Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
J Biomol Struct Dyn ; : 1-18, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38305837

ABSTRACT

Ginger is a highly valued herb, renowned globally for its rich content of phenolic compounds. It has been traditionally used to treat various health conditions such as cardiovascular diseases, digestive issues, migraines, Alzheimer's disease, tumor reduction and chronic inflammation. Despite its potential medicinal applications, the therapeutic effectiveness of ginger is hindered by its limited availability and low plasma concentration levels. In this study, we explored the interaction of ginger's primary phenolic compounds, specifically 6-gingerol (6 G), 8-gingerol (8 G) and 10-gingerol (10 G), with plasma proteins which are human serum albumin (HSA) and α-1-acid glycoprotein (AGP). These two plasma proteins significantly influence drug distribution and disposition as they are key binding sites for most drugs. Fluorescence emission spectra indicated strong binding of 6, 8 and 10 G with HSA, with binding constants of 2.03 ± 0.01 × 104 M-1, 4.20 ± 0.01 × 104 M-1 and 6.03 ± 0.01 × 106 M-1, respectively. However, the binding of gingerols with AGP was found to be negligible. Molecular displacement by site-specific probes and molecular docking analyses revealed that gingerols bind at the IIA domain, with stability provided by hydrogen bonds, van der Waals forces, conventional hydrogen bonds, carbon-hydrogen bonds, alkyl and Pi-alkyl interactions. Further, the partial unfolding of the protein was observed upon binding the gingerol compound with HSA. In addition, molecular dynamic simulations demonstrated that gingerols remained stable in the subdomain IIA over 100 ns. This stability, coupled with Molecular Mechanics Generalized Born Surface Area indicating free energies of -43.765, -57.504 and -66.69 kcal/mol for 6, 8 and 10 G, respectively, reinforces the robust binding potential of these compounds. Circular dichroism studies suggested that the interaction of gingerols leads to the minimal transformation of HSA secondary structure, with the pattern being 10 G > 8 G > 6 G, a finding further substantiated by root mean square deviation and root mean square fluctuation fluctuations. These results propose that HSA has a stronger affinity to gingerols than AGP, which could have significant implications on the therapeutic circulating levels of gingerols.Communicated by Ramaswamy H. Sarma.

2.
Appl Environ Microbiol ; 90(2): e0200723, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38265212

ABSTRACT

Bacterial biofilms have a complex and heterogeneous three-dimensional architecture that is characterized by chemically and structurally distinct microenvironments. Confocal microscopy-based pH ratiometry and fluorescence lectin-binding analysis (FLBA) are well-established methods to characterize pH developments and the carbohydrate matrix architecture of biofilms at the microscale. Here, we developed a combined analysis, pH-FLBA, to concomitantly map biofilm pH and the distribution of matrix carbohydrates in bacterial biofilms while preserving the biofilm microarchitecture. As a proof of principle, the relationship between pH and the presence of galactose- and fucose-containing matrix components was investigated in dental biofilms grown with and without sucrose. The pH response to a sucrose challenge was monitored in different areas at the biofilm base using the ratiometric pH-sensitive dye C-SNARF-4. Thereafter, the fucose- and galactose-specific fluorescently labeled lectins Aleuria aurantia lectin (AAL) and Morus nigra agglutinin G (MNA-G) were used to visualize carbohydrate matrix components in the same biofilm areas and their immediate surroundings. Sucrose during growth significantly decreased biofilm pH (P < 0.05) and increased the amounts of both MNA-G- and AAL-targeted matrix carbohydrates (P < 0.05). Moreover, it modulated the biofilm composition towards a less diverse community dominated by streptococci, as determined by 16S rRNA gene sequencing. Altogether, these results suggest that the production of galactose- and fucose-containing matrix carbohydrates is related to streptococcal metabolism and, thereby, pH profiles in dental biofilms. In conclusion, pH-FLBA using lectins with different carbohydrate specificities is a useful method to investigate the association between biofilm pH and the complex carbohydrate architecture of bacterial biofilms.IMPORTANCEBiofilm pH is a key regulating factor in several biological and biochemical processes in environmental, industrial, and medical biofilms. At the microscale, microbial biofilms are characterized by steep pH gradients and an extracellular matrix rich in carbohydrate components with diffusion-modifying properties that contribute to bacterial acid-base metabolism. Here, we propose a combined analysis of pH ratiometry and fluorescence lectin-binding analysis, pH-FLBA, to concomitantly investigate the matrix architecture and pH developments in microbial biofilms, using complex saliva-derived biofilms as an example. Spatiotemporal changes in biofilm pH are monitored non-invasively over time by pH ratiometry, while FLBA with lectins of different carbohydrate specificities allows mapping the distribution of multiple relevant matrix components in the same biofilm areas. As the biofilm structure is preserved, pH-FLBA can be used to investigate the in situ relationship between the biofilm matrix architecture and biofilm pH in complex multispecies biofilms.


Subject(s)
Fucose , Galactose , Fucose/metabolism , Galactose/metabolism , RNA, Ribosomal, 16S/metabolism , Carbohydrates , Hydrogen-Ion Concentration , Streptococcus/metabolism , Lectins/metabolism , Bacteria/metabolism , Microscopy, Confocal/methods , Hexoses/metabolism , Biofilms , Sucrose/metabolism
3.
Heliyon ; 9(11): e21510, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38027588

ABSTRACT

Dengue is a mosquito-borne disease caused by the dengue virus belonging to family flaviviridae and has grown to be a major global public health issue. Despite decades of effort, the global comeback of dengue is evidence of the inadequacy of present management techniques. Due to the loss of healthy lives and the depletion of scarce medical resources, dengue has a significant negative economic impact in underdeveloped countries. In recent years, research for tackling the incidences of dengue infection has increased. The structure of the viral genome has been deciphered with the non-structural protein, known as NS5 serving as a potential target. NS5 consisting of an MTase domain involved in RNA capping and an RdRp domain involved in viral replication. In the presented work, a series of new Oxindoline Carboxamide derivatives were designed and synthesized for inhibiting the viral RNA dependent RNA-polymerase (RdRp) activity of DENV. The novel compounds were put through tests including molecular docking and surface plasmon resonance (SPR) binding analysis to evaluate their affinity for the viral protein and their potential as novel inhibitors of the virus. From a total of 12 derivative compounds, four compounds OCA-10c, OCA-10f, OCA-10j & OCA-10i, were found to exhibit high affinity for NS5 RdRp, the KD values being 1.376 µM, 1.63 µM, 7.08 µM & 9.32 µM respectively. Overall, we report novel inhibitors of DENV RdRp activity with potential to be utilized against DENV for treating humans after further optimization.

4.
Nano Lett ; 23(12): 5610-5616, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37321211

ABSTRACT

Two-dimensional checkerboard lattice, the simplest line-graph lattice, has been intensively studied as a toy model, while material design and synthesis remain elusive. Here, we report theoretical prediction and experimental realization of the checkerboard lattice in monolayer Cu2N. Experimentally, monolayer Cu2N can be realized in the well-known N/Cu(100) and N/Cu(111) systems that were previously mistakenly believed to be insulators. Combined angle-resolved photoemission spectroscopy measurements, first-principles calculations, and tight-binding analysis show that both systems host checkerboard-derived hole pockets near the Fermi level. In addition, monolayer Cu2N has outstanding stability in air and organic solvents, which is crucial for further device applications.

5.
Pharmaceutics ; 14(10)2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36297623

ABSTRACT

The tear film is a complex matrix composed of several molecular classes, from small metal ions to macromolecules. Contact lens (CL) wear can affect the protein homeostasis of the tear film, by accumulating deposits on the CL surface and/or altering their structural and functional properties. This work investigates the effect of CL wear on lactoferrin (Lf), one of the most abundant tear proteins, known as an unspecific biomarker of inflammation. Tears from eight volunteers were collected and analyzed after alternated periods of CL wear and without CL. The experimental approach is to probe Lf into unprocessed human tears by the peculiar fluorescence emission originating from complex formation of Lf with terbium (Tb3+) at the iron-binding sites. The experimental data indicate that CL wear does not significantly affect the total amount of Lf. On the other hand, Lf affinity for Tb3+ is reduced upon CL wear, suggesting relevant changes in Lf structure and possible alterations of protein functionality. Future studies based on this approach will help define CL features (material, lens-care solution, wearing time, etc.) with minimal effects on tear protein activity, in order to obtain more biocompatible and comfortable devices.

6.
Mol Oral Microbiol ; 37(5): 196-205, 2022 10.
Article in English | MEDLINE | ID: mdl-35960156

ABSTRACT

Carbohydrate components, such as glycoconjugates and polysaccharides, are constituents of the dental biofilm matrix that play an important role in biofilm stability and virulence. Exopolysaccharides in Streptococcus mutans biofilms have been characterized extensively, but comparably little is known about the matrix carbohydrates in complex, in situ-grown dental biofilms. The present study employed fluorescence lectin binding analysis (FLBA) to investigate the abundance and spatial distribution of glycoconjugates/polysaccharides in biofilms (n = 306) from 10 participants, grown in situ with (SUC) and without (H2O) exposure to sucrose. Biofilms were stained with 10 fluorescently labeled lectins with different carbohydrate specificities (AAL, ABA, ASA, HPA, LEA, MNA-G, MPA, PSA, VGA and WGA) and analyzed by confocal microscopy and digital image analysis. Microbial composition was determined by 16S rRNA gene sequencing. With the exception of ABA, all lectins targeted considerable matrix biovolumes, ranging from 19.3% to 194.0% of the microbial biovolume in the biofilms, which illustrates a remarkable variety of carbohydrate compounds in in situ-grown dental biofilms. MNA-G, AAL, and ASA, specific for galactose, fucose, and mannose, respectively, stained the largest biovolumes. AAL and ASA biovolumes were increased in SUC biofilms, but the difference was not significant due to considerable biological variation. SUC biofilms were enriched in streptococci and showed reduced abundances of Neisseria and Haemophilus spp., but no significant correlations between lectin-stained biovolumes and bacterial abundance were observed. In conclusion, FLBA demonstrates the presence of a voluminous biofilm matrix comprising a variety of different carbohydrate components in complex, in situ-grown dental biofilms.


Subject(s)
Lectins , Sucrose , Biofilms , Carbohydrates/chemistry , Fucose , Galactose , Glycoconjugates , Humans , Male , Mannose , Prostate-Specific Antigen , RNA, Ribosomal, 16S , Streptococcus mutans/metabolism
7.
J Pharm Anal ; 12(3): 500-508, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35811628

ABSTRACT

Elucidating the active components of traditional Chinese medicine (TCM) is essential for understanding the mechanisms of TCM and promote its rational use as well as TCM-derived drug development. Recent studies have shown that surface plasmon resonance (SPR) technology is promising in this field. In the present study, we propose an SPR-based integrated strategy to screen and analyze the major active components of TCM. We used Radix Paeoniae Alba (RPA) as an example to identify the compounds that can account for its anti-inflammatory mechanism via tumor necrosis factor receptor type 1 (TNF-R1). First, RPA extraction was analyzed using an SPR-based screening system, and the potential active ingredients were collected, enriched, and identified as paeoniflorin and paeonol. Next, the affinity constants of paeoniflorin and paeonol were determined as 4.9 and 11.8 µM, respectively. Then, SPR-based competition assays and molecular docking were performed to show that the two compounds could compete with tumor necrosis factor-α (TNF-α) while binding to the subdomain 1 site of TNF-R1. Finally, in biological assays, the two compounds suppressed cytotoxicity and apoptosis induced by TNF-α in the L929 cell line. These findings prove that SPR technology is a useful tool for determining the active ingredients of TCM at the molecular level and can be used in various aspects of drug development. The SPR-based integrated strategy is reliable and feasible in TCM studies and will shed light on the elucidation of the pharmacological mechanism of TCM and facilitate its modernization.

8.
Biochem J ; 479(14): 1559-1579, 2022 07 29.
Article in English | MEDLINE | ID: mdl-35770799

ABSTRACT

The EccC enzyme of Mycobacterium tuberculosis ESX-1 secretion system is involved in EsxAB virulence factor secretion and offers an attractive target for antivirulence inhibitors development against M. tuberculosis. The EccCb1 polypeptide of the EccC enzyme contains two Ftsk/SpoIIIE type ATPase domains (D2 and D3) and binds to the EsxAB factor at the C-terminal region of the D3 domain. In the current study, we have determined a low-resolution structure of EccCb1, and its mechanism involved in ATPase activity and EsxAB factor binding. Small-angle X-ray scattering data yielded a double hexameric ring structure of EccCb1 in solution and was further confirmed by SEC-MALS and dynamic light scattering. ATPase activity of wild-type, D2, and D3 mutants showed that D2-K90A and D3-K382A mutations led to a complete loss of enzyme activity. The full-length EccCb1 showed ∼3.7-fold lower catalytic efficiency than D2 domain and ∼1.7 fold lower than D3 domain. The EsxAB factor binds EccCb1 with Kd ∼ 11.3 ± 0.6 nM and its affinity is enhanced ∼2 fold in presence of ATP + Mg2+. These data indicate the involvement of ATPase activity in EsxAB factor translocation. Molecular dynamics simulation on wild-type, ATP + Mg2+, and EsxAB + ATP + Mg2+ bound EccCb1 double-ring structure showed enhanced stability of enzyme upon ATP + Mg2+ and EsxAB binding. Overall, our study showed a low-resolution structure of EccCb1, and the mechanism involved in ATPase activity and EsxAB factor recognition, which can be targeted for the development of antivirulence drugs against M. tuberculosis.


Subject(s)
Mycobacterium tuberculosis , Type VII Secretion Systems , Adenosine Triphosphatases/metabolism , Adenosine Triphosphate/metabolism , Bacterial Proteins/metabolism , Humans , Magnesium/metabolism , Mycobacterium tuberculosis/metabolism , Tuberculosis/microbiology , Type VII Secretion Systems/metabolism , Virulence Factors/genetics , Virulence Factors/metabolism
9.
Alzheimers Dement (N Y) ; 8(1): e12244, 2022.
Article in English | MEDLINE | ID: mdl-35229021

ABSTRACT

INTRODUCTION: As new late-onset Alzheimer's disease (LOAD) genetic risk loci are identified and brain cell-type specific omics data becomes available, there is an unmet need for a bioinformatics framework to prioritize genes and variants for testing in single-cell molecular profiling experiments and validation using disease models and gene editing technologies. Prior work has characterized and prioritized active enhancers located in LOAD-genome-wide association study (GWAS) regions and their potential interactions with candidate genes. The current study extends this work by focusing on single nucleotide polymorphisms (SNPs) within these LOAD enhancers and their impact on altering transcription factor (TF) binding. The proposed bioinformatics pipeline progresses from SNPs located in LOAD-GWAS regions to a filtered set of candidate regulatory SNPs that have a predicted strong effect on TF binding. METHODS: Active enhancers within LOAD-associated regions were identified and SNPs located in the enhancers were catalogued. SNPs that disrupt TF binding sites were prioritized and the respective TFs were filtered to include only those that were expressed in brain tissues relevant to LOAD. The TFs binding to the corresponding sequence was further confirmed by ChIP-seq signals. Finally, the high-priority candidate SNPs were evaluated as expression quantitative trait loci (eQTLs) in disease-relevant tissues. RESULTS: We catalogued 61 strong enhancers in LOAD-GWAS regions encompassing 326 SNPs and 104 TF binding sites. Seventy-seven and 78 of the TFs were expressed in brain and monocytes, respectively, out of which 19 TF-binding sites showed ChIP-seq signals. Eleven SNPs were found to interrupt with TF binding out of which three SNPs were also significant eQTL. DISCUSSION: This study provides a framework to catalogue noncoding variations in enhancers located in LOAD-GWAS loci and characterize their likelihood to perturb TF binding. The approach integrates multiple data types to characterize and prioritize SNPs for putative regulatory function using single-cell multi-omics assays and gene editing.

10.
Int J Mol Sci ; 23(4)2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35216265

ABSTRACT

Theaflavin-3,3'-digallate (TFDG), a polyphenol derived from the leaves of Camellia sinensis, is known to have many health benefits. In this study, the antibacterial effect of TFDG against nine bacteria and the sporicidal activities on spore-forming Bacillus spp. have been investigated. Microplate assay, colony-forming unit, BacTiter-GloTM, and Live/Dead Assays showed that 250 µg/mL TFDG was able to inhibit bacterial growth up to 99.97%, while 625 µg/mL TFDG was able to inhibit up to 99.92% of the spores from germinating after a one-hour treatment. Binding analysis revealed the favorable binding affinity of two germination-associated proteins, GPR and Lgt (GerF), to TFDG, ranging from -7.6 to -10.3 kcal/mol. Semi-quantitative RT-PCR showed that TFDG treatment lowered the expression of gpr, ranging from 0.20 to 0.39 compared to the control in both Bacillus spp. The results suggest that TFDG not only inhibits the growth of vegetative cells but also prevents the germination of bacterial spores. This report indicates that TFDG is a promising broad-spectrum antibacterial and anti-spore agent against Gram-positive, Gram-negative, acid-fast bacteria, and endospores. The potential anti-germination mechanism has also been elucidated.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Biflavonoids/pharmacology , Catechin/analogs & derivatives , Spores, Bacterial/drug effects , Catechin/pharmacology , Germination/drug effects
11.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-955463

ABSTRACT

Elucidating the active components of traditional Chinese medicine(TCM)is essential for understanding the mechanisms of TCM and promote its rational use as well as TCM-derived drug development.Recent studies have shown that surface plasmon resonance(SPR)technology is promising in this field.In the present study,we propose an SPR-based integrated strategy to screen and analyze the major active components of TCM.We used Radix Paeoniae Alba(RPA)as an example to identify the compounds that can account for its anti-inflammatory mechanism via tumor necrosis factor receptor type 1(TNF-R1).First,RPA extraction was analyzed using an SPR-based screening system,and the potential active in-gredients were collected,enriched,and identified as paeoniflorin and paeonol.Next,the affinity con-stants of paeoniflorin and paeonol were determined as 4.9 and 11.8 μM,respectively.Then,SPR-based competition assays and molecular docking were performed to show that the two compounds could compete with tumor necrosis factor-α(TNF-α)while binding to the subdomain 1 site of TNF-R1.Finally,in biological assays,the two compounds suppressed cytotoxicity and apoptosis induced by TNF-α in the L929 cell line.These findings prove that SPR technology is a useful tool for determining the active in-gredients of TCM at the molecular level and can be used in various aspects of drug development.The SPR-based integrated strategy is reliable and feasible in TCM studies and will shed light on the eluci-dation of the pharmacological mechanism of TCM and facilitate its modernization.

12.
Comput Biol Chem ; 92: 107488, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33930741

ABSTRACT

Moyamoya disease (MMD), a cerebrovascular disorder caused by the RNF213 gene, is a cerebrovascular, neurological disorder leading to ischemic strokes. Our previous work suggested that RNF213 might be involved in the pro-inflammatory TNFα-mediated insulin-resistance pathway in adipocytes. Insulin resistance can lead to cerebrovascular diseases and ischemic strokes. Though p. R4810 K has been reported as the founder mutation for Asian population with this disease, there are several mutations continuously reported in clinical diagnosis. We are interested to know whether these mutations can modulate insulin resistance. Also, we are intended to understand the causalities of RNF213 and its associated mutations in MMD. For this, we have adopted a computational approach to characterize RNF213 and its naturally occurring SNPs. Clinically reported SNPs and the predicted SNPs were analyzed for their pathogenicity and effect on the biological function of the protein. To increase accuracy, this was performed through three different analysis software (PROVEAN, SIFT, and SNAP2). The mutations that were found to be deleterious in all the three platforms were further analyzed for their effect on the thermal stability of the protein through I-mutant and iStable. It was found that R4810 K and other mutations decreased the thermodynamic stability of the protein. Loss of function of RNF213 was suggested in some reports. Contrary to this, some studies reported a gain of function state due to the R4810K mutation. To understand this we have measured the ligand-binding ability of this mutated protein through COFACTOR and COACH. An increase in ligand binding is always related to the functional stability of a protein. We have observed that the R4810K mutation might increase the iron-binding efficiency of the amino acid residues. This increase in binding was further validated by analyzing the binding efficiencies by docking. Since RNF213 was previously reported as a target for Protein Tyrosine Phosphatase 1B (PTP1B), we have also analyzed whether PTP1B-binding positions are susceptible to mutations. We have re-analyzed our earlier report on the differential expression pattern of RNF213 in cancer and obese samples. We have provided a detailed analysis of the most deleterious SNPs related to RNF213. Also, we provide a prediction for the loss of function and gain of function attributes of RNF213 and its predicted causalities in MMD and insulin resistance.


Subject(s)
Adenosine Triphosphatases/genetics , Insulin Resistance/genetics , Moyamoya Disease/genetics , Polymorphism, Single Nucleotide/genetics , Ubiquitin-Protein Ligases/genetics , Humans , Moyamoya Disease/diagnosis
13.
Methods Protoc ; 3(3)2020 Jul 30.
Article in English | MEDLINE | ID: mdl-32751503

ABSTRACT

Quantitative microdialysis is a traditional biophysical affinity determination technique. In the development of the detailed experimental protocol presented, we used commercially available equipment, rapid equilibrium dialysis (RED) devices (ThermoFisher Scientific), which means that it is open to most laboratories. The target protein and test compound are incubated in a chamber partitioned to allow only small molecules to transition to a larger reservoir chamber, then reversed-phase high performance liquid chromatography (RP-HPLC) or liquid chromatography-mass spectrometry (LC-MS) is used to determine the abundance of compound in each chamber. A higher compound concentration measured in the chamber that contains the target protein indicates binding. As a novel, and differentiating contribution, we present a protocol for mathematical analysis of experimental data. We provide the equations and the software to yield dissociation constants for the test compound-target protein complex up to 0.5 mM KD, and we quantitatively discuss the limitations of affinities in relation to measured compound concentrations.

14.
Bioanalysis ; 12(12): 823-834, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32558588

ABSTRACT

Historically, ligand-binding assays for pharmacokinetic samples employed duplicate rather than singlet-based analysis. Herein, the Translational and absorption, distribution, metabolism and excretion (ADME) Sciences Leadership Group of the International Consortium for Innovation and Quality in Pharmaceutical Development (IQ) presents a study aiming to determine the value of duplicate versus singlet-based testing. Based on analysis of data collected from eight organizations for 20 drug candidates representing seven molecular types and four analytical platforms, statistical comparisons of validation and in-study quality controls and study unknown samples demonstrated good agreement across duplicate sets. Simulation models were also used to assess the impact of sample duplicate characteristics on bioequivalence outcomes. Results show that testing in singlet is acceptable for assays with %CV ≤15% between duplicates. Singlet-based approach is proposed as the default for ligand-binding assays while a duplicate-based approach is needed where imprecision and/or inaccuracy impede the validation of the assay.


Subject(s)
Pharmaceutical Preparations/analysis , Quality Control , Binding Sites , Drug Development , Ligands
15.
Protein Expr Purif ; 159: 27-33, 2019 07.
Article in English | MEDLINE | ID: mdl-30872132

ABSTRACT

Olfactory receptors (OR), a group of classic membrane proteins, plays a vital role in insect reproduction and acclimatization. Deciphering the molecular mechanism of insect olfaction could enhance pest control and environmental protection. Studies on ORs have faced a major bottleneck due to the notoriously strong hydrophobicity of ORs, which results in difficult expression in heterologous cell systems. Here, we demonstrated that insect ORs could be functionally produced using the E. coli cell-free protein synthesis system (CFPS), in which the highest yield of total ORs is 350 µg per 1 ml reaction. We tested the effects of detergent types and concentrations on soluble expression of ORs. The ORs showed a classic α-helical infrared spectrum. Quartz crystal microbalance (QCM) was used to demonstrate that ORs fold correctly and respond to their ligands. This is the first report that insect OR42a could be functionally produced in vitro. This approach may facilitate the development of biomimetic olfactory biosensors and may also be utilized for drug positioning and development, environmental protection and agriculture.


Subject(s)
Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Escherichia coli/metabolism , Receptors, Odorant/genetics , Animals , Biosensing Techniques , Detergents/metabolism , Drosophila Proteins/chemistry , Drosophila Proteins/metabolism , Gene Expression , Ligands , Protein Conformation , Receptors, Odorant/chemistry , Receptors, Odorant/metabolism , Solubility
16.
Methods Mol Biol ; 1972: 109-123, 2019.
Article in English | MEDLINE | ID: mdl-30847787

ABSTRACT

Flow-Induced Dispersion Analysis (FIDA) enables characterization and quantification of proteins under native conditions. FIDA is based on measuring the change in size of a ligand as it selectively interacts with the target protein. The unbound ligand has a relatively small apparent hydrodynamic radius (size), which increase in the presence of the analyte due to binding to the analyte. The Kd of the interaction may be obtained in a titration experiment and the measurement of the apparent ligand size in an unknown sample forms the basis for determining the analyte concentration. The apparent molecular size is measured by Taylor dispersion analysis (TDA) in fused silica capillary capillaries. FIDA is a "ligand-binding" assay and has therefore certain features in common with Enzyme-Linked Immunosorbent Assay (ELISA), Surface Plasmon Resonance (SPR), and Biolayer Interferometry (BLI) based techniques. However, FIDA probes a single in-solution binding event and thus makes assay development straightforward, and the absolute size measurement enables built-in assay quality control. Further, as FIDA does not involve surface chemistries, complications related to nonspecific adsorption of analyte and assay components are minimized enabling direct measurement in, e.g., plasma and serum.


Subject(s)
Biological Assay/methods , Proteins/analysis , Rheology/methods , Humans , Hydrodynamics , Serum Albumin, Human/analysis
17.
Bioorg Chem ; 86: 624-630, 2019 05.
Article in English | MEDLINE | ID: mdl-30807935

ABSTRACT

Selective inhibition of carbonic anhydrase (CA) enzyme is an active area of research for medicinal chemists. In the current account, a hybrid pharmacophore approach was employed to design sulfonamide, amide and amine containing new series of potent carbonic anhydrase II inhibitors. The aromatic fragment associated with pharmacophore was altered suitably in order to find effective inhibitors of CA-II. All the derivatives 4a-4m showed better inhibition compared to the standard acetazolamide. In particular, compound 4l exhibited significant inhibition with IC50 value of 0.01796 ±â€¯0.00036 µM. The chemo-informatics analysis justified that all the designed compounds possess <10 HBA and <5 HBD. The ligands-protein binding analyses showed that 4l confined in the active binding pocket with three hydrogen bonds observed with His63, Asn66 and Thr197 residues.


Subject(s)
Amides/pharmacology , Amines/pharmacology , Carbonic Anhydrase Inhibitors/pharmacology , Cheminformatics , Sulfonamides/pharmacology , Amides/chemical synthesis , Amides/chemistry , Amines/chemical synthesis , Amines/chemistry , Carbonic Anhydrase II/antagonists & inhibitors , Carbonic Anhydrase II/metabolism , Carbonic Anhydrase Inhibitors/chemical synthesis , Carbonic Anhydrase Inhibitors/chemistry , Dose-Response Relationship, Drug , Humans , Hydrogen Bonding , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/chemistry
18.
Biochim Biophys Acta Gen Subj ; 1863(1): 182-190, 2019 01.
Article in English | MEDLINE | ID: mdl-30308221

ABSTRACT

BACKGROUND: Methylation driven by thiopurine S-methylatransferase (TPMT) is crucial for deactivation of cytostatic and immunosuppressant thiopurines. Despite its remarkable integration into clinical practice, the endogenous function of TPMT is unknown. METHODS: To address the role of TPMT in methylation of selenium compounds, we established the research on saturation transfer difference (STD) and 77Se NMR spectroscopy, fluorescence measurements, as well as computational molecular docking simulations. RESULTS: Using STD NMR spectroscopy and fluorescence measurements of tryptophan residues in TPMT, we determined the binding of selenocysteine (Sec) to human recombinant TPMT. By comparing binding characteristics of Sec in the absence and in the presence of methyl donor, we confirmed S-adenosylmethionine (SAM)-induced conformational changes in TPMT. Molecular docking analysis positioned Sec into the active site of TPMT with orientation relevant for methylation reaction. Se-methylselenocysteine (MeSec), produced in the enzymatic reaction, was detected by 77Se NMR spectroscopy. A direct interaction between Sec and SAM in the active site of rTPMT and the formation of both products, MeSec and S-adenosylhomocysteine, was demonstrated using NMR spectroscopy. CONCLUSIONS: The present study provides evidence on in vitro methylation of Sec by rTPMT in a SAM-dependant manner. GENERAL SIGNIFICANCE: Our results suggest novel role of TPMT and demonstrate new insights into enzymatic modifications of the 21st amino acid.


Subject(s)
Magnetic Resonance Spectroscopy , Methyltransferases/chemistry , Selenium/chemistry , Selenocysteine/chemistry , Catalysis , Catalytic Domain , Humans , Kinetics , Methylation , Molecular Conformation , Molecular Docking Simulation , Protein Binding , Protein Processing, Post-Translational , Recombinant Proteins/chemistry , Selenocysteine/analogs & derivatives
19.
Int J Biol Macromol ; 122: 1271-1278, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30227206

ABSTRACT

Isatin, thiosemicarbazone and their derivatives have been widely used in biological applications such as antimicrobial, antiviral and anticancer therapies. Herein, eight isatin and thiosemicarbazone derivative compounds were re-synthesized and evaluated for DNA binding analysis including DNA protection studies using plasmid DNA (pUC19) and DNA interaction experiments using calf thymus DNA (CT-DNA). All compounds were also utilized in vitro assay to assess the antimicrobial activity of compounds against different pathogenic bacterial strains. All isatin and thiosemicarbazone derivative compounds exhibited DNA protection activity which ranged from 23.5 to 59.5%. Among them, I3-(N-2-MP)-TSC had the greatest DNA protective activity. For DNA binding analysis, all compounds had the same constant concentration (40 µM), which interacts with CT-DNA. It was also observed that DNA interactions gave a high intrinsic binding constant (Kb = 1.72 × 104 M-1-9.73 × 105 M-1). Besides, several derivatives of isatin thiosemicarbazone exhibited significant and selective antibacterial activity with low concentration. These compounds primarily affected Gram-positive bacteria, but were not effective against P. vulgaris and E. coli. The Gram-positive methicillin-resistant S. aureus ATCC 43300 (MRSA) was the most influenced strain by these compounds. It was found that methyphenyl group at isatin was essential for its antibacterial activity for MRSA.


Subject(s)
Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , DNA/metabolism , Isatin/metabolism , Isatin/pharmacology , Animals , Anti-Bacterial Agents/chemistry , Bacteria/drug effects , Cattle , Isatin/chemistry , Plasmids/genetics
20.
J Biomol Struct Dyn ; 37(13): 3422-3433, 2019 08.
Article in English | MEDLINE | ID: mdl-30146941

ABSTRACT

To perform biological evaluations of newly-designed Pt(II) and Pd(II) complexes, the present study was conducted with targeted protein human serum albumin (HSA) and HCT116 cell line as model of human colorectal carcinoma. The binding of Pt(II) and Pd(II) complexes to HSA was analyzed using fluorescence spectroscopy and molecular docking. The thermal stability and alterations in the secondary structure of HSA in the presence of Pt(II) and Pd(II) complexes were investigated using the thermal denaturation method and circular dichroism (CD) spectroscopy. The cytotoxicity of the Pt(II) and Pd(II) complexes was studied against the HCT116 cell line using MTT assay. The binding analysis revealed that the fluorescence findings were well in agreement with docking results such that there is only one binding site for each complex on HSA. Binding constants of 8.7 × 103 M-1, 2.65 × 103 M-1, 0.3 × 103 M-1, and 4.4 × 103 M-1 were determined for Pd(II) and Pt(II) complexes (I-IV) at temperature of 25 °C, respectively. Also, binding constants of 1.9 × 103 M-1, 15.17 × 103 M-1, 1.9 × 103 M-1, and 13.1 × 103 M-1 were determined for Pd(II) and Pt(II) complexes (I-IV) at temperature of 37 °C, respectively. The results of CD and thermal denaturation showed that the molecular structure of HSA affected by interaction with Pt(II) and Pd(II) complexes is stable. Cytotoxicity studies represented the growth suppression effect of the Pt(II) and Pd(II) complexes toward the human colorectal carcinoma cell line. Therefore, the results suggest that the new designed Pt(II) and Pd(II) complexes are well promising candidates for use in cancer treatment, particularly for human colorectal cancer. Communicated by Ramaswamy H. Sarma.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Colorectal Neoplasms/pathology , Molecular Docking Simulation , Organoplatinum Compounds/pharmacology , Serum Albumin, Human/metabolism , Spectrometry, Fluorescence/methods , Binding Sites , Colorectal Neoplasms/drug therapy , Coordination Complexes/chemistry , Coordination Complexes/metabolism , HCT116 Cells , Humans , Molecular Structure , Organoplatinum Compounds/chemistry , Protein Binding , Protein Conformation , Serum Albumin, Human/chemistry , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...