruses are attributed largely due to the abundance of whitefly in the agri-ecosystem. Begomoviruses being phloem-borne were known not be transmitted through seeds of the infected plants. The recent findings of seed transmission of begomoviruses brought out a new dimension of begomovirus perpetuation and dissemination. The first convincing evidence of seed transmission of begomoviruses was known in 2015 for sweet potato leaf curl virus followed by several begomoviruses, like bhendi yellow vein mosaic virus, bitter gourd yellow mosaic virus, dolichos yellow mosaic virus, mungbean yellow mosaic virus, mungbean yellow mosaic India virus, pepper yellow leaf curl Indonesia virus, tomato leaf curl New Delhi virus, tomato yellow leaf curl virus, tomato yellow leaf curl Sardinia virus, and okra yellow mosaic Mexico virus. These studies brought out two perspectives of seed-borne nature of begomoviruses: (i) the presence of begomovirus in the seed tissues derived from the infected plants but no expression of disease symptoms in the progeny seedlings and (ii) the seed infection successfully transmitted the virus to cause disease to the progeny seedlings. It seems that the seed transmission of begomovirus is a feature of a specific combination of host-genotype and virus strain, rather than a universal phenomenon. This review comprehensively describes the seed transmitted begomoviruses reported in the last 9 years and the possible mechanism of seed transmission. An emphasis is placed on the experimental results that proved the seed transmission of various begomoviruses, factors affecting seed transmission and impact of begomovirus seed transmission on virus circulation, outbreak of the disease, and management strategies.

10.
Viruses ; 16(4)2024 04 10.
Article in English | MEDLINE | ID: mdl-38675929

ABSTRACT

Plants can respond to insect infestation and virus infection by inducing plant defenses, generally mediated by phytohormones. Moreover, plant defenses alter host quality for insect vectors with consequences for the spread of viruses. In agricultural settings, other organisms commonly interact with plants, thereby inducing plant defenses that could affect plant-virus-vector interactions. For example, plant defenses induced by omnivorous insects can modulate insect behavior. This study focused on tomato yellow leaf curl virus (TYLCV), a plant virus of the family Geminiviridae and genus Begomovirus. It is transmitted in a persistent circulative manner by the whitefly Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae), posing a global threat to tomato production. Mirids (Hemiptera: Miridae) are effective biological control agents of B. tabaci, but there is a possibility that their omnivorous nature could also interfere with the process of virus transmission. To test this hypothesis, this study first addressed to what extent the mirid bug Dicyphus hesperus Knight induces plant defenses in tomato. Subsequently, the impact of this plant-omnivore interaction on the transmission of TYLCV was evaluated. Controlled cage experiments were performed in a greenhouse setting to evaluate the impact of mirids on virus transmission and vector acquisition by B. tabaci. While we observed a reduced number of whiteflies settling on plants exposed to D. hesperus, the plant defenses induced by the mirid bug did not affect TYLCV transmission and accumulation. Additionally, whiteflies were able to acquire comparable amounts of TYLCV on mirid-exposed plants and control plants. Overall, the induction of plant defenses by D. hesperus did not influence TYLCV transmission by whiteflies on tomato.


Subject(s)
Begomovirus , Hemiptera , Insect Vectors , Plant Diseases , Solanum lycopersicum , Begomovirus/physiology , Solanum lycopersicum/virology , Animals , Plant Diseases/virology , Hemiptera/virology , Hemiptera/physiology , Insect Vectors/virology , Heteroptera/virology , Heteroptera/physiology , Plant Defense Against Herbivory
11.
Insect Sci ; 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38562016

ABSTRACT

Identifying cryptic species poses a substantial challenge to both biologists and naturalists due to morphological similarities. Bemisia tabaci is a cryptic species complex containing more than 44 putative species; several of which are currently among the world's most destructive crop pests. Interpreting and delimiting the evolution of this species complex has proved problematic. To develop a comprehensive framework for species delimitation and identification, we evaluated the performance of distinct data sources both individually and in combination among numerous samples of the B. tabaci species complex acquired worldwide. Distinct datasets include full mitogenomes, single-copy nuclear genes, restriction site-associated DNA sequencing, geographic range, host speciation, and reproductive compatibility datasets. Phylogenetically, our well-supported topologies generated from three dense molecular markers highlighted the evolutionary divergence of species of the B. tabaci complex and suggested that the nuclear markers serve as a more accurate representation of B. tabaci species diversity. Reproductive compatibility datasets facilitated the identification of at least 17 different cryptic species within our samples. Native geographic range information provides a complementary assessment of species recognition, while the host range datasets provide low rate of delimiting resolution. We further summarized different data performances in species classification when compared with reproductive compatibility, indicating that combination of mtCOI divergence, nuclear markers, geographic range provide a complementary assessment of species recognition. Finally, we represent a model for understanding and untangling the cryptic species complexes based on the evidence from this study and previously published articles.

12.
Pestic Biochem Physiol ; 201: 105888, 2024 May.
Article in English | MEDLINE | ID: mdl-38685219

ABSTRACT

Bemisia tabaci is a formidable insect pest worldwide, and it exhibits significant resistance to various insecticides. Dimpropyridaz is a novel pyridazine pyrazolecarboxamide insecticide used against sucking insect pests, but there is little information regarding its metabolic detoxification in arthropods or cross-resistance with other insecticides. In this study, we found that dimpropyridaz shows no cross-resistance with three other popular insecticides, namely abamectin, cyantraniliprole, and flupyradifurone. After treatment of B. tabaci adults with a high dose of dimpropyridaz, higher cytochrome P450 monooxygenase (P450) activity was detected in the survivors, and the expression of the P450 gene CYP6DW4 was highly induced. Cloning and characterization of the full-length amino acid sequence of CYP6DW4 indicated that it contains conserved domains typical of P450 genes, phylogenetic analysis revealed that it was closely related to a B. tabaci protein, CYP6DW3, known to be involved in detoxification of imidacloprid. Silencing of CYP6DW4 by feeding insects with dsRNA significantly increased the susceptibility of B. tabaci to dimpropyridaz. In addition, homology modeling and molecular docking analyses showed the stable binding of dimpropyridaz to CYP6DW4, with binding free energy of -6.65 kcal/mol. Our findings indicate that CYP6DW4 plays an important role in detoxification of dimpropyridaz and possibly promotes development of resistance in B. tabaci.


Subject(s)
Cytochrome P-450 Enzyme System , Hemiptera , Insect Proteins , Insecticide Resistance , Insecticides , Ivermectin/analogs & derivatives , Pyrazoles , Pyridazines , ortho-Aminobenzoates , Animals , Hemiptera/drug effects , Hemiptera/genetics , Insecticides/pharmacology , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Pyridazines/pharmacology , Insecticide Resistance/genetics , Insect Proteins/genetics , Insect Proteins/metabolism , Insect Proteins/chemistry , Pyrazoles/pharmacology , Phylogeny , Neonicotinoids/pharmacology , Gene Knockdown Techniques , Molecular Docking Simulation , Amino Acid Sequence , Ivermectin/pharmacology , Ivermectin/toxicity
13.
Pestic Biochem Physiol ; 201: 105863, 2024 May.
Article in English | MEDLINE | ID: mdl-38685216

ABSTRACT

The whitefly Bemisia tabaci poses a significant threat to various crops and ornamental plants and causes severe damage to the agricultural industry. Over the past few decades, B. tabaci has developed resistance to several pesticides, including imidacloprid. Therefore, elucidating the mechanism that leads to insecticide detoxification is very important for controlling B. tabaci and managing whitefly resistance to neonicotinoid insecticides. Among insect detoxification enzymes, glutathione S-transferase (GST) is an important phase II detoxification enzyme that helps detoxify exogenous toxic substances. In this study, we cloned the BtGSTz1 gene and observed that its expression level was greater in imidacloprid-resistant populations than sensitive populations of B. tabaci. By silencing BtGSTz1 via RNA interference, we found a significant increase in the mortality of imidacloprid-resistant B. tabaci. Additionally, prokaryotic expression and in vitro metabolism studies revealed that the recombinant BtGSTz1 protein could metabolize 36.36% of the total imidacloprid, providing direct evidence that BtGSTz1 plays a crucial role in the detoxification of imidacloprid. Overall, our study elucidated the role of GSTs in physiological activities related to insecticide resistance, which helps clarify the resistance mechanisms conferred by GSTs and provides useful insights for sustainable integrated pest management.


Subject(s)
Glutathione Transferase , Hemiptera , Insecticide Resistance , Insecticides , Neonicotinoids , Nitro Compounds , Hemiptera/drug effects , Hemiptera/genetics , Hemiptera/metabolism , Animals , Neonicotinoids/pharmacology , Neonicotinoids/metabolism , Nitro Compounds/pharmacology , Nitro Compounds/metabolism , Glutathione Transferase/metabolism , Glutathione Transferase/genetics , Insecticides/pharmacology , Insecticides/metabolism , Insecticide Resistance/genetics , Insect Proteins/metabolism , Insect Proteins/genetics , RNA Interference , Imidazoles/pharmacology , Imidazoles/metabolism
14.
J Agric Food Chem ; 72(10): 5153-5164, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38427964

ABSTRACT

Being a destructive pest worldwide, the whitefly Bemisia tabaci has evolved resistance to neonicotinoid insecticides. The third-generation neonicotinoid dinotefuran has commonly been applied to the control of the whitefly, but its underlying mechanism is currently unknown. On the base of our transcriptome data, here we aim to investigate whether the cytochrome P450 CYP6EM1 underlies dinotefuran resistance in the whitefly. Compared to the susceptible strain, the CYP6EM1 gene was found to be highly expressed in both laboratory and field dinotefuran-resistant populations. Upon exposure to dinotefuran, the mRNA levels of CYP6EM1 were increased. These results demonstrate the involvement of this gene in dinotefuran resistance. Loss and gain of functional studies in vivo were conducted through RNAi and transgenic Drosophila melanogaster assays, confirming the role of CYP6EM1 in conferring such resistance. In a metabolism assay in vitro, the CYP6EM1 protein could metabolize 28.11% of dinotefuran with a possible dinotefuran-dm-NNO metabolite via UPLC-QTOF/MS. Docking of dinotefuran to the CYP6EM1 protein showed a good binding affinity, with an energy of less than -6.0 kcal/mol. Overall, these results provide compelling evidence that CYP6EM1 plays a crucial role in the metabolic resistance of B. tabaci to dinotefuran. Our work provides new insights into the mechanism underlying neonicotinoid resistance and applied knowledge that can contribute to sustainable control of a global pest such as whitefly.


Subject(s)
Guanidines , Hemiptera , Insecticides , Animals , Hemiptera/metabolism , Drosophila melanogaster/metabolism , Insecticide Resistance/genetics , Neonicotinoids/metabolism , Nitro Compounds/metabolism , Insecticides/pharmacology , Cytochrome P-450 Enzyme System/metabolism
15.
Pestic Biochem Physiol ; 199: 105766, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38458675

ABSTRACT

Bemisia tabaci (Gennadius) is one of the most dangerous polyphagous pests in the world causing damage to various crops by sucking sap during the nymphal and adult stages. Chemical management of whiteflies is challenging because of the emergence of pesticide resistance. RNA interference has been well established in whitefly to study the functions of various genes. G-protein coupled receptors (GPCRs) are important targets for development of new generation insecticides. In this study, Ecdysis triggering hormone receptor (ETHr) gene expression was recorded in different stages of whitefly and its function has been studied through RNAi. The expression of ETHr is highest in third-instar nymphs followed by other nymphal instars, pupae and newly emerged adults. Silencing of ETHr resulted in significantly higher adult mortality (68.88%), reduced fecundity (4.46 eggs /female), reduced longevity of male and female (1.05 and 1.40 days, respectively) when adults were fed with dsETHr @ 1.0 µg/µl. Silencing of ETHr in nymphs lead to significantly higher mortality (81.35%) as compared to control. This study confirms that ETHr gene is essential for growth and development of whitefly nymphs and adults. Hence, it can be future target for developing dsRNA based insecticides for management of whitefly.


Subject(s)
Hemiptera , Insecticides , Animals , Insecticides/toxicity , Insecticides/metabolism , Molting/genetics , Reproduction/genetics , Hormones/metabolism , Hemiptera/physiology
16.
Int J Biol Macromol ; 265(Pt 2): 131056, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38522686

ABSTRACT

Bemisia tabaci is a formidable insect pest worldwide, and exhibits significant resistance to various insecticides. Flupyradifurone is one novel butenolide insecticide and has emerged as a new weapon against B. tabaci, but field-evolved resistance to this insecticide has become a widespread concern. To unravel the mechanisms of field-evolved flupyradifurone resistance, we conducted a comprehensive investigation into susceptibility of twenty-one field populations within the Beijing-Tianjin-Hebei Region of China. Alarmingly, thirteen of these populations displayed varying degrees of resistance, ranging from low to medium levels, and building upon our prior findings, we meticulously cloned and characterized the CYP6CX4 gene in B. tabaci. Our investigations unequivocally confirmed the association between CYP6CX4 overexpression and flupyradifurone resistance in three of the thirteen resistant strains via RNA interference. To further validate our findings, we introduced CYP6CX4 overexpression into a transgenic Drosophila melanogaster line, resulting in a significant development of resistance to flupyradifurone in D. melanogaster. Additionally, homology modeling and molecular docking analyses showed the stable binding of flupyradifurone to CYP6CX4, with binding free energy of -6.72 kcal mol-1. Collectively, our findings indicate that the induction of CYP6CX4 exerts one important role in detoxification of flupyradifurone, thereby promoting development of resistance in B. tabaci.


Subject(s)
4-Butyrolactone/analogs & derivatives , Hemiptera , Insecticides , Pyridines , Animals , Insecticides/pharmacology , Insecticides/chemistry , Drosophila melanogaster , Molecular Docking Simulation , Hemiptera/genetics , China , Neonicotinoids
17.
Plant Biotechnol J ; 22(7): 2010-2019, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38426894

ABSTRACT

RNA interference (RNAi) has emerged as an efficient technology for pest control by silencing the essential genes of targeted insects. Owing to its nucleotide sequence-guided working mechanism, RNAi has a high degree of species-specificity without impacts on non-target organisms. However, as plants are inevitably under threat by two or more insect pests in nature, the species-specific mode of RNAi-based technology restricts its wide application for pest control. In this study, we artificially designed an intermediate dsRNA (iACT) targeting two ß-Actin (ACT) genes of sap-sucking pests Bemisia tabaci and Myzus persicae by mutual correction of their mismatches. When expressing hairpin iACT (hpiACT) from tobacco nuclear genome, transgenic plants are well protected from both B. tabaci and M. persicae, either individually or simultaneously, as evidenced by reduced fecundity and suppressed ACT gene expression, whereas expression of hpRNA targeting BtACT or MpACT in transgenic tobacco plants could only confer specific resistance to either B. tabaci or M. persicae, respectively. In sum, our data provide a novel proof-of-concept that two different insect species could be simultaneously controlled by artificial synthesis of dsRNA with sequence optimization, which expands the range of transgenic RNAi methods for crop protection.


Subject(s)
Nicotiana , Plants, Genetically Modified , RNA Interference , RNA, Double-Stranded , RNA, Double-Stranded/genetics , Animals , Plants, Genetically Modified/genetics , Plants, Genetically Modified/parasitology , Nicotiana/genetics , Nicotiana/parasitology , Aphids/genetics , Aphids/physiology , Hemiptera/genetics , Actins/genetics , Actins/metabolism
18.
mBio ; 15(3): e0244823, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38315036

ABSTRACT

Bacterial endosymbionts play important roles in the life histories of herbivorous insects by impacting their development, survival, reproduction, and stress tolerance. How endosymbionts may affect the interactions between plants and insect herbivores is still largely unclear. Here, we show that endosymbiotic Rickettsia belli can provide mutual benefits also outside of their hosts when the sap-sucking whitefly Bemisia tabaci transmits them to plants. This transmission facilitates the spread of Rickettsia but is shown to also enhance the performance of the whitefly and co-infesting caterpillars. In contrast, Rickettsia infection enhanced plant resistance to several pathogens. Inside the plants, Rickettsia triggers the expression of salicylic acid-related genes and the two pathogen-resistance genes TGA 2.1 and VRP, whereas they repressed genes of the jasmonic acid pathway. Performance experiments using wild type and mutant tomato plants confirmed that Rickettsia enhances the plants' suitability for insect herbivores but makes them more resistant to fungal and viral pathogens. Our results imply that endosymbiotic Rickettsia of phloem-feeding insects affects plant defenses in a manner that facilitates their spread and transmission. This novel insight into how insects can exploit endosymbionts to manipulate plant defenses also opens possibilities to interfere with their ability to do so as a crop protection strategy. IMPORTANCE: Most insects are associated with symbiotic bacteria in nature. These symbionts play important roles in the life histories of herbivorous insects by impacting their development, survival, reproduction as well as stress tolerance. Rickettsia is one important symbiont to the agricultural pest whitefly Bemisia tabaci. Here, for the first time, we revealed that the persistence of Rickettsia symbionts in tomato leaves significantly changed the defense pattern of tomato plants. These changes benefit both sap-feeding and leaf-chewing herbivore insects, such as increasing the fecundity of whitefly adults, enhancing the growth and development of the noctuid Spodoptera litura, but reducing the pathogenicity of Verticillium fungi and TYLCV virus to tomato plants distinctively. Our study unraveled a new horizon for the multiple interaction theories among plant-insect-bacterial symbionts.


Subject(s)
Hemiptera , Rickettsia Infections , Rickettsia , Animals , Hemiptera/microbiology , Herbivory , Symbiosis , Plants
19.
PeerJ ; 12: e16949, 2024.
Article in English | MEDLINE | ID: mdl-38410806

ABSTRACT

Whiteflies (Bemisia tabaci sensu lato) have a wide host range and are globally important agricultural pests. In Sub-Saharan Africa, they vector viruses that cause two ongoing disease epidemics: cassava brown streak disease and cassava mosaic virus disease. These two diseases threaten food security for more than 800 million people in Sub-Saharan Africa. Efforts are ongoing to identify target genes for the development of novel management options against the whitefly populations that vector these devastating viral diseases affecting cassava production in Sub-Saharan Africa. This study aimed to identify genes that mediate osmoregulation and symbiosis functions within cassava whitefly gut and bacteriocytes and evaluate their potential as key gene targets for novel whitefly control strategies. The gene expression profiles of dissected guts, bacteriocytes and whole bodies were compared by RNAseq analysis to identify genes with significantly enriched expression in the gut and bacteriocytes. Phylogenetic analyses identified three candidate osmoregulation gene targets: two α-glucosidases, SUC 1 and SUC 2 with predicted function in sugar transformations that reduce osmotic pressure in the gut; and a water-specific aquaporin (AQP1) mediating water cycling from the distal to the proximal end of the gut. Expression of the genes in the gut was enriched 23.67-, 26.54- and 22.30-fold, respectively. Genome-wide metabolic reconstruction coupled with constraint-based modeling revealed four genes (argH, lysA, BCAT & dapB) within the bacteriocytes as potential targets for the management of cassava whiteflies. These genes were selected based on their role and essentiality within the different essential amino acid biosynthesis pathways. A demonstration of candidate osmoregulation and symbiosis gene targets in other species of the Bemisia tabaci species complex that are orthologs of the empirically validated osmoregulation genes highlights the latter as promising gene targets for the control of cassava whitefly pests by in planta RNA interference.


Subject(s)
Hemiptera , Manihot , Viruses , Humans , Animals , Phylogeny , Manihot/genetics , Hemiptera/genetics , Vegetables , Water
20.
Viruses ; 16(2)2024 02 15.
Article in English | MEDLINE | ID: mdl-38400075

ABSTRACT

Bemisia tabaci (Gennadius) is an important invasive pest transmitting plant viruses that are maintained through a plant-insect-plant cycle. Tomato yellow leaf curl virus (TYLCV) can be transmitted in a persistent manner by B. tabaci, which causes great losses to global agricultural production. From an environmentally friendly, sustainable, and efficient point of view, in this study, we explored the function of d-limonene in reducing the acquisition and transmission of TYLCV by B. tabaci as a repellent volatile. D-limonene increased the duration of non-feeding waves and reduced the duration of phloem feeding in non-viruliferous and viruliferous whiteflies by the Electrical Penetration Graph technique (EPG). Additionally, after treatment with d-limonene, the acquisition and transmission rate of TYLCV was reduced. Furthermore, BtabOBP3 was determined as the molecular target for recognizing d-limonene by real-time quantitative PCR (RT-qPCR), fluorescence competitive binding assays, and molecular docking. These results confirmed that d-limonene is an important functional volatile which showed a potential contribution against viral infections with potential implications for developing effective TYLCV control strategies.


Subject(s)
Begomovirus , Hemiptera , Solanum lycopersicum , Animals , Limonene , Molecular Docking Simulation , Insect Vectors , Plant Diseases/prevention & control , Feeding Behavior
SELECTION OF CITATIONS
SEARCH DETAIL
...