Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 643
Filter
1.
J Anim Ecol ; 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39120041

ABSTRACT

Biotic homogenization is a process whereby species assemblages become more similar through time. The standard way of identifying the process of biotic homogenization is to look for decreases in spatial beta-diversity. However, using a single assemblage-level metric to assess homogenization can mask important changes in the occupancy patterns of individual species. Here, we analysed changes in the spatial beta-diversity patterns (i.e. biotic heterogenization or homogenization) of British bird assemblages within 30 km × 30 km regions between two periods (1988-1991 and 2008-2011). We partitioned the change in spatial beta-diversity into extirpation and colonization-resultant change (i.e. change in spatial beta-diversity within each region resulting from both extirpation and colonization). We used measures of abiotic change in combination with Bayesian modelling to disentangle the drivers of biotic heterogenization and homogenization. We detected both heterogenization and homogenization across the two time periods and three measures of diversity (taxonomic, phylogenetic, and functional). In addition, both extirpation and colonization contributed to the observed changes, with heterogenization mainly driven by extirpation and homogenization by colonization. These assemblage-level changes were primarily due to shifting occupancy patterns of generalist species. Compared to habitat generalists, habitat specialists had significantly (i) higher average contributions to colonization-resultant change (indicating heterogenization within a region due to colonization) and (ii) lower average contributions to extirpation-resultant change (indicating homogenization from extirpation). Generalists showed the opposite pattern. Increased extirpation-resultant homogenization within regions was associated with increased urban land cover and decreased habitat diversity, precipitation, and temperature. Changes in extirpation-resultant heterogenization and colonization-resultant heterogenization were associated with differences in elevation between regions and changes in temperature and land cover. Many of the 'winners' (i.e. species that increased in occupancy) were species that had benefitted from conservation action (e.g. buzzard (Buteo buteo)). The 'losers' (i.e. those that decreased in occupancy) consisted primarily of previously common species, such as cuckoo (Cuculus canorus). Our results show that focusing purely on changes in spatial beta-diversity over time may obscure important information about how changes in the occupancy patterns of individual species contribute to homogenization and heterogenization.

2.
J Infect Chemother ; 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39089446

ABSTRACT

INTRODUCTION: Antimicrobial treatment disrupts human microbiota. The effects of lascufloxacin (LSFX), a new fluoroquinolone, on human microbiota remains unknown. Therefore, in this study, we aimed to evaluate the effects of LSFX administration on the gut and salivary microbiota of healthy participants and those with pneumonia. METHODS: LSFX (75 mg, once a day, orally) was administered to healthy adults (healthy group) and adult patients with pneumonia (pneumonia group), and fecal and saliva samples were collected at five time points (Days 0, 3, 7, 14, and 28). Using the collected samples, α- and ß-diversity indices, as well as bacterial composition of the gut microbiota and salivary microbiota were analyzed using next-generation sequencing. RESULTS: In the healthy group, α-diversity indices of the gut and salivary microbiota were reduced and the lowest values on Day 3. For the gut microbiota, the Chao1 index (richness) recovered on Day 28, whereas the Shannon index (evenness) did not. In the salivary microbiota, the Chao1 and Shannon indices did not recover within the 28 day period. The ß-diversity indices changed after LSFX administration and subsequently recovered on Day 28. After LSFX administration, the abundance of the Lachnospiraceae family decreased in the gut microbiota, and the abundance of Granulicatella, Streptococcus, Prevotella, Absconditabacteriales(SR1), and Saccharimonadales decreased in the salivary microbiota. In the pneumonia group, the α-diversity indices were lowest on Day 14 after LSFX administration. CONCLUSIONS: We elucidated that LSFX administration differentially affected the gut and salivary microbiota; however, the richness and beta diversity recovered within 28 days.

3.
Philos Trans R Soc Lond B Biol Sci ; 379(1909): 20230168, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39034700

ABSTRACT

Species-rich natural and semi-natural ecosystems are under threat owing to land use change. To conserve the biodiversity associated with these ecosystems, we must identify and target conservation efforts towards functionally important species and supporting habitats that create connections between remnant patches in the landscape. Here, we use a multi-layer network approach to identify species that connect a metanetwork of plant-bee interactions in remnant semi-natural grasslands which are biodiversity hotspots in European landscapes. We investigate how these landscape connecting species, and their interactions, persist in their proposed supporting habitat, road verges, across a landscape with high human impact. We identify 11 plant taxa and nine bee species that connect semi-natural grassland patches. We find the beta diversity of these connector species to be low across road verges, indicating a poor contribution of these habitats to the landscape-scale diversity in semi-natural grasslands. We also find a significant influence of the surrounding landscape on the beta diversity of connector species and their interactions with implications for landscape-scale management. Conservation actions targeted toward species with key functional roles as connectors of fragmented ecosystems can provide cost-effective management of the diversity and functioning of threatened ecosystems.This article is part of the theme issue 'Connected interactions: enriching food web research by spatial and social interactions'.


Subject(s)
Biodiversity , Conservation of Natural Resources , Grassland , Animals , Bees/physiology , Ecosystem , Plants/classification
4.
Ecol Evol ; 14(7): e11643, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38957700

ABSTRACT

Marine sponges play a vital role in the reef's benthic community; however, understanding how their diversity and abundance vary with depth is a major challenge, especially on marginal reefs in areas deeper than 30 m. To help bridge this gap, we used underwater videos at 24 locations between 2- and 62-meter depths on a marginal reef system in the Southwestern Atlantic to investigate the effect of depth on the sponge metacommunity. Specifically, we quantified the abundance, density, and taxonomic composition of sponge communities, and decomposed their gamma (γ) diversity into alpha (α) and beta (ß) components. We also assessed whether beta diversity was driven by species replacement (turnover) or by nesting of local communities (nestedness). We identified 2020 marine sponge individuals, which belong to 36 species and 24 genera. As expected, deep areas (i.e., those greater than 30 m) presented greater sponge abundance and more than eightfold the number of sponges per square meter compared to shallow areas. About 50% of the species that occurred in shallow areas (<30 m) also occurred in deep areas. Contrarily to expectations, alpha diversity of rare (0 D α), typical (1 D α), or dominant (2 D α) species did not vary with depth, but the shallow areas had greater beta diversity than the deep ones, especially for typical (1 D ß) and dominant (2 D ß) species. Between 92.7% and 95.7% of the beta diversity was given by species turnover both inside and between shallow and deep areas. Our results support previous studies that found greater sponge abundance and density in deep areas and reveal that species sorting is stronger at smaller depths, generating more beta diversity across local communities in shallow than deep areas. Because turnover is the major driver at any depth, the entire depth gradient should be considered in management and conservation strategies.

5.
Ecol Evol ; 14(7): e70023, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39055776

ABSTRACT

Montane oceanic islands possess unique geographic and ecological attributes, rendering them valuable for assessing patterns and drivers of alpha and beta taxonomic, functional, and phylogenetic diversity along elevational gradients. Such comparisons of diversity facets can provide insights into the mechanisms governing community assembly on islands. Herein, we aimed to characterize taxonomic, functional, and phylogenetic bryophyte diversity on Madeira Island within and across areas at varying elevations. We also assessed how these diversity facets for the alpha and beta components relate to ecological and anthropogenic factors. We estimated and compared alpha and beta taxonomic, functional, and phylogenetic diversity using 80 plots of 0.5 m × 0.5 m across the whole elevational gradient of the island. We compiled trait databases and supplemented them with our own observations. Phylogenetic information was sourced from the Moss and Liverwort Tree of Life. To assess the impact of ecological and anthropogenic factors on the three facets, we applied linear mixed-effects models and generalized dissimilarity models to alpha- and beta-diversity matrices, respectively. All facets of diversity exhibited strong correlations within both mosses and liverworts, indicating a substantial congruence when alpha and beta are analyzed separately. The bryophyte groups categorized by the growth form demonstrated contrasting patterns, aligning with their distinctive ecological requirements. While a mid-elevation peak emerged as a common pattern across the three facets of alpha diversity, beta diversity often displayed the opposite trend. Although the relative influence of environmental factors varied depending on the diversity facet and bryophyte grouping considered, we found that alpha and beta diversity of bryophytes are more influenced by climatic factors and the predominant type of vegetation than by anthropogenic factors. In the current context of global change, these results should be interpreted with caution, but they point to the resilience of bryophytes to survive in relatively well-preserved natural microhabitats within anthropogenic landscapes. In this study on Madeira Island, we investigated patterns and drivers of alpha and beta taxonomic, functional, and phylogenetic diversity along elevational gradients. We found that alpha and beta diversity of bryophytes are more strongly influenced by climatic factors and the predominant type of vegetation than by anthropogenic factors.

6.
Ecol Evol ; 14(7): e11569, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39045499

ABSTRACT

Classifications of forest vegetation types and characterization of related species assemblages are important analytical tools for mapping and diversity monitoring of forest communities. The discrimination of forest communities is often based on ß-diversity, which can be quantified via numerous indices to derive compositional dissimilarity between samples. This study aims to evaluate the applicability of unsupervised classification for National Forest Inventory data from Georgia by comparing two cluster hierarchies. We calculated the mean basal area per hectare for each woody species across 1059 plot observations and quantified interspecies distances for all 87 species. Following an unspuervised cluster analysis, we compared the results derived from the species-neutral dissimilarity (Bray-Curtis) with those based on the Discriminating Avalanche dissimilarity, which incorporates interspecies phylogenetic variation. Incorporating genetic variation in the dissimilarity quantification resulted in a more nuanced discrimination of woody species assemblages and increased cluster coherence. Favorable statistics include the total number of clusters (23 vs. 20), mean distance within clusters (0.773 vs. 0.343), and within sum of squares (344.13 vs. 112.92). Clusters derived from dissimilarities that account for genetic variation showed a more robust alignment with biogeographical units, such as elevation and known habitats. We demonstrate that the applicability of unsupervised classification of species assemblages to large-scale forest inventory data strongly depends on the underlying quantification of dissimilarity. Our results indicate that by incorporating phylogenetic variation, a more precise classification aligned with biogeographic units is attained. This supports the concept that the genetic signal of species assemblages reflects biogeographical patterns and facilitates more precise analyses for mapping, monitoring, and management of forest diversity.

7.
Ecol Evol ; 14(7): e70010, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39011136

ABSTRACT

Unraveling biodiversity patterns and their driving processes is paramount in ecology and biogeography. However, there remains a limited understanding regarding the underlying mechanisms of community assembly, particularly in alpine streams where significant elevation gradients and habitat heterogeneity exist. We investigated the patterns and drivers of beta diversity, explicitly focusing on taxonomic and functional diversity, in the three parallel rivers region in China. We employed a beta diversity partitioning approach to examine the turnover and nestedness components of beta diversity and further deconstructed the diatom community into attached and unattached groups. Our results revealed distinct diversity patterns and drivers for taxonomic and functional beta diversity. Specifically, taxonomic beta diversity was mainly driven by the turnover component affected by spatial processes, whereas functional beta diversity was dominated by the nestedness component affected by environmental processes. Furthermore, our analysis of the division of the whole communities demonstrated that the varying responses of benthic diatoms with different attached abilities to environmental filtering, dispersal limitation, and directional flow were the essential reasons for shaping the biodiversity patterns of species turnover and functional nestedness in the alpine stream. Our findings suggested that partitioning beta diversity and dividing the entire community can more deeply infer underlying community assembly processes, thereby providing valuable insights into understanding biodiversity patterns, drivers, and conservation strategies.

8.
PeerJ ; 12: e17713, 2024.
Article in English | MEDLINE | ID: mdl-39006017

ABSTRACT

Background: Biodiversity, crucial for understanding ecosystems, encompasses species richness, composition, and distribution. Ecological and environmental factors, such as habitat type, resource availability, and climate conditions, play pivotal roles in shaping species diversity within and among communities, categorized into alpha (within habitat), beta (between habitats), and gamma (total regional) diversity. Hummingbird communities are influenced by habitat, elevation, and seasonality, making them an ideal system for studying these diversities, shedding light on mutualistic community dynamics and conservation strategies. Methods: Over a year-long period, monthly surveys were conducted to record hummingbird species and their visited flowering plants across four habitat types (oak forest, juniper forest, pine forest, and xerophytic shrubland) in Tlaxcala, Mexico. Three locations per habitat type were selected based on conservation status and distance from urban areas. True diversity measures were used to assess alpha, beta, and gamma diversity of hummingbirds and their floral resources. Environmental factors such as altitude and bioclimatic variables were explored for their influence on beta diversity. Results: For flowering plants, gamma diversity encompassed 34 species, with oak forests exhibiting the highest richness, while xerophytic shrublands had the highest alpha diversity. In contrast, for hummingbirds, 11 species comprised the gamma diversity, with xerophytic shrublands having the highest richness and alpha diversity. Our data reveal high heterogeneity in species abundance among habitats. Notably, certain floral resources like Loeselia mexicana and Bouvardia ternifolia emerge as key species in multiple habitats, while hummingbirds such as Basilinna leucotis, Selasphorus platycercus, and Calothorax lucifer exhibit varying levels of abundance and habitat preferences. Beta diversity analyses unveil habitat-specific patterns, with species turnover predominantly driving dissimilarity in composition. Moreover, our study explores the relationships between these diversity components and environmental factors such as altitude and climate variables. Climate variables, in particular, emerge as significant contributors to dissimilarity in floral resource and hummingbird communities, highlighting the influence of environmental conditions on species distribution. Conclusions: Our results shed light on the complex dynamics of hummingbird-flower mutualistic communities within diverse habitats and underscore the importance of understanding how habitat-driven shifts impact alpha, beta, and gamma diversity. Such insights are crucial for conservation strategies aimed at preserving the delicate ecological relationships that underpin biodiversity in these communities.


Subject(s)
Biodiversity , Birds , Ecosystem , Birds/physiology , Animals , Mexico , Flowers
9.
Integr Zool ; 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39003665

ABSTRACT

Mammal species globally exhibit distribution patterns conditioned by environmental conditions and human impact. The Mediterranean basin provides an ideal system to study these effects due to its diverse climate, and habitat conditions. In this work, we aim to assess the impact of landscape heterogeneity and anthropization degree on terrestrial mammal diversity in this region. Accordingly, we deployed over 300 camera traps across 28 sites for 3 months. Detected mammal species (weighing more than 1kg) were classified as domestic carnivores, domestic ungulates, wild carnivores, wild ungulates, lagomorphs, and large rodents. Alpha and beta diversity were calculated for each group and all wild mammals. Simple linear regressions and multimodal analysis were conducted between mammal diversities and climate, environmental conditions, landscape heterogeneity, and anthropization degree variables. Redundancy analyses were performed to identify variables and species determining the mammalian community composition. Indexes measuring landscape heterogeneity, anthropization degree, and its 30-year change did not correlate with mammal diversity. However, the difference in elevation within sites and domestic carnivore abundance showed a significant positive correlation with some of the diversity indexes. Nonetheless, rainfall and mean elevation factors generally showed the highest correlation with mammal diversity. Instead, a few influential species, including generalists and open-habitat specialists, highlighted the importance of conserving open areas, as well as the importance of the Pyrenees region as a key habitat for certain species. Therefore, climatic variables emerged as the key determinants of mammal diversity, highlighting climate change as a potential threat to mammal diversity in this area.

10.
Ecol Evol ; 14(6): e11583, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38919646

ABSTRACT

Phylogenetic diversity offers critical insights into the ecological dynamics shaping species composition and ecosystem function, thereby informing conservation strategies. Despite its recognized importance in ecosystem management, the assessment of phylogenetic diversity in endangered habitats, such as vernal pools, remains limited. Vernal pools, characterized by cyclical inundation and unique plant communities, present an ideal system for investigating the interplay between ecological factors and phylogenetic structure. This study aims to characterize the phylogenetic patterns of vernal pools and their associated vegetation zones, addressing questions about taxonomic and phylogenetic community discreteness, the role of flooding as a habitat filter, the influence of invasive species on phylogenetic structure, and the impact of seasonal variation on phylogenetic diversity. I find that zones-of-vegetation exhibit high between zone taxonomic and phylogenetic beta diversity whereas each zone forms a unique cluster, suggesting that zones are taxonomically and phylogenetically discrete units. Regions of high-inundation pressure exhibit phylogenetic clustering, indicating that flooding is a habitat filter in vernal pool habitats. Competition between native species conform to the 'competitive relatedness hypothesis' and, conversely, communities dominated by invasive Eurasian grass species are phylogenetically clustered. In addition, I find that phylogenetic diversity within zones fluctuates across the spring season in response to changing water levels, precipitation, and temperature. By analyzing three pools within the Merced Vernal Pool and Grassland Reserve, this research elucidates the phylogenetic dynamics of vernal pools. The findings underscore the need for tailored conservation strategies that account for the unique ecological characteristics of each vegetation zone within vernal pool habitats.

11.
J Math Biol ; 89(1): 10, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847854

ABSTRACT

We propose a stochastic framework to describe the evolution of the B-cell repertoire during germinal center (GC) reactions. Our model is formulated as a multitype age-dependent branching process with time-varying immigration. The immigration process captures the mechanism by which founder B cells initiate clones by gradually seeding GC over time, while the branching process describes the temporal evolution of the composition of these clones. The model assigns a type to each cell to represent attributes of interest. Examples of attributes include the binding affinity class of the B cells, their clonal family, or the nucleotide sequence of the heavy and light chains of their receptors. The process is generally non-Markovian. We present its properties, including as t → ∞ when the process is supercritical, the most relevant case to study expansion of GC B cells. We introduce temporal alpha and beta diversity indices for multitype branching processes. We focus on the dynamics of clonal dominance, highlighting its non-stationarity, and the accumulation of somatic hypermutations in the context of sequential immunization. We evaluate the impact of the ongoing seeding of GC by founder B cells on the dynamics of the B-cell repertoire, and quantify the effect of precursor frequency and antigen availability on the timing of GC entry. An application of the model illustrates how it may help with interpretation of BCR sequencing data.


Subject(s)
B-Lymphocytes , Germinal Center , Models, Immunological , Stochastic Processes , B-Lymphocytes/immunology , Humans , Germinal Center/immunology , Germinal Center/cytology , Animals , Somatic Hypermutation, Immunoglobulin/genetics , Mathematical Concepts , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/immunology
12.
Animals (Basel) ; 14(11)2024 May 25.
Article in English | MEDLINE | ID: mdl-38891620

ABSTRACT

Describing the spatial distribution of communities is crucial to understanding how environmental disturbance can affect biodiversity. Agricultural lands are susceptible to disturbances of anthropogenic origin and have been identified as ecosystems of conservation concern. Such lands are vulnerable to invasions by anthropogenically introduced non-native plants disturbing habitats. This research focused on the invasion-induced taxonomic filtering of birds with shared habitat requirements. The birds were surveyed along a gradient of invasion-altered areas (far from the invasion, uninvaded although susceptible to invaders, and invaded) to identify changes in bird assemblages (ground/herb dwellers, bush foragers, ecotone birds, and tree foragers) caused by this disturbance. Data were collected from 112 sites sampled in southeastern Poland. There were significantly fewer bird species from each assemblage on invaded sites than on uninvaded sites, although exposed to invasion, despite the decrease in the abundance of only ground/herb dwellers. Beta diversity analysis showed that sites with invasion contained bird communities significantly different from those at other sites. Invasion-induced changes resulted in a significant reduction in the diversity of ground/herb dwellers in comparison with uninvaded sites and created a distinctive bush bird assemblage. This was most likely due to the transformation of the grassland layer and the thickening of the shrub layer by plant invaders, which resemble shrubs in morphology. The results indicated the filtering effect of invasion on bird species composition at the level of two habitat assemblages despite the decreases in bird abundance and species diversity of the whole community.

13.
Mar Pollut Bull ; 205: 116615, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38917497

ABSTRACT

Coastal and estuarine systems play an important role in the maintenance of marine biodiversity, providing nursery, feeding, developmental and reproductive areas for terrestrial and aquatic species. The Fundão dam collapse is considered one of the biggest environmental disasters in Brazil, causing great social, economic and ecological damage in the affected areas. In our study, we used beta diversity and its components as a tool to monitor the spatio-temporal variation of fish larvae in four marine areas adjacent to the Doce River. The results show that the four areas undergo different spatio-temporal dynamics, with the composition of fish larvae in the Doce being simplified in the last years after the dam burst, compared to the other adjacent marine areas. In addition, turbidity is an important factor that has caused the homogenization of the larval composition of the Doce, demonstrating that mud resuspension events can cause a decrease in diversity and also suggesting the toxicity of the mud composition. The change from negative to positive additive and colonizing components in recent years suggests a slight recovery of diversity in the Doce compared to other marine areas. Finally, we have shown that some species may be tolerant to the impact, but with probable behavioral, energetic and physiological costs, which justifies the constant monitoring of these areas.


Subject(s)
Biodiversity , Environmental Monitoring , Fishes , Larva , Animals , Brazil , Larva/growth & development , Rivers
14.
Sci Total Environ ; 945: 173914, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38885715

ABSTRACT

As anthropogenic disturbance on deep-sea seamount ecosystems grows, there is an urgent need for a better understanding of the biodiversity and community structure in benthic ecosystems, which can vary at local and regional scales. A survey of the benthic megafauna on two adjacent deep-water seamounts in the northwestern Pacific Ocean was conducted, which are covered by cobalt-rich crusts, to assess the biodiversity patterns and dissimilarity of assemblage composition. Based on a multidisciplinary dataset generated from video recordings, multibeam bathymetry data, and near-bottom currents, environmental and spatial factors impacting the megabenthic communities were explored. Results showed that these two deep-water seamounts were dominated by hexactinellids, crinoids, and octocorals. The seamounts were able to support diverse and moderately abundant megafauna, with a total of 6436 individuals classified into 94 morphospecies. The survey covered a distance of 52.2 km across a depth range of 1421-3335 m, revealing multiple distinct megabenthic assemblages. The megabenthic communities of the two deep-water seamounts, with comparable environmental conditions, exhibited similarities in overall density, richness, and faunal lists, while dissimilarities in the relative abundance of taxa and assemblage composition. No gradual depth-related change in terms of abundance, richness, or species turnover was observed across the two seamounts, despite the statistical significance of depth in structuring the overall communities. The spatial distribution of megabenthic communities displayed a discontinuous and patchy pattern throughout the two deep-water seamounts. This patchiness was driven by the interactive effects of multiple environmental factors. Near-bottom currents and microhabitat features were the primary drivers influencing their dissimilarities in megabenthic community structure. This case study on the megabenthic community structure of two adjacent seamounts with cobalt-rich crusts can serve as an environmental baseline, providing a reference status for the conservation and management of seamount ecosystems, particularly valuable for areas being considered for deep-sea mining.


Subject(s)
Biodiversity , Cobalt , Environmental Monitoring , Pacific Ocean , Cobalt/analysis , Animals , Ecosystem , Aquatic Organisms , Invertebrates
15.
Sci Total Environ ; 945: 174045, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38908590

ABSTRACT

Understanding diversity patterns and underlying drivers is one of the central topics in the fields of biogeography and community ecology. Aquatic macroinvertebrates are widely distributed in various wetlands and play vital ecological roles. Previous studies mainly have focused on macroinvertebrate diversity in a single type of wetland. Our understanding of the differences in diversity patterns and underlying drivers between different wetland types remains limited. Here, we compared diversity patterns and community assembly of floodplain wetlands (FWs) and non-floodplain wetlands (NWs) in the Sanjiang Plain, Northeast China. We found that the taxonomic richness and abundance were higher in NWs than those in FWs. Nineteen taxa were identified as habitat specialists in the NWs, whereas only four taxa were designated as habitat specialists in the FWs. In addition, the FW and NW assemblages exhibited contrasting compositions. Spatial and environmental variables explained the largest variations in the macroinvertebrate assemblages of NWs and FWs, respectively. Normalised stochasticity ratios and Sloan neutral models confirmed that the macroinvertebrate community assembly of both wetland types was driven largely by stochastic processes. Stochastic processes were more prominent in shaping macroinvertebrate communities of FWs, whereas a stronger dispersal limitation was detected in NWs. Our results revealed contrasting diversity patterns and assembly mechanisms of macroinvertebrate communities in FWs and NWs. We underscore the importance of flood disturbance in shaping wetland ecosystems in the Sanjiang Plain and highlight that conservation and restoration actions cover different types of wetland habitats.


Subject(s)
Biodiversity , Invertebrates , Wetlands , Animals , Invertebrates/physiology , China , Aquatic Organisms/physiology , Environmental Monitoring , Ecosystem , Floods
16.
Sci Total Environ ; 944: 173885, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-38871310

ABSTRACT

Accelerating global urbanization is leading to drastic losses and restructuring of biodiversity. Although it is crucial to understand urban impacts on biodiversity to develop mitigation strategies, there is a dearth of knowledge on the functional structure of fish assemblages spanning the entire city-scale spectrum of urbanization intensity. Here, using environmental DNA sampled from 109 water sites in Beijing, we investigated the taxonomic and functional diversity patterns of fish assemblages across the city and uncovered community-, trait-, and species-level responses to various environmental stressors. By ranking sampling sites into three disturbance levels according to water physiochemical and landcover conditions, we found that both native and non-native fish taxonomic and functional α-diversity decreased significantly with elevating disturbance, as strong disturbance led to the disappearance of many species. However, the quantitative taxonomic and functional ß-diversity components of native and non-native fish showed distinct patterns; assemblage turnover dominated native fish ß-diversity and decreased with increasing disturbance, whereas species/trait richness differences dominated non-native fish ß-diversity and increased with disturbance intensity particularly in lotic waters. RLQ and fourth-corner analyses revealed that fish size, fecundity, diet, and reproductive behaviors were significantly correlated with water quality, with pollution-tolerant, larger-sized native and omnivorous non-native fishes being urban winners, which indicates strong trait-dependent environmental filtering. Potential ecological indicator species were identified based on the sensitivity of fish responses to pollution loads; these were mostly small native species, and many have bivalve-dependent reproduction. Our results demonstrate that, along with native fish assemblage simplification and homogenization, urban stressors exert profound impacts on community trait composition, highlighting the need to consider both biodiversity loss and functional reorganization in combating disturbance of aquatic ecosystems under global urbanization. Furthermore, correlations between cropland cover and water nutrient level suggested that the management of agricultural runoff might be critically important for safeguarding urban water quality.


Subject(s)
Biodiversity , Environmental Monitoring , Fishes , Urbanization , Animals , Fishes/physiology , Beijing , Water Quality
17.
Microbiol Spectr ; 12(6): e0408423, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38717193

ABSTRACT

Researchers have extensively studied the effect of oxygen on the growth and survival of bacteria. However, the impact of oxygen on bacterial community structure, particularly its ability to select for taxa within the context of a complex microbial community, is still unclear. In a 21-day microcosm experiment, we investigated the effect of aerobic exposure on the fecal community structure and succession pattern in broiler, calf, and piglet feces (n = 10 for each feces type). Bacterial diversity decreased and community structure changed rapidly in the broiler microbiome (P < 0.001), while the fecal community of calves and piglets, which have higher initial diversity, was stable after initial exposure but decreased in diversity after 3 days (P < 0.001). The response to aerobic exposure was host animal specific, but in all three animals, the change in community structure was driven by a decrease in anaerobic species, primarily belonging to Firmicutes and Bacteroidetes (except in broilers where Bacteroidetes increased), along with an increase in aerobic species belonging to Proteobacteria and Actinobacteria. Using random forest regression, we identified microbial features that predict aerobic exposure. In all three animals, host-beneficial Prevotella-related ASVs decreased after exposure, while ASVs belonging to Acinetobacter, Corynbacterium, and Tissierella were increased. The decrease of Prevotella was rapid in broilers but delayed in calves and piglets. Knowing when these pathobionts increase in abundance after aerobic exposure could inform farm sanitation practices and could be important in designing animal experiments that modulate the microbiome.IMPORTANCEThe fecal microbial community is contained within a dynamic ecosystem of interacting microbes that varies in biotic and abiotic components across different animal species. Although oxygen affects bacterial growth, its specific impact on the structure of complex communities, such as those found in feces, and how these effects vary between different animal species are poorly understood. In this study, we demonstrate that the effect of aerobic exposure on the fecal microbiota was host-animal-specific, primarily driven by a decrease in Firmicutes and Bacteroidetes, but accompanied by an increase in Actinobacteria, Proteobacteria, and other pathobionts. Interestingly, we observed that more complex communities from pig and cattle exhibited initial resilience, while a less diverse community from broilers displayed a rapid response to aerobic exposure. Our findings offer insights that can inform farm sanitation practices, as well as experimental design, sample collection, and processing protocols for microbiome studies across various animal species.


Subject(s)
Bacteria , Chickens , Feces , Gastrointestinal Microbiome , Animals , Feces/microbiology , Chickens/microbiology , Swine/microbiology , Cattle/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Aerobiosis , RNA, Ribosomal, 16S/genetics , Bacteroidetes/genetics , Bacteroidetes/classification , Bacteroidetes/isolation & purification , Microbiota
18.
Mar Environ Res ; 198: 106563, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38801786

ABSTRACT

The Amazon Reef System (ARS) is one of the most important shallow and mesophotic reef ecosystems in the South Atlantic Ocean. The ARS consists mainly of extensive beds of calcareous algae interspersed by assemblages of octocorals and sponges. The enormous freshwater discharge from the Amazon River forms a plume along the extensive Amazon continental shelf, for which the hydroid community is still largely unknown. The aim of this study is to document the diversity and distribution of hydroids from the ARS, as well as to infer the influence of the plume on species composition in the different zones. Samples were collected at ninety-six stations between 15 and 240 m deep on the Amazon shelf. A total of 37 species were recorded in the studied area. Hydroid assemblages are richer in zones under lower river plume influence, and species composition differs significantly between zones with and without plume influence (PERMANOVA, p = 0.0025). The dissolved oxygen and nitrate ranges were the environmental variables significantly correlated with the hydroid distribution. This study is the first surveying the hydroid species composition and richness in the ARS, highlighting the presence of a typical reef biota and that further faunal studies in underexplored areas of the Atlantic should reveal the distribution of many poorly known hydroids species.


Subject(s)
Biodiversity , Coral Reefs , Environmental Monitoring , Rivers , Brazil , Animals , Atlantic Ocean , Ecosystem
19.
J Environ Manage ; 361: 121248, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38820798

ABSTRACT

One of the main reasons for the decline in global freshwater biodiversity can be attributed to alterations in hydrological conditions resulting from dam construction. However, the majority of current research has focused on single or limited numbers of dams. Here, we carried out a seasonal fish survey, using environmental DNA (eDNA) method, on the Wujiang River mainstream (Tributaries of the Yangtze River, China) to investigate the impact of large-scale cascade hydropower development on changes in fish diversity patterns. eDNA survey revealed that native fish species have decreased in contrast to alien fish. There was also a shift in fish community structure, with declines of the dominant rheophilic fish species, an increase of the small-size fish species, and homogenization of species composition across reservoirs. Additionally, environmental factors, such as temperature, dissolved oxygen and reservoir age, had a significant effect on fish community diversity. This study provides basic information for the evaluation of the impact of cascade developments on fish diversity patterns.


Subject(s)
Biodiversity , Fishes , Rivers , Animals , Fishes/genetics , China , DNA, Environmental/analysis
20.
Environ Sci Pollut Res Int ; 31(25): 37010-37019, 2024 May.
Article in English | MEDLINE | ID: mdl-38760599

ABSTRACT

Studies identifying the relative importance of multiple ecological processes in macroinvertebrate communities in urban lakes at a basin scale are rare. In this study, 14 urban lakes in the Taihu Lake Basin were selected to explore the relative importance of environmental filtering and spatial processes in the assembly of macroinvertebrate communities. Our findings revealed significant spatiotemporal variations in macroinvertebrate communities, both between lakes and across seasons. We found that environmental filtering exerted a greater influence on taxonomic total beta diversity and its individual components (species turnover and nestedness) compared to spatial processes. Key environmental variables such as water depth, water temperature, total dissolved solids, chlorophyll a, and lake surface area were found to be crucial in shaping macroinvertebrate communities within these urban lakes. The observed high spatial heterogeneity in environmental conditions, along with intermediate basin areas, good connectivity and short distances between lakes, and the high dispersal ability of dominant taxa, likely contributed to the dominance of environmental filtering in macroinvertebrate community assembly. Our study contributes to a better understanding of the underlying mechanisms governing macroinvertebrate community assembly in urban lakes, thereby providing valuable insights for studies on community ecology and water environmental protection in urban lakes.


Subject(s)
Environmental Monitoring , Invertebrates , Lakes , China , Animals , Ecosystem , Biodiversity
SELECTION OF CITATIONS
SEARCH DETAIL
...