Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters











Publication year range
1.
Front Cell Neurosci ; 17: 1176634, 2023.
Article in English | MEDLINE | ID: mdl-37674868

ABSTRACT

Introduction: The paraventricular nucleus of the hypothalamus (PVN) contains premotor neurons involved in the control of sympathetic vasomotor activity. It is known that the stimulation of specific areas of the PVN can lead to distinct response patterns at different target territories. The underlying mechanisms, however, are still unclear. Recent evidence from sympathetic nerve recording suggests that relevant information is coded in the power distribution of the signal along the frequency range. In the present study, we addressed the hypothesis that the PVN is capable of organizing specific spectral patterns of sympathetic vasomotor activation to distinct territories in both normal and hypertensive animals. Methods: To test it, we investigated the territorially differential changes in the frequency parameters of the renal and splanchnic sympathetic nerve activity (rSNA and sSNA, respectively), before and after disinhibition of the PVN by bicuculline microinjection. Subjects were control and Goldblatt rats, a sympathetic overactivity-characterized model of neurogenic hypertension (2K1C). Additionally, considering the importance of angiotensin II type 1 receptors (AT1) in the sympathetic responses triggered by bicuculline in the PVN, we also investigated the impact of angiotensin AT1 receptors blockade in the spectral features of the rSNA and sSNA activity. Results: The results revealed that each nerve activity (renal and splanchnic) presents its own electrophysiological pattern of frequency-coded rhythm in each group (control, 2K1C, and 2K1C treated with AT1 antagonist losartan) in basal condition and after bicuculline microinjection, but with no significant differences regarding total power comparison among groups. Additionally, the losartan 2K1C treated group showed no decrease in the hypertensive response triggered by bicuculline when compared to the non-treated 2K1C group. However, their spectral patterns of sympathetic nerve activity were different from the other two groups (control and 2K1C), suggesting that the blockade of AT1 receptors does not totally recover the basal levels of neither the autonomic responses nor the electrophysiological patterns in Goldblatt rats, but act on their spectral frequency distribution. Discussion: The results suggest that the differential responses evoked by the PVN were preferentially coded in frequency, but not in the global power of the vasomotor sympathetic responses, indicating that the PVN is able to independently control the frequency and the power of sympathetic discharges to different territories.

2.
Int J Mol Sci ; 24(1)2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36613793

ABSTRACT

We examined the effects of an acute increase in blood pressure (BP) and renal sympathetic nerve activity (rSNA) induced by bicuculline (Bic) injection in the paraventricular nucleus of hypothalamus (PVN) or the effects of a selective increase in rSNA induced by renal nerve stimulation (RNS) on the renal excretion of sodium and water and its effect on sodium-hydrogen exchanger 3 (NHE3) activity. Uninephrectomized anesthetized male Wistar rats were divided into three groups: (1) Sham; (2) Bic PVN: (3) RNS + Bic injection into the PVN. BP and rSNA were recorded, and urine was collected prior and after the interventions in all groups. RNS decreased sodium (58%) and water excretion (53%) independently of BP changes (p < 0.05). However, after Bic injection in the PVN during RNS stimulation, the BP and rSNA increased by 30% and 60% (p < 0.05), respectively, diuresis (5-fold) and natriuresis (2.3-fold) were increased (p < 0.05), and NHE3 activity was significantly reduced, independently of glomerular filtration rate changes. Thus, an acute increase in the BP overcomes RNS, leading to diuresis, natriuresis, and NHE3 activity inhibition.


Subject(s)
Kidney , Sodium , Rats , Animals , Male , Sodium/metabolism , Sodium-Hydrogen Exchanger 3 , Blood Pressure , Rats, Wistar , Sympathetic Nervous System/metabolism , Bicuculline/pharmacology
3.
Behav Brain Res ; 386: 112590, 2020 05 27.
Article in English | MEDLINE | ID: mdl-32184157

ABSTRACT

RATIONALE: The absence of ovarian hormones that is characteristic of natural and surgical postmenopause in women is frequently related to such disorders as depression and anxiety. Chronic treatment with the flavonoid chrysin was previously shown to exert antidepressant-like effects in rodents subjected to validate behavioral models. Chrysin has also been shown to have anxiolytic-like properties, but its antidepressant-like effects and mechanism of action in the absence of ovarian hormones remain unknown. OBJECTIVES: To compare the effects of the flavonoid chrysin with the effects of the neurosteroids progesterone and allopregnanolone on depression-like behavior in ovariectomized rats and evaluate the participation of γ-aminobutyric acid-A (GABAA) receptors in these actions. METHODS: Ovariectomized female Wistar rats were subjected to the locomotor activity test and forced swim test. The animals were assigned to eight treatment groups: vehicle, chrysin (1 mg/kg), progesterone (1 mg/kg), allopregnanolone (1 mg/kg), bicuculline (1 mg/kg), and pretreatment with bicuculline followed by chrysin, progesterone or allopregnanolone, respectively. After the treatments, the rats underwent the behavioral tests. RESULTS: Chrysin, progesterone, and allopregnanolone increased the latency to the first immobility and decreased the total immobility time in the forced swim test. The number of crossings and the time spent rearing and grooming decreased from the pretest to test sessions in the locomotor activity test. Chrysin, progesterone, and allopregnanolone only prevented the decreases in rearing and grooming. Bicuculline blocked the effects of chrysin, progesterone, and allopregnanolone in both behavioral tests. CONCLUSIONS: These results show that the GABA-binding site at GABAA receptors participates in the acute antidepressant-like effects of chrysin, similar to neurosteroids, in ovariectomized rats.


Subject(s)
Depression/physiopathology , Flavonoids/pharmacology , GABAergic Neurons/metabolism , Animals , Antidepressive Agents/pharmacology , Bicuculline/pharmacology , Depression/drug therapy , Female , Flavonoids/metabolism , GABAergic Neurons/drug effects , GABAergic Neurons/physiology , Locomotion/drug effects , Neurosteroids , Ovariectomy , Pregnanolone/pharmacology , Progesterone/pharmacology , Rats , Rats, Wistar , Receptors, GABA-A/drug effects
4.
Pharmacol Rep ; 72(1): 67-79, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32016845

ABSTRACT

BACKGROUND: Knowledge of the central areas involved in the control of sympathetic vasomotor activity has advanced in the last few decades. γ-Aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the mammal nervous system, and a microinjection of bicuculline, an antagonist of GABA type A (GABA-A) receptors, into the paraventricular nucleus of the hypothalamus (PVN) alters the pattern of sympathetic activity to the renal, splanchnic and lumbar territories. However, studies are needed to clarify the role of GABAergic inputs in other central areas involved in the sympathetic vasomotor activity. The present work studied the cardiovascular effects evoked by GABAergic antagonism in the PVN, RVLM and spinal cord. METHODS AND RESULTS: Bicuculline microinjections (400 pMol in 100 nL) into the PVN and rostral ventrolateral medulla (RVLM) as well as intrathecal administration (1.6 nmol in 2 µL) evoked an increase in blood pressure, heart rate, and renal and splanchnic sympathetic nerve activity (rSNA and sSNA, respectively), inducing a higher coherence between rSNA and sSNA patterns. However, some of these responses were more intense when the GABA-A antagonism was performed in the RVLM than when the GABA-A antagonism was performed in other regions. CONCLUSIONS: Administration of bicuculline into the RVLM, PVN and SC induced a similar pattern of renal and splanchnic sympathetic vasomotor burst discharge, characterized by a low-frequency (0.5 Hz) and high-amplitude pattern, despite different blood pressure responses. Thus, the differential control of sympathetic drive to different targets by each region is dependent, in part, on tonic GABAergic inputs.


Subject(s)
Bicuculline/pharmacology , Brain/drug effects , GABA-A Receptor Antagonists/pharmacology , Spinal Cord/drug effects , Animals , Bicuculline/administration & dosage , Brain/metabolism , GABA-A Receptor Antagonists/administration & dosage , Male , Microinjections , Rats , Rats, Wistar , Spinal Cord/metabolism , Sympathetic Nervous System/drug effects , Vasomotor System/drug effects , gamma-Aminobutyric Acid/metabolism
5.
Physiol Rep ; 7(13): e14107, 2019 08.
Article in English | MEDLINE | ID: mdl-31264387

ABSTRACT

GABAergic inhibitory input within the paraventricular hypothalamic nucleus (PVN) plays a key role in restraining sympathetic outflow. Although experimental evidence has shown depressed GABAA receptor function plus sympathoexcitation in hypertension and augmented GABA levels with reduced sympathetic activity after exercise training (T), the mechanisms underlying T-induced effects remain unclear. Here we investigated in T and sedentary (S) SHR and WKY: (1) time-course changes of hemodynamic parameters and PVN glutamic acid decarboxylase (GAD) isoforms' expression; (2) arterial pressure (AP) and heart rate (HR) responses, sympathetic/parasympathetic modulation of heart and vessels and baroreflex sensitivity to GABAA receptor blockade within the PVN. SHR-S versus WKY-S exhibited higher AP and HR, increased sympathetic reduced parasympathetic modulation, smaller baroreflex sensitivity, and reduced PVN GAD65 immunoreactivity. SHR-T and WKY-T showed prompt maintained increase (2-8 weeks) in GAD65 expression (responsible for GABA vesicular pool synthesis), which occurred simultaneously with HR reduction in SHR-T and preceded MAP fall in SHR-T and resting bradycardia in WKY-T. There was no change in GAD67 expression (mainly involved with GABA metabolic pool). Resting HR in both groups and basal MAP in SHR were negatively correlated with PVN GAD65 expression. Normalized baroreflex sensitivity and autonomic control observed only in SHR-T were due to recovery of GABAA receptor function into the PVN since bicuculline administration abolished these effects. Data indicated that training augments in both groups the expression/activity of GABAergic neurotransmission within presympathetic PVN neurons and restores GABAA receptors' function specifically in the SHR, therefore strengthening GABAergic modulation of sympathetic outflow in hypertension.


Subject(s)
Glutamate Decarboxylase/genetics , Hypertension/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Physical Exertion , Receptors, GABA-A/metabolism , Animals , Baroreflex , Blood Pressure , Glutamate Decarboxylase/metabolism , Hypertension/physiopathology , Isoenzymes/genetics , Isoenzymes/metabolism , Male , Rats , Rats, Inbred SHR , Rats, Wistar , Sympathetic Nervous System/physiopathology
6.
Brain Res ; 1718: 176-185, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31071305

ABSTRACT

Non-competitive N-methyl-d-aspartate receptor (NMDA-R) antagonists have been suggested to evoke psychotomimetic-like behaviors by selectively targeting GABAergic elements in cortical and thalamic circuits. In previous studies, we had reported the involvement of the reticular and anterior thalamic nuclei (ATN) in the MK-801-evoked hyperactivity and other motor alterations. Consistent with the possibility that these responses were mediated by thalamic disinhibition, we examined the participation of cortical and hippocampal areas innervated by ATN in the responses elicited by the systemic administration of MK-801 (0.2 mg/kg) and compared them to the effects produced by the microinjection of a subconvulsive dose of bicuculline (GABAA receptor antagonist) in the ATN. We used the expression of Fos related antigen 2 (Fra-2) as a neuronal activity marker in the ATN and its projection areas such as hippocampus (HPC), retrosplenial cortex (RS), entorhinal cortex (EC) and medial prefrontal cortex (mPFC). Dorsal (caudate-putamen, CPu) and ventral striatum (nucleus accumbens, core and shell, NAc,co and NAc,sh) were also studied. Behavioral and brain activation results suggest a partial overlap after the effect of MK-801 administration and ATN disinhibition. MK-801 and ATN disinhibition increases locomotor activity and disorganized movements, while ATN disinhibition also reduces rearing behavior. A significant increase in Fra-2 immunoreactivity (Fra-2-IR) in the ATN, mPFC (prelimbic area, PrL) and NAc,sh was observed after MK-801, while a different pattern of Fra-2-IR was detected following ATN disinhibition (e.g., increase in DG and NAc,sh, and decrease in PrL cortex). Overall, our data may contribute to the understanding of dysfunctional neural circuits involved in schizophrenia.


Subject(s)
Anterior Thalamic Nuclei/drug effects , Dizocilpine Maleate/pharmacology , Receptors, N-Methyl-D-Aspartate/metabolism , Animals , Anterior Thalamic Nuclei/metabolism , Disease Models, Animal , Excitatory Amino Acid Antagonists/pharmacology , GABA-A Receptor Antagonists , Gyrus Cinguli/metabolism , Hippocampus/metabolism , Male , Neurons/metabolism , Nucleus Accumbens/metabolism , Prefrontal Cortex/physiology , Proto-Oncogene Proteins c-fos/metabolism , Rats , Rats, Wistar , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Schizophrenia/metabolism
7.
Front Physiol ; 10: 330, 2019.
Article in English | MEDLINE | ID: mdl-30984021

ABSTRACT

The human insula has been consistently reported to be overactivated in all anxiety disorders, activation which has been suggested to be proportional to the level of anxiety and shown to decrease with effective anxiolytic treatment. Nonetheless, studies evaluating the direct role of the insula in anxiety are lacking. Here, we set out to investigate the role of the rodent insula in anxiety by either inactivating different insular regions via microinjections of glutamatergic AMPA receptor antagonist CNQX or activating them by microinjection of GABA receptor antagonist bicuculline in rats, before measuring anxiety-like behavior using the elevated plus maze. Inactivation of caudal and medial insular regions induced anxiogenic effects, while their activation induced anxiolytic effects. In contrast, inactivation of more rostral areas induced anxiolytic effects and their activation, anxiogenic effects. These results suggest that the insula in the rat has a role in the modulation of anxiety-like behavior in rats, showing regional differences; rostral regions have an anxiogenic role, while medial and caudal regions have an anxiolytic role, with a transition area around bregma +0.5. The present study suggests that the insula has a direct role in anxiety.

8.
Acta Physiol (Oxf) ; 226(3): e13264, 2019 07.
Article in English | MEDLINE | ID: mdl-30716212

ABSTRACT

AIM: Parkinson's disease (PD) is a progressive neurodegenerative disease that manifests itself clinically after reaching an advanced pathological stage. Besides motor signals, PD patients present cardiovascular and autonomic alterations. Recent data showed that rats induced to Parkinsonism by 6-hydroxydopamine (6-OHDA) administration in the substantia nigra pars compacta (SNpc) showed lower mean arterial pressure (MAP) and heart rate (HR), as reduction in sympathetic modulation. The paraventricular nucleus of the hypothalamus (PVN) is an important site for autonomic and cardiovascular control, and amino acid neurotransmission has a central role. We evaluate PVN amino acid neurotransmission in cardiovascular and autonomic effects of 6-OHDA Parkinsonism. METHODS: Male Wistar rats were submitted to guide cannulas implantation into the PVN. 6-OHDA or sterile saline (sham) was administered bilaterally in the SNpc. After 7 days, cardiovascular recordings in conscious state was performed. RESULTS: Bicuculline promoted an increase in MAP and HR in sham group and exacerbated those effects in 6-OHDA group. NBQX (non-NMDA inhibitor) did not promote changes in sham as in 6-OHDA group. On the other hand, PVN microinjection of LY235959 (NMDA inhibitor) in sham group did not induced cardiovascular alterations, but decreased MAP and HR in 6-OHDA group. Compared to Sham group, 6-OHDA lesion increased the number of neuronal nitric oxide synthase (nNOS)-immunoreactive neurons in the PVN and, nNOS inhibition promoted higher increases in MAP and HR. CONCLUSION: Our data suggest that the decreased baseline blood pressure and heart rate in animals with Parkinsonism may be due to an increased GABAergic tone via nNOS in the PVN.


Subject(s)
Glutamic Acid/metabolism , Nitric Oxide Synthase Type I/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , gamma-Aminobutyric Acid/metabolism , Animals , Blood Pressure/physiology , Cardiovascular System/metabolism , Heart Rate/physiology , Male , Neurodegenerative Diseases/metabolism , Parkinsonian Disorders/chemically induced , Parkinsonian Disorders/metabolism , Rats, Wistar
9.
Neurochem Res ; 44(2): 301-311, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30387069

ABSTRACT

Astrocytes are the major glial cells in brain tissue and are involved, among many functions, ionic and metabolic homeostasis maintenance of synapses. These cells express receptors and transporters for neurotransmitters, including GABA. GABA signaling is reportedly able to affect astroglial response to injury, as evaluated by specific astrocyte markers such as glial fibrillary acid protein and the calcium-binding protein, S100B. Herein, we investigated the modulatory effects of the GABAA receptor on astrocyte S100B secretion in acute hippocampal slices and astrocyte cultures, using the agonist, muscimol, and the antagonists pentylenetetrazol (PTZ) and bicuculline. These effects were analyzed in the presence of tetrodotoxin (TTX), fluorocitrate (FLC), cobalt and barium. PTZ positively modify S100B secretion in hippocampal slices and astrocyte cultures; in contrast, bicuculline inhibited S100B secretion only in hippocampal slices. Muscimol, per se, did not change S100B secretion, but prevented the effects of PTZ and bicuculline. Moreover, PTZ-induced S100B secretion was prevented by TTX, FLC, cobalt and barium indicating a complex GABAA communication between astrocytes and neurons. The effects of two putative agonists of GABAA, ß-hydroxybutyrate and methylglyoxal, on S100B secretion were also evaluated. In view of the neurotrophic role of extracellular S100B under conditions of injury, our data reinforce the idea that GABAA receptors act directly on astrocytes, and indirectly on neurons, to modulate astroglial response.


Subject(s)
Astrocytes/metabolism , Hippocampus/drug effects , S100 Calcium Binding Protein beta Subunit/metabolism , Animals , Astrocytes/drug effects , Bicuculline/pharmacology , Cells, Cultured , Glial Fibrillary Acidic Protein/metabolism , Hippocampus/metabolism , Male , Muscimol/pharmacology , Nerve Growth Factors/metabolism , Neurons/drug effects , Neurons/metabolism , Rats, Wistar , Receptors, GABA-A/drug effects , Receptors, GABA-A/metabolism
10.
Neuropharmacology ; 128: 76-85, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28963038

ABSTRACT

The mechanisms commanding the activity of dopaminergic neurons of the ventral tegmental area (VTA) and the location of these neurons are relevant for the coding and expression of motivated behavior associated to reward-related signals. Anatomical evidence shows that several brain regions modulate VTA dopaminergic neurons activity via multiple mechanisms. However, there is still scarce knowledge of how the lateral septum (LS) modulates VTA activity. We performed in-vivo dual-probe microdialysis to measure VTA dopamine, glutamate and GABA extracellular levels after LS stimulation in the presence or absence of GABAergic antagonists. Anterograde tracing and immunohistochemical analysis was used to reveal the anatomical relationship between LS and VTA. LS stimulation significantly increased dopamine and GABA, but not glutamate, VTA extracellular levels. Intra VTA infusion of bicuculline, GABA-A receptor antagonist, inhibited the increase of dopamine but not of GABA VTA levels induced by LS stimulation. Intra VTA infusion of indiplon, selective positive allosteric modulator of GABA-A receptors containing alpha1 subunit, significantly increases VTA dopamine extracellular levels induced by LS. Combined c-Fos and tyrosine hydroxylase immunohistochemistry, revealed that LS stimulation increases the activity of dopaminergic neurons in the antero-ventral region of the VTA. Consistently, anterograde tracing with biotinylated dextran amine revealed the existence of fibers arising from the LS to the antero-ventral region of the VTA. Taken together, our results suggest that LS modulates dopaminergic activity in the antero-ventral region of VTA by inhibiting GABAergic interneurons bearing GABA-A receptors containing alpha1 subunit.


Subject(s)
Dopaminergic Neurons/physiology , Neural Pathways/physiology , Receptors, GABA-A/metabolism , Septal Nuclei/physiology , Ventral Tegmental Area/cytology , Analysis of Variance , Animals , Benzylamines/pharmacology , Biotin/analogs & derivatives , Biotin/metabolism , Dextrans/metabolism , Dopamine/metabolism , Dose-Response Relationship, Drug , GABA Agents/pharmacology , Glutamic Acid/metabolism , Male , Phosphinic Acids/pharmacology , Proto-Oncogene Proteins c-fos/metabolism , Rats , Rats, Sprague-Dawley , Tyrosine 3-Monooxygenase/metabolism
11.
Neurobiol Learn Mem ; 144: 166-173, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28669783

ABSTRACT

It is well known that stress can affect mnemonic processes. In particular, stress before contextual fear conditioning induces a memory which exhibits resistance to being interfered with by Midazolam (MDZ) when applied after memory retrieval. Moreover, stress exposure strongly affects GABAergic transmission within the Basolateral Amygdala Complex (BLA), a brain structure critically involved in fear memory processing. The present study evaluated the involvement of GABAergic signaling within the BLA on the induction of resistance to memory reconsolidation interference. Results showed that MDZ administered intra-BLA before stress prevented the induction of resistance to the interfering effect of systemic administration of both MDZ and Propranolol on fear memory reconsolidation, when both applied after memory retrieval. The blockade of amygdala GABA-A receptors by the antagonist Bicuculline (BIC) before memory encoding induced resistance to interference by post-recall MDZ administration, similarly to that observed with stress exposure. Additionally, the systemic administration of d-cycloserine, a positive allosteric modulator of NMDA receptor, reverted the BIC-induced resistance to the MDZ interfering effect, in the same manner as that reported with stress-induced resistance. In summary, these results suggest that the GABAergic signaling in the BLA at the moment of memory encoding is determinant for the induction of fear memory resistance to the onset of the labilization/reconsolidation process.


Subject(s)
Basolateral Nuclear Complex/physiology , Fear , Memory Consolidation/physiology , Mental Recall/physiology , Stress, Psychological , gamma-Aminobutyric Acid/physiology , Adrenergic beta-Antagonists/administration & dosage , Animals , Avoidance Learning/drug effects , Basolateral Nuclear Complex/drug effects , GABA Modulators/administration & dosage , Male , Memory Consolidation/drug effects , Mental Recall/drug effects , Midazolam/administration & dosage , Propranolol/administration & dosage , Rats, Wistar
12.
Physiol Rep ; 5(6)2017 Mar.
Article in English | MEDLINE | ID: mdl-28351968

ABSTRACT

The aim of this study was to evaluate the effects of two gamma-amino butyric acid (GABA)a receptor antagonists on motor behavioral tasks in a pharmacological model of Parkinson disease (PD) in rodents. Ninety-six Swiss mice received intraperitoneal injection of Haloperidol (1 mg/kg) to block dopaminergic receptors. GABAa receptors antagonists Bicuculline (1 and 5 mg/kg) and Flumazenil (3 and 6 mg/kg) were used for the assessment of the interaction among these neurotransmitters, in this PD model. The motor behavior of the animals was evaluated in the catalepsy test (30, 60, and 90 min after drugs application), through open field test (after 60 min) and trough functional gait assessment (after 60 min). Both Bicuculline and Flumazenil were able to partially reverse catalepsy induced by Haloperidol. In the open field test, Haloperidol reduced the number of horizontal and vertical exploration of the animals, which was not reversed trough application of GABAa antagonists. Furthermore, the functional gait assessment was not sensitive enough to detect motor changes in this animal model of PD. There is an interaction between dopamine and GABA in the basal ganglia and the blocking GABAa receptors may have therapeutic potential in the treatment of PD.


Subject(s)
GABA-A Receptor Antagonists/pharmacology , Gait/drug effects , Motor Activity/drug effects , Parkinsonian Disorders/physiopathology , Animals , Behavior, Animal/drug effects , Bicuculline/pharmacology , Disease Models, Animal , Flumazenil/pharmacology , Mice
13.
Behav Brain Res ; 326: 103-111, 2017 05 30.
Article in English | MEDLINE | ID: mdl-28274653

ABSTRACT

The lateral wings subnucleus of the dorsal raphe nucleus (lwDR) has been implicated in the modulation of panic-like behaviors, such as escape. Infusion of non- excitotoxic doses of the excitatory amino acid kainic acid into this subnucleus promptly evokes a vigorous escape response. In addition, rats exposed to panic-inducing situations show an increase in Fos protein expression in neurons within the lwDR. In the present study, we first investigated whether key structures associated with the mediation of escape behavior are recruited after chemical stimulation of the lwDR with kainic acid. We next investigated whether the infusion of the GABAA receptor antagonist bicuculline into the lwDR also evoked escape responses measured both in a circular arena and in the rat elevated T-maze. The effects of bicuculline in the circular arena were compared to those caused by the infusion of this antagonist into the ventrolateral periaqueductal gray (vlPAG), an area in close vicinity to the lwDR. The results showed that kainic acid infusion into the lwDR increased Fos protein immunostaining in brain structures deeply involved in panic-like defensive behaviors, such as the periaqueductal gray and hypothalamus, but not the amygdala. As observed with kainic acid, bicuculline evoked a pronounced escape response in the circular arena when microinjected in the lwDR, but not in the vlPAG. The escape-promoting effect of bicuculline in the lwDR was also evidenced in the elevated T-maze. These findings strength the view that dysfunction in mechanisms controlling escape in the lwDR is critically implicated in the pathophysiology of panic disorder.


Subject(s)
Behavior, Animal/drug effects , Bicuculline/pharmacology , Dorsal Raphe Nucleus/drug effects , Escape Reaction/drug effects , Excitatory Amino Acid Agonists/pharmacology , GABA-A Receptor Antagonists/pharmacology , Kainic Acid/pharmacology , Panic/drug effects , Proto-Oncogene Proteins c-fos/drug effects , Animals , Bicuculline/administration & dosage , Excitatory Amino Acid Agonists/administration & dosage , GABA-A Receptor Antagonists/administration & dosage , Immunohistochemistry , Kainic Acid/administration & dosage , Male , Periaqueductal Gray/drug effects , Rats , Rats, Wistar , Stimulation, Chemical
14.
Toxins (Basel) ; 9(1)2016 12 23.
Article in English | MEDLINE | ID: mdl-28025529

ABSTRACT

Natural products, sources of new pharmacological substances, have large chemical diversity and architectural complexity. In this context, some toxins obtained from invertebrate venoms have anticonvulsant effects. Epilepsy is a neurological disorder that affects about 65 million people worldwide, and approximately 30% of cases are resistant to pharmacological treatment. Previous studies from our group show that the denatured venom of the ant Dinoponera quadriceps (Kempt) protects mice against bicuculline (BIC)-induced seizures and death. The aim of this study was to investigate the anticonvulsant activity of compounds isolated from D. quadriceps venom against seizures induced by BIC in mice. Crude venom was fractionated by high-performance liquid chromatography (HPLC) resulting in six fractions referred to as DqTx1-DqTx6. A liquid chromatography-mass spectrometry (LC/MS) analysis revealed a major 431 Da compound in fractions DqTx1 and DqTx2. Fractions DqTx3 and DqTx4 showed a compound of 2451 Da and DqTx5 revealed a 2436 Da compound. Furthermore, the DqTx6 fraction exhibited a major component with a molecular weight of 13,196 Da. Each fraction (1 mg/mL) was microinjected into the lateral ventricle of mice, and the animals were observed in an open field. We did not observe behavioral alterations when the fractions were given alone. Conversely, when the fractions were microinjected 20 min prior to the administration of BIC (21.6 nM), DqTx1, DqTx4, and DqTx6 fractions increased the latency for onset of tonic-clonic seizures. Moreover, all fractions, except DqTx5, increased latency to death. The more relevant result was obtained with the DqTx6 fraction, which protected 62.5% of the animals against tonic-clonic seizures. Furthermore, this fraction protected 100% of the animals from seizure episodes followed by death. Taken together, these findings indicate that compounds from ant venom might be a potential source of new anticonvulsants molecules.


Subject(s)
Ant Venoms/pharmacology , Anticonvulsants/pharmacology , Ants , Seizures/drug therapy , Animals , Ant Venoms/chemistry , Anticonvulsants/chemistry , Bicuculline , Disease Models, Animal , Male , Mice , Seizures/chemically induced
15.
Rev. bras. farmacogn ; 26(5): 579-585, Sept.-Oct. 2016. graf
Article in English | LILACS | ID: lil-796138

ABSTRACT

ABSTRACT In our previous studies, quantified saponins-rich fraction from adventitious root extract of Ficus religiosa L., Moraceae, showed anticonvulsant effect in acute, as well as chronic mice models of epilepsy. The present study was designed to reveal putative anticonvulsant mechanism of quantified saponins-rich fraction using target specific animal models. The anticonvulsant effect of quantified saponins-rich fraction was initially studied in maximal electroshock and pentylenetetrazol test at 1, 2 and 4 mg/kg; i.p. doses. Based on the results of initial anticonvulsant testing, different groups of mice were injected with vehicle or quantified saponins-rich fraction (4 mg/kg; i.p.), 30 min prior to an injection of N-methyl-D-aspartic acid (100 mg/kg; s.c.), bicuculline (5 mg/kg; i.p.), strychnine hydrochloride (2 mg/kg; i.p.), BAY k-8644 (37.5 µg; i.c.v.), veratridine (500 µg/kg; i.p.) and the convulsive episodes were studied. Treatment with the extract (1, 2 and 4 mg/kg) showed significant protection in maximal electroshock and pentylenetetrazol-induced convulsion tests, in a dose-dependent manner. Moreover, quantified saponins-rich fraction at 4 mg/kg dose showed significant increase in latency to clonic convulsions, decrease in seizure severity and increase in average wave amplitude in bicuculline, BAY k-8644 and veratridine tests, respectively, as compared to vehicle control. However, SRF treatment failed to abolish N-methyl-D-aspartic acid and strychnine-induced convulsions, indicated by insignificant change in the appearance of turning behavior and onset of tonic extension, respectively, as compared to vehicle control. From the results of present study, it is concluded that quantified saponins-rich fraction suppress maximal electroshock, pentylenetetrazol, bicuculline, BAY k-8644 and veratridine-induced convulsions, indicating its GABAergic, Na+ and Ca2+ channel modulatory effects. Further it can be correlated that quantified saponins-rich fraction causes deactivation of voltage-gated Na+ and Ca2+ channels, without effecting ligand-gated Na+ and Ca2+ channels. More studies are required at molecular levels using in vitro techniques to understand the exact molecular interactions of quantified saponins-rich fraction with these pathways.

16.
J Neuroendocrinol ; 28(11)2016 11.
Article in English | MEDLINE | ID: mdl-27631525

ABSTRACT

We studied the participation of GABA neurotransmission in the medial preoptic area (mPOA) with respect to the onset of the pup retrieval response and nest building. Pregnant female rats were implanted with bilateral cannulae in the mPOA on day 12 of pregnancy and, on day 16, the females were hysterectomised and ovariectomised and given 200 µg/kg of oestradiol benzoate. Two days later, the females received one of the following intracerebral drug treatments: GABAB agonist baclofen (200 ng); GABAB antagonist phaclofen (1 µg); GABAA antagonist bicuculline (60 ng); or physiological saline. Five minutes after intracerebral infusion, three foster pups were introduced into the females' home cage. The subjects were observed for pup grouping (retrieval) during 15 min, after which the pups were left with the female. During the next 12 h, an observation was made every 1 h to determine whether the pups had been grouped (retrieved) or not. The GABAB agonist baclofen reduced the proportion of females retrieving pups from 4 to 8 h following pup introduction. By contrast, both the GABAA antagonist bicuculline and the GABAB antagonist phaclofen enhanced the proportion of females retrieving pups during the first 3 h of observation. The latency to pup retrieval in subjects treated with the GABAB agonist baclofen was significantly longer than that in subjects given any of the antagonists. All females built a nest but baclofen reduced nest quality. These data show that activation of GABAB receptors in the mPOA has an inhibitory effect on basic maternal behaviours, whereas blockade of either the GABAA or GABAB receptor facilitates pup retrieval. It is possible that reduced GABAergic tone in the mPOA is a key element in the initiation of maternal behaviours in postparturient rats.


Subject(s)
Estradiol/physiology , Maternal Behavior , Preoptic Area/physiology , Receptors, GABA-A/physiology , Receptors, GABA-B/physiology , Animals , Baclofen/administration & dosage , Baclofen/analogs & derivatives , Bicuculline/administration & dosage , Female , GABA-A Receptor Antagonists/administration & dosage , GABA-B Receptor Agonists/administration & dosage , GABA-B Receptor Antagonists/administration & dosage , Hysterectomy , Maternal Behavior/drug effects , Nesting Behavior/drug effects , Ovariectomy , Pregnancy , Preoptic Area/drug effects , Rats, Wistar
17.
Brain Res ; 1597: 168-79, 2015 Feb 09.
Article in English | MEDLINE | ID: mdl-25485771

ABSTRACT

It has been shown that electrical stimulation of the mesencephalic tectum (MT) provokes defensive responses in both humans and rodents. During an emotional aversive state, some convergent studies have also demonstrated the existence of a complex interaction between endogenous opioid peptide- and γ-aminobutyric acid (GABA)-containing connections during fear-induced responses. It has been proposed that opioid neurons exert an influence on GABAergic interneurons, which, in turn, exert inhibitory tonic control on the mesencephalic excitatory pathways. Thus, opioid peptides can disinhibit neurons that are tonically inhibited by GABA, therefore, modulating the expression of defensive behavioural reactions. In the present work, we used both electric stimulation and microinjections of the GABAA receptor antagonist bicuculline in the inferior colliculus (IC) of Wistar rats in combination with microinjections of µ- and κ-opioid receptor selective agonists into the dorsal columns of periaqueductal grey matter (dPAG) to evaluate the effects on panic-like behaviours elicited by IC electrical and chemical stimulation. The present results showed that neurochemical lesions of the dPAG caused a significant impairment in the organisation of defensive responses by IC neurons, reducing the duration [t(14)=3.0; p<0.01] of defensive immobility and the duration [t(14)=2.8; p<0.05] and frequency [t(14)=2.5; p<0.05] of escape. Paradoxically, treating the dPAG with the µ-opioid receptor agonist met-enkephalin caused a significant reduction of panic-like behaviours induced by both electrical and chemical stimulation of the IC, increasing the escape behaviour threshold [F(2,23)=13.5; p<0.001] and decreasing the frequency [F(3,36)=11.7; p<0.001] and duration [F(3,36)=11.6; p<0.001] of escape and the duration of defensive immobility [F(3,36)=16.1; p<0.05]. In contrast, treating the dPAG with the κ-opioid receptor agonist salvinorin-A increased the frequency [F(3,36)=12.4; p<0.01] and duration [F(3,34)=16.1; p<0.01] of defensive immobility induced by GABAA receptor blockade in the IC. The present results suggest the existence of a complex neuronal network in the MT in which endogenous opioid peptides and GABAergic pathways interact in the control of fear-related behavioural responses.


Subject(s)
Analgesics, Opioid/pharmacology , Inferior Colliculi/physiology , Panic/physiology , Periaqueductal Gray/physiology , Receptors, Opioid, kappa/metabolism , Receptors, Opioid, mu/metabolism , Animals , Bicuculline/pharmacology , Diterpenes, Clerodane/pharmacology , Electric Stimulation , Enkephalin, Methionine/pharmacology , Escape Reaction/physiology , Freezing Reaction, Cataleptic/physiology , GABA-A Receptor Antagonists/pharmacology , Ibotenic Acid , Inferior Colliculi/drug effects , Male , Neurons/drug effects , Neurons/physiology , Periaqueductal Gray/drug effects , Rats, Wistar , Receptors, GABA-A/metabolism , Receptors, Opioid, kappa/agonists , Receptors, Opioid, mu/agonists
18.
Neuroscience ; 255: 212-8, 2013.
Article in English | MEDLINE | ID: mdl-24125891

ABSTRACT

Not only is the inferior colliculus (IC) a highly important center of integration within the central auditory pathway, but it may also play a modulatory role in sensory-motor circuitry. Previous evidence from our laboratory relating the IC to motor behavior shows that glutamate-mediated mechanisms within the IC modulate haloperidol-induced catalepsy. The high density of GABAergic receptors in the IC led to this study of a possible link between these receptors, haloperidol-induced catalepsy, and a possible involvement of the blockade of dopaminergic receptors. Catalepsy was evaluated by positioning both forepaws of rats on an elevated horizontal wooden bar and recording the time that the animal maintained this position. The present study shows that haloperidol-induced catalepsy was enhanced by local microinjection into the IC of midazolam (20nmol/0.5µl), a benzodiazepine receptor agonist, whereas animals receiving a microinjection of bicuculline (40 or 80ng/0.5µl), a GABAergic antagonist, showed a reduction in the time of catalepsy. However, the microinjection of haloperidol (2.5 or 5.0µg/0.5µl) bilaterally into the IC did not induce catalepsy. Therefore, our results suggest the involvement of the IC in the modulation of catalepsy induced by haloperidol, even though the dopaminergic mechanisms of the IC are unable to induce catalepsy when blocked by the direct microinjection of haloperidol. It is thus possible that the IC plays a role in sensorimotor gating and that GABA-mediated mechanisms are involved.


Subject(s)
Catalepsy/metabolism , Dopamine Antagonists/pharmacology , Haloperidol/pharmacology , Inferior Colliculi/metabolism , gamma-Aminobutyric Acid/metabolism , Animals , Catalepsy/chemically induced , GABA-A Receptor Antagonists/pharmacology , Inferior Colliculi/drug effects , Male , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL