Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Chemistry ; : e202402645, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39210533

ABSTRACT

This study explores the functionality of α-Bi2Mo3O12 (BMO) as an electrocatalyst for water splitting and its suitability for supercapacitor applications. BMO was synthesized by the solvothermal method and characterized in pre-calcination [BMO (BC)], post-calcination [BMO (AC)], and base-etched forms [BMO (BE)]. Structural analysis confirmed the formation of α-Bi2Mo3O12 with well-defined crystallographic planes. Electrochemical analysis revealed that BMO (AC) exhibited the lowest overpotential for hydrogen evolution reactions (HER) and BMO (BC) exhibited the lowest overpotential for oxygen evolution reactions (OER), indicating its superior electrocatalytic activity. The Tafel slope and electrochemical impedance spectroscopy results confirmed the superior kinetics and charge transfer properties of BMO material. Furthermore, BMO samples demonstrated excellent stability during prolonged chronoamperometry (CA) testing for 12 h. For supercapacitor performances, the BMO (BE) exhibits a superior specific capacitance value of 398 F/g at 2.0 A/g. Thus, the BMO material delivers prominent electrocatalytic activity as well as supercapacitor performance. Overall, this study demonstrates the potentiality of α-Bi2Mo3O12 in different forms as a dual-functional material for efficient energy storage and conversion.

2.
J Hazard Mater ; 424(Pt D): 127734, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34865902

ABSTRACT

Metal oxide semiconductor (MOSs) are attractive materials for the development of H2S gas sensors. However, detecting H2S with short response and recovery times while also lowering the limit of detection to sub-ppb levels remains a significant challenge. We therefore developed flower-like α-Bi2Mo3O12 microspheres for H2S gas detection that provide fast response and recovery times (3 and 22 s, respectively, for 100 ppm H2S), while also reducing the limit of detection to 1 ppb. The sensor performs well in terms of sensitivity, reproducibility, long-term stability, including humidity stability. X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) calculations revealed that H2S dissociates readily on the reduced α-Bi2Mo3O12 surface and that Mo plays a catalytic role, accelerating the rate of H2S decomposition and enabling a fast response. Moreover, test strips containing α-Bi2Mo3O12 were also prepared, which enabled the naked eye detection of ppm-level H2S gas at room temperature; a light-yellow to orange to brown color change occurs when exposed to H2S, due to its conversion into stable sulfides. This work expands the application of α-Bi2Mo3O12 to H2S gas sensing, and provides a strategy for the use of MOSs as sensor materials for the detection of other gases.


Subject(s)
Gases , Models, Theoretical , Catalysis , Oxides , Reproducibility of Results
3.
Environ Technol ; 42(23): 3581-3594, 2021 Sep.
Article in English | MEDLINE | ID: mdl-32216539

ABSTRACT

In this work, the CdS quantum dots (QDs) decorated Bi2MoO6/Bi2Mo3O12 (BMO) heterojunction photocatalyst (C/BMO) has been successfully synthesized using a facile two-step hydrothermal method. The as-prepared photocatalysts were characterized by XRD, FTIR, XPS, FESEM, TEM, UV-vis DRS, PL and photoelectrochemical measurements to investigate the effects of CdS(QDs) and BMO heterojunction on the structure, morphology, optical and charge carrier transmission characteristics of the photocatalysts. Narrow band gap and superior catalytic activities were found in C/BMO as compared with pure BMO. Moreover, the C/BMO photocatalyst containing twice CdS content (2-C/BMO) exhibits even higher photocatalytic activity and stability. After exposure to visible light for 30 min, the degradation rate of Rhodamine B (RhB), Methylene blue (MB) and Ofloxacin (OFX) by 2-C/BMO reached 95%, 92% and 76%, respectively. Radicals scavenging experiments and electron spin-resonance spectroscopy (ESR) investigations indicated that the superoxide radical anions (∙O2- ), hole (h+) and hydroxyl radicals (•OH) are the dominating active species in the photodegradation processes. ∙O2- and h+ are the key factors in the degradation of RhB and OFX solutions, and •OH is the major determinant in removal of MB. The process and photocatalytic mechanism on 2-C/BMO was discussed. Well absorption of visible light, effective separation of photoelectron-hole pairs and the transportation of photogenerated carriers at the interfaces of ternary semiconductor heterojunction are suggested as the key factors to enhance the photocatalytic performance of the photocatalysts.


Subject(s)
Environmental Pollutants , Quantum Dots , Bismuth , Catalysis , Light , Molybdenum
4.
ACS Appl Mater Interfaces ; 11(12): 11755-11762, 2019 Mar 27.
Article in English | MEDLINE | ID: mdl-30848120

ABSTRACT

Most reported trimethylamine (TMA) sensors have to operate at high temperature, which will consume energy highly. To detect TMA at low temperature, it is necessary to modify the existing materials or develop new materials. In this paper, the sensor based on MoO3/Bi2Mo3O12 hollow microspheres can work at low operating temperature of 170 °C, which were prepared via a simple solvothermal route. The phase and morphology of the product were characterized by an X-ray diffraction meter, a scanning electron microscope and a transmission electron microscope. The surface chemistry of the MoO3/Bi2Mo3O12 sensor was studied with an X-ray photoelectron spectroscope to investigate the TMA sensing mechanism. The MoO3/Bi2Mo3O12 sensor ( S = 25.8) had a higher response to 50 ppm TMA than those of MoO3 hollow spheres ( S = 10.8) and Bi2Mo3O12 sensors ( S = 4.8) at 170 °C. In contrast to the pure MoO3 and Bi2Mo3O12 sensors, the MoO3/Bi2Mo3O12 sensor exhibited an obviously enhanced gas-sensing property for TMA, which might be due to the heterostructure formed between MoO3 and Bi2Mo3O12 and the hollow morphology. It is the first time for MoO3/Bi2Mo3O12 to apply in gas sensors, which might take an important step in the application of MoO3/Bi2Mo3O12 or Bi2Mo3O12 in the field of gas sensing.

5.
J Phys Chem Lett ; 5(17): 2994-9, 2014 Sep 04.
Article in English | MEDLINE | ID: mdl-26278249

ABSTRACT

The major limitation to investigating a variety of ternary oxides for use in solar energy conversion is the lack of synthesis methods to prepare them as high-quality electrodes. In this study, we demonstrate that Bi-based n-type ternary oxides, BiVO4, Bi2WO6, and Bi2Mo3O12, can be prepared as high-quality polycrystalline electrodes by mild chemical and thermal treatments of electrodeposited dendritic Bi films. The resulting oxide films have good coverage, adhesion, and electrical continuity, allowing for facile and accurate evaluation of these compounds for use in solar water oxidation. In particular, the BiVO4 electrode retained the porosity and nanocrystallinity of the original dendritic Bi film. This feature increased the electron-hole separation yield, making this compound more favorable for use as a photoanode in a photoelectrochemical cell.

SELECTION OF CITATIONS
SEARCH DETAIL