Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Biol Chem ; 300(6): 107371, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38750791

ABSTRACT

The sulfite-reducing bacterium Bilophila wadsworthia, a common human intestinal pathobiont, is unique in its ability to metabolize a wide variety of sulfonates to generate sulfite as a terminal electron acceptor (TEA). The resulting formation of H2S is implicated in inflammation and colon cancer. l-cysteate, an oxidation product of l-cysteine, is among the sulfonates metabolized by B. wadsworthia, although the enzymes involved remain unknown. Here we report a pathway for l-cysteate dissimilation in B. wadsworthia RZATAU, involving isomerization of l-cysteate to d-cysteate by a cysteate racemase (BwCuyB), followed by cleavage into pyruvate, ammonia and sulfite by a d-cysteate sulfo-lyase (BwCuyA). The strong selectivity of BwCuyA for d-cysteate over l-cysteate was rationalized by protein structural modeling. A homolog of BwCuyA in the marine bacterium Silicibacter pomeroyi (SpCuyA) was previously reported to be a l-cysteate sulfo-lyase, but our experiments confirm that SpCuyA too displays a strong selectivity for d-cysteate. Growth of B. wadsworthia with cysteate as the electron acceptor is accompanied by production of H2S and induction of BwCuyA. Close homologs of BwCuyA and BwCuyB are present in diverse bacteria, including many sulfate- and sulfite-reducing bacteria, suggesting their involvement in cysteate degradation in different biological environments.


Subject(s)
Cysteine , Cysteine/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bilophila/metabolism , Bilophila/enzymology , Racemases and Epimerases/metabolism , Oxidation-Reduction , Carbon-Sulfur Lyases/metabolism , Carbon-Sulfur Lyases/chemistry , Sulfites/metabolism , Humans
2.
Microbiol Spectr ; 12(4): e0347423, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38385739

ABSTRACT

The microbiota of perianal abscesses is scarcely investigated. Identifying causative bacteria is essential to develop antibiotic therapy. However, culture-based methods and molecular diagnostics through 16S PCR technology are often hampered by the polymicrobial nature of perianal abscesses. We sought to characterize the microbiota composition of perianal abscesses via metagenomic next-generation sequencing (mNGS). Fourteen patients suffering from perianal abscesses between March 2023 and August 2023 underwent retrospective assessment. Information from medical records was used, including clinical information, laboratory data, and culture and mNGS results. Forty bacterial taxa were identified from perianal abscesses through mNGS, with Bilophila wadsworthia (71.4%), Bacteroides fragilis (57.1%), and Escherichia coli (50.0%) representing the most prevalent species. mNGS identified an increased number of bacterial taxa, with an average of 6.1 compared to a traditional culture-based method which only detected an average of 1.1 in culture-positive perianal abscess patients, predominantly E. coli (75.0%), revealing the polymicrobial nature of perianal abscesses. Our study demonstrates that a more diverse bacterial profile is detected by mNGS in perianal abscesses, and that Bilophila wadsworthia is the most prevalent microorganism, potentially serving as a potential biomarker for perianal abscess.IMPORTANCEAccurately, identifying the bacteria causing perianal abscesses is crucial for effective antibiotic therapy. However, traditional culture-based methods and 16S PCR technology often struggle with the polymicrobial nature of these abscesses. This study employed metagenomic next-generation sequencing (mNGS) to comprehensively analyze the microbiota composition. Results revealed 40 bacterial taxa, with Bilophila wadsworthia (71.4%), Bacteroides fragilis (57.1%), and Escherichia coli (50.0%) being the most prevalent species. Compared to the culture-based approach, mNGS detected a significantly higher number of bacterial taxa (average 6.1 vs 1.1), highlighting the complex nature of perianal abscesses. Notably, Bilophila wadsworthia emerged as a potential biomarker for these abscesses. This research emphasizes the importance of mNGS in understanding perianal abscesses and suggests its potential for improving diagnostic accuracy and guiding targeted antibiotic therapy in the future.


Subject(s)
Microbiota , Skin Diseases , Adult , Humans , Abscess/diagnosis , Escherichia coli/genetics , Retrospective Studies , High-Throughput Nucleotide Sequencing , Anti-Bacterial Agents , Bacteroides fragilis/genetics , Metagenomics , Biomarkers
3.
Int J Biol Macromol ; 250: 126002, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37506789

ABSTRACT

The presence of excessive hydrogen sulfide (H2S)-producing bacteria, particularly Bilophila wadsworthia in appendices, is linked to a weaker colonic mucus barrier, inflammatory bowel disease, and colorectal cancer. Thus, targeting this bacterium could reduce sulfide levels and address associated health concerns. Here, we utilized reverse vaccinology and immunoinformatics to design a chimeric vaccine against B. wadsworthia, focusing on membrane-bound and extracellular proteins. Subtractive proteome analysis identified 18 potential vaccine candidates (PVCs), from which six B-cell, eight CD8+ T cell, and six CD4+ T cell epitopes were predicted. Chosen epitopes were assessed for immunological properties and cross-reactivity with human and mouse proteomes. Subsequently, these epitopes were fused with appropriate linkers, PADRE epitope, TAT peptide, and Cholera Toxin B subunit adjuvant to form a robust multi-epitope vaccine (MEV). The MEV's tertiary structure was modelled and validated for reliable analysis. Molecular docking and dynamics simulations demonstrated stable binding of MEV with Toll-like receptor 4. The MEV showed favorable physicochemical characteristics, high expression potential in Escherichia coli, broad population coverage (∼98 %), and cross-protection against different B. wadsworthia strains. Immune simulation suggested induction of strong B and T cell responses, including primary, secondary, and tertiary immune responses. Further experimental studies are necessary to validate these findings.

4.
J Biol Chem ; 299(8): 105010, 2023 08.
Article in English | MEDLINE | ID: mdl-37414148

ABSTRACT

The obligately anaerobic sulfite-reducing bacterium Bilophila wadsworthia is a common human pathobiont inhabiting the distal intestinal tract. It has a unique ability to utilize a diverse range of food- and host-derived sulfonates to generate sulfite as a terminal electron acceptor (TEA) for anaerobic respiration, converting the sulfonate sulfur to H2S, implicated in inflammatory conditions and colon cancer. The biochemical pathways involved in the metabolism of the C2 sulfonates isethionate and taurine by B. wadsworthia were recently reported. However, its mechanism for metabolizing sulfoacetate, another prevalent C2 sulfonate, remained unknown. Here, we report bioinformatics investigations and in vitro biochemical assays that uncover the molecular basis for the utilization of sulfoacetate as a source of TEA (STEA) for B. wadsworthia, involving conversion to sulfoacetyl-CoA by an ADP-forming sulfoacetate-CoA ligase (SauCD), and stepwise reduction to isethionate by NAD(P)H-dependent enzymes sulfoacetaldehyde dehydrogenase (SauS) and sulfoacetaldehyde reductase (TauF). Isethionate is then cleaved by the O2-sensitive isethionate sulfolyase (IseG), releasing sulfite for dissimilatory reduction to H2S. Sulfoacetate in different environments originates from anthropogenic sources such as detergents, and natural sources such as bacterial metabolism of the highly abundant organosulfonates sulfoquinovose and taurine. Identification of enzymes for anaerobic degradation of this relatively inert and electron-deficient C2 sulfonate provides further insights into sulfur recycling in the anaerobic biosphere, including the human gut microbiome.


Subject(s)
Bilophila , Humans , Alkanesulfonates/metabolism , Bilophila/metabolism , Sulfites/metabolism , Sulfur/metabolism , Taurine/metabolism , Gastrointestinal Microbiome
5.
Int J Biol Macromol ; 240: 124428, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37062383

ABSTRACT

Bilophila wadsworthia is one of the prominent sources of hydrogen sulfide (H2S) production in appendices, excessive levels of which can result in a weaker colonic mucus barrier, inflammatory bowel disease, and colorectal cancer. Isethionate sulfite-lyase (IslA) enzyme catalyzes H2S production by cleaving CS bond in isethionate, producing acetaldehyde and sulfite. In this study, we aimed to identify potential substrate antagonists for IsIA using a structure-based drug design. Initially, pharmacophore-based computational screening of the ZINC20 database yielded 66 hits that were subjected to molecular docking targeting the isethionate binding site of IsIA. Based on striking docking scores, nine compounds showed strong interaction with critical IsIA residues (Arg189, Gln193, Glu470, Cys468, and Arg678), drug-like features, appropriate adsorption, metabolism, excretion, and excretion profile with non-toxicity. Molecular dynamics simulations uncovered the significant impact of binding the compounds on protein conformational dynamics. Finally, binding free energies revealed substantial binding affinity (ranging from -35.23 to -53.88 kcal/mol) of compounds (ZINC913876497, ZINC913856647, ZINC914263733, ZINC914137795, ZINC915757996, ZINC914357083, ZINC913934833, ZINC9143362047, and ZINC913854740) for IsIA. The compounds proposed herein through a multi-faceted computational strategy can be experimentally validated as potential substrate antagonists of B. wadsworthia's IsIA for developing new medications to curb gut-associated illness in the future.


Subject(s)
Bilophila , Lyases , Molecular Docking Simulation , Bilophila/metabolism , Lyases/metabolism , Molecular Dynamics Simulation , Sulfites/metabolism , Ligands
6.
Cancers (Basel) ; 15(3)2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36765864

ABSTRACT

A glycal radical enzyme called isethionate sulfite-lyase (Isla) breaks the C-S bond in isethionate to produce acetaldehyde and sulfite. This enzyme was found in the Gram-negative, colonial Bilophila wadsworthia bacteria. Sulfur dioxide, acetate, and ammonia are produced by the anaerobic respiration route from (sulfonate isethionate). Strong genotoxic H2S damages the colon's mucous lining, which aids in the development of colorectal cancer. H2S production also contributes to inflammatory bowel diseases such as colitis. Here, we describe the structure-based drug designing for the Isla using an in-house database of naturally isolated compounds and synthetic derivatives. In structure-based drug discovery, a combination of methods was used, including molecular docking, pharmacokinetics properties evaluation, binding free energy calculations by the molecular mechanics/generalized born surface area (MM/GBSA) method, and protein structure dynamics exploration via molecular dynamic simulations, to retrieve novel and putative inhibitors for the Isla protein. Based on the docking score, six compounds show significant binding interaction with the Isla active site crucial residues and exhibit drug-like features, good absorption, distribution, metabolism, and excretion profile with no toxicity. The binding free energy reveals that these compounds have a strong affinity with the Isla. In addition, the molecular dynamics simulations reveal that these compounds substantially affect the protein structure dynamics. As per our knowledge, this study is the first attempt to discover Isla potential inhibitors. The compounds proposed in the study using a multi-fold computational technique may be verified in vitro as possible inhibitors of Isla and possess the potential for the future development of new medications that target Isla.

7.
Anaerobe ; 78: 102641, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36108892

ABSTRACT

We report a rare case of polymicrobial anaerobic bacteremia caused by four different gut anaerobes: Bacteroides fragilis, Eggerthella lenta, Bilophila wadsworthia, and Ruminococcus gnavus. Early initiation of appropriate therapy and species identification with matrix assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF MS) resulted in full recovery from the infection. Our case highlights the clinical significance of polymicrobial cultures and the importance of performing anaerobic cultures for blood specimens to ensure proper identification and treatment.


Subject(s)
Bacteremia , Bacterial Infections , Neoplasms , Humans , Bacteroides fragilis , Bilophila , Anaerobiosis , Bacteria, Anaerobic , Bacteremia/diagnosis , Bacteremia/drug therapy , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
8.
Cell Chem Biol ; 28(9): 1333-1346.e7, 2021 09 16.
Article in English | MEDLINE | ID: mdl-33773110

ABSTRACT

Desulfonation of isethionate by the bacterial glycyl radical enzyme (GRE) isethionate sulfite-lyase (IslA) generates sulfite, a substrate for respiration that in turn produces the disease-associated metabolite hydrogen sulfide. Here, we present a 2.7 Å resolution X-ray structure of wild-type IslA from Bilophila wadsworthia with isethionate bound. In comparison with other GREs, alternate positioning of the active site ß strands allows for distinct residue positions to contribute to substrate binding. These structural differences, combined with sequence variations, create a highly tailored active site for the binding of the negatively charged isethionate substrate. Through the kinetic analysis of 14 IslA variants and computational analyses, we probe the mechanism by which radical chemistry is used for C-S bond cleavage. This work further elucidates the structural basis of chemistry within the GRE superfamily and will inform structure-based inhibitor design of IsIA and thus of microbial hydrogen sulfide production.


Subject(s)
Carbon/metabolism , Lyases/metabolism , Sulfur/metabolism , Bilophila/enzymology , Carbon/chemistry , Crystallography, X-Ray , Lyases/chemistry , Models, Molecular , Sulfur/chemistry
9.
Int J Med Microbiol ; 311(3): 151494, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33711649

ABSTRACT

The interplay between diet, intestinal microbiota and host is a major factor impacting health. A diet rich in unsaturated fatty acids has been reported to stimulate the growth of Bilophila wadsworthia by increasing the proportion of the sulfonated bile acid taurocholate (TC). The taurine-induced overgrowth of B. wadsworthia promoted the development of colitis in interleukin-10-deficient (IL-10-/-) mice. This study aimed to investigate whether intake of the sulfonates sulfoquinovosyl diacylglycerols (SQDG) with a dietary supplement or their degradation product sulfoquinovose (SQ), stimulate the growth of B. wadsworthia in a similar manner and, thereby, cause intestinal inflammation. Conventional IL-10-/- mice were fed a diet supplemented with the SQDG-rich cyanobacterium Arthrospira platensis (Spirulina). SQ or TC were orally applied to conventional IL-10-/- mice and gnotobiotic IL-10-/- mice harboring a simplified human intestinal microbiota with or without B. wadsworthia. Analyses of inflammatory parameters revealed that none of the sulfonates induced severe colitis, but both, Spirulina and TC, induced expression of pro-inflammatory cytokines in cecal mucosa. Cell numbers of B. wadsworthia decreased almost two orders of magnitude by Spirulina feeding but slightly increased in gnotobiotic SQ and conventional TC mice. Changes in microbiota composition were observed in feces as a result of Spirulina or TC feeding in conventional mice. In conclusion, the dietary sulfonates SQDG and their metabolite SQ did not elicit bacteria-induced intestinal inflammation in IL-10-/- mice and, thus, do not promote colitis.


Subject(s)
Colitis , Diet , Gastrointestinal Microbiome , Methylglucosides , Animals , Colitis/chemically induced , Interleukin-10/genetics , Lipids , Mice , Mice, Inbred C57BL , Mice, Knockout , Spirulina
10.
Rev. Ateneo Argent. Odontol ; 62(1): 52-56, jun. 2020.
Article in Spanish | LILACS | ID: biblio-1148211

ABSTRACT

Si partimos de que la microbiología es una ciencia fundante, podemos estar de acuerdo también en la necesidad de la continua actualización de sus contenidos y su vinculación con la odontología. Nuevas técnicas de diagnóstico permiten, no solo poder identificar características especiales de cada microorganismo y su reubicación en la taxonomía general, sino también habilitan a reconocer a aquellos ­hasta el momento­ desconocidos en la cotidianeidad de la práctica profesional y que revisten importancia por sus afecciones sistémicas ya que pueden transformar, en algunos casos, a que el paciente sea considerado de riesgo. En este trabajo, se abordan tres ejemplares bacterianos seleccionados por su complejidad en la identificación y por la magnitud de las lesiones que producen. Granulicatella spp., Kingela kingae y Bilophila wadsworthia afectan no solo adultos sino también pacientes pediátricos, siendo afectados por patologías severas. Se describen cuadros clínicos que afectan tejido óseo, corazón, cerebro, hígado, bazo, riñón y las manifestaciones orales a las cuales pueden asociarse grupos microbianos que agravan el pronóstico. Aplicar la tecnología adecuadamente, no solo a procedimientos odontológicos, sino también para diagnóstico (PCR ­ MALDI ­ TOF) facilita la detección e identificación con mayor celeridad de estos agentes microbianos, evitando la rotación farmacológica, la resistencia microbiana y la automedicación (AU)


Considering microbiology as a key science in the approach of infectious processes, we understand the need for a continuous update of its contents and its link with dentistry. The incorporation of new technological approaches, such as molecular methods or mass spectrometry, allow us not only to identify special characteristics of the microorganism and its relocation in taxonomy, but also to know those microorganisms until now unknown in professional´s life everyday practice and that are important for their systemic implications, modifying in some cases, the risk assessment of the patient. Three bacterial specimens are developed in this work, due to their complexity in the identification and the magnitude of the lesions they produce, Granulicatella spp., Kingela kingae and Bilophila wadsworthia. These affects both adult and paediatric patients, describing several clinical conditions that affect bone tissue, heart, brain, liver, spleen, kidney and oral manifestations to which these microbial groups can be associated, aggravating the prognosis. Applying new technology, not only to dental procedures but also to diagnosis, facilitates the detection and identification with greater speed of these microbial agents, avoiding pharmacological rotation, microbial resistance and self-medication (AU)


Subject(s)
Microbiology , Mouth Diseases/microbiology , Drug Resistance, Microbial , Polymerase Chain Reaction , Kingella kingae , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Bilophila
11.
J Infect Chemother ; 25(9): 708-713, 2019 Sep.
Article in English | MEDLINE | ID: mdl-30982727

ABSTRACT

PURPOSE: Controversy exists over whether bacterial flora within the appendix differs between patients with and without appendicitis. To examine these potential differences, we cultured the appendiceal luminal microbiota of patients with and without acute appendicitis, and identified the bacterial species therein. METHODS: Fifty-seven patients with acute appendicitis and 37 patients without acute appendicitis who underwent curative resection of colorectal cancer and prophylactic appendectomies (control group) were included. Appendicitis patients were classified into the phlegmonous group or the gangrenous appendicitis group histopathologically. There was no patient with perforated appendicitis. Aerobic isolates were identified using standard identification schemata, and anaerobic isolates were identified according to the Japanese guidelines. RESULTS: There were no significant differences among the three groups in the median number aerobe species present per patient. However, the median number anaerobe species in the gangrenous appendicitis group was significantly higher than that of the control group and the phlegmonous appendicitis group. In addition, the incidence of patients with Bacillus species, Fusobacterium nucleatum, and Bilophila wadsworthia increased as the disease progressed from phlegmonous to gangrenous appendicitis. CONCLUSION: The present results suggest that increased diversity of anaerobes and the translocation of Bacillus species, F. nucleatum, and B. wadsworthia are associated with the progression of acute appendicitis.


Subject(s)
Appendicitis/microbiology , Appendix/microbiology , Bacterial Infections/microbiology , Acute Disease , Adult , Appendectomy , Appendicitis/pathology , Appendicitis/surgery , Bacillus/isolation & purification , Bacteria, Aerobic/isolation & purification , Bacteria, Anaerobic/isolation & purification , Bacterial Infections/pathology , Bacterial Infections/surgery , Bilophila/isolation & purification , Female , Fusobacterium nucleatum/isolation & purification , Humans , Male , Microbiota , Middle Aged
12.
Genes (Basel) ; 9(3)2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29494510

ABSTRACT

Colorectal cancer is the fourth most common neoplasia in Europe, where it accounts for 28.2 new cases per 100,000 inhabitants. In an effort to decrease the incidence of this disease, various prevention measures are being studied, one of which are anthocyanin-rich foods. Anthocyanins are potent antioxidant flavonoids mainly found in flowers and colorful fruits and vegetables. These nutraceuticals have diverse biological functions once ingested, including immunomodulatory, anti-inflammatory and antitumor functions. In order to test the preventive effect of these flavonoids against colorectal cancer, an animal model (Rattus norvegicus F344) was developed. In this model two doses of azoxymethane (10 mg/kg) and two treatments with dextran sodium sulfate (DSS) were administered to the animals. For 20 weeks they were fed either control rat feed, control sausages, or functional sausages containing 0.1% (w/w) of anthocyanins from a mixture of dehydrated blackberries and strawberries. At the end of that period, the animals were sacrificed and their antioxidant plasma levels and digestive tract tissues were analyzed. The results revealed a statistically significant reduction in the number of colon tumors in the functional sausages cohort with respect to the control animals and an increase in the FRAP (ferric reducing ability of plasma) total antioxidant activity in that same cohort. Colon microbiota differences were also examined via metagenomics 16S ribosomal RNA (rRNA) sequencing, revealing a significant reduction in populations of the pro-inflammatory Bilophila wadsworthia. Therefore, the design of functional processed meat products, such as ones enriched with anthocyanins, may be an effective strategy for preventing inflammatory digestive diseases and colorectal cancer in human populations.

13.
Article in English | MEDLINE | ID: mdl-29158284

ABSTRACT

Relebactam is an important beta-lactamase inhibitor for certain aerobic organisms, but alone it has no antianaerobic activity, with most anaerobes having MICs of ≥32 µg/ml with the exception of a very few strains. There was no enhancement or antagonism of imipenem activity with the addition of relebactam, including activity against imipenem-resistant strains. The relebactam-imipenem combination had excellent overall activity against the anaerobes tested.


Subject(s)
Anti-Bacterial Agents/pharmacology , Azabicyclo Compounds/pharmacology , Bacteria, Anaerobic/enzymology , Drug Resistance, Bacterial/drug effects , Imipenem/pharmacology , Microbial Sensitivity Tests/methods
14.
Gut Pathog ; 9: 59, 2017.
Article in English | MEDLINE | ID: mdl-29090023

ABSTRACT

BACKGROUND: Bilophila wadsworthia is a major member of sulfidogenic bacteria in human gut, it was originally recovered from different clinical specimens of intra-abdominal infections and recently was reported potentially linked to different chronic metabolic disorders. However, there is still insufficient understanding on its detailed function and mechanism to date. METHODS: A B. wadsworthia strain was isolated from fresh feces of a latent autoimmune diabetes in adults patient and we investigated its pathogenicity by oral administration to specific-pathogen-free mice. Tissue samples and serum were collected after sacrifice. Stool samples were collected at different time points to profile the gut microbiota. RESULTS: Bilophila wadsworthia infection resulted in the reduction of body weight and fat mass, apparent hepatosplenomegaly and elevated serum inflammatory factors, including serum amyloid A and interleukin-6, while without significant change of the overall gut microbiota structure. CONCLUSIONS: These results demonstrated that higher amount of B. wadsworthia caused systemic inflammatory response in SPF mice, which adds new evidence to the pathogenicity of this bacterium and implied its potential role to the chronic inflammation related metabolic diseases like diabetes.

SELECTION OF CITATIONS
SEARCH DETAIL
...