Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.054
Filter
1.
Prep Biochem Biotechnol ; : 1-12, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949113

ABSTRACT

Recently, kafirins from white sorghum [Sorghum bicolor (L) Moench] grain have shown promise as a source of biopeptides with anti-skin aging effects (anti-inflammatory, antioxidant, and inhibition of photoaging-associated enzymes). This study employed response surface methodology (RSM) to optimize the extraction and enzymatic hydrolysis of kafirins (KAF) for the production of peptides with anti-skin aging properties. The optimization of conditions (reaction time and enzyme/substrate ratio) for liquefaction with α-amylase and hydrolysis of KAF with alcalase was performed using 32 complete factorial designs. Subsequently, ultrafiltered peptide extracts were obtained with molecular weights of 1-3 kDa (KAF-UF3) and lower than 1 kDa (KAF-UF1), which mainly contain hydrophobic amino acids (proline, leucine, isoleucine, phenylalanine, and valine) and peptide fractions with molecular weights of 0.69, 1.14, and 1.87 kDa. Consequently, the peptide extracts protected immortalized human keratinocytes (HaCaT cells) from ultraviolet B radiation (UVB)-induced damage by preventing the decrease and/or restoring the activity of antioxidant enzymes [superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px)]. Furthermore, KAF-UF3 and KAF-UF1 inhibited (20-29%) elastase and collagenase overactivity in UVB-exposed murine fibroblasts (3T3 cells). Thus, KAF-UF3 and KAF-UF1 exhibited behavior similar to that observed with glutathione (GSH), suggesting their potential as functional peptide ingredients in skincare products.

2.
J Food Sci Technol ; 61(8): 1609-1619, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38966797

ABSTRACT

The interest in algae-derived bioactive compounds has grown due to their potential therapeutic efficacy against a range of diseases. These compounds, derived from proteins, exhibit diverse functions and profound pharmacological effects. Recent research has highlighted the extensive health benefits of algae-derived bioactive compounds, positioning them as potential natural antioxidants in the food, pharmaceutical, and cosmetic industries. This study focuses on extracting proteins from Porphyra yezoensis using innovative physical pre-treatment methods such as stirring, ball milling, and homogenization, under various acidic and alkaline conditions. Enzymatic hydrolysis, employing commercial enzymes at optimal temperature, pH, and enzyme-substrate ratios, produced distinct fractions according to molecular weight. Pepsin demonstrated the highest hydrolysis rate, with the fraction above 10 kDa identified as the most bioactive hydrolysate. Antioxidant activity was evaluated through DPPH, ABTS, ferrous ion chelation, and reducing power assays, demonstrating high antioxidant potential and the ability to mitigate oxidative stress. The 10 kDa fraction of pepsin hydrolysate exhibited 82.6% DPPH activity, 77.5% ABTS activity, 88.4% ferrous ion chelation activity, and higher reducing power potential (0.84 absorbance at 700 nm). Further exploration of mechanisms, amino acid profiles, and potential in vivo benefits is essential to fully exploit the medicinal potential of these algae-derived hydrolysates.

3.
Crit Rev Food Sci Nutr ; : 1-9, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38950579

ABSTRACT

Bioactive peptides from brewer's spent grain (BSG) and brewer's spent yeast (BSY), two by-products of the brewing industry, have great potential as functional food ingredients, dietary supplements or nutraceuticals to reduce the risk of numerous pathological conditions. Nevertheless, the oral administration of these peptides poses great challenges since peptides must undergo gastrointestinal digestion, intestinal absorption and hepatic metabolism, which can affect their bioavailability and, therefore, the expected outcomes. This review provides a comprehensive and critical analysis of the potential impact of the oral route on the bioactivity of BSG/BSY peptides as assessed by in vitro assays and identifies research gaps that require novel approaches/methodologies. The data collected indicate that in addition to the significant influence of gastrointestinal digestion, intestinal absorption and hepatic metabolism also have a major impact on the bioactivity of brewing peptides. The major gap identified was the insufficient evidence regarding hepatic metabolism, which points for the need of employing in vitro assays in this research field to provide such clarification. Thus, to reach the market, the impact of the oral route on the bioactivities of BSG/BSY peptides must be properly studied in vitro to allow adequate/effective administration (dosage/frequency) with a beneficial impact on the population health.

4.
Mol Nutr Food Res ; : e2400084, 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38923775

ABSTRACT

SCOPE: High blood pressure (BP) is the main preventable risk factor for cardiovascular diseases (CVDs). Much research is aimed at finding natural alternatives to control or prevent hypertension (HT), since some hypertensive patients do not respond to current pharmacological treatments or show undesirable side effects. METHODS AND RESULTS: Forty relevant articles have been selected from various scientific literature databases. The results reveal that angiotensin-converting enzyme (ACE) inhibition is the most reported mechanism of action of antihypertensive peptides. The active peptides have a great variety of origins. Biopeptides with a molecular weight of <3 kDa, short chain <20 amino acids, and a hydrophobic amino acid sequence at the C- and N-terminus exhibit higher antihypertensive activity. They also show good stability to enzymatic hydrolysis and gastrointestinal digestion, and no toxicity. To determine antihypertensive effectiveness, in vitro and in vivo animal studies are the most frequent developed, with few in silico studies and only one human clinical trial. CONCLUSION: There is interesting potential for antihypertensive peptides as promising natural candidates for the development of functional foods, nutraceuticals and drugs for preventive or therapeutic treatment of hypertension. The aim of this review is to study the role of food-derived bioactive peptides in HT.

5.
Nutrients ; 16(12)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38931268

ABSTRACT

Obesity is acknowledged as a significant risk factor for cardiovascular disease, often accompanied by increased inflammation and diabetes. Bioactive peptides derived from marine animal proteins show promise as safe and effective anti-obesity agents by regulating adipocyte differentiation through the AMPK signaling pathway. Therefore, this study aims to investigate the anti-obesity and anti-diabetic effects of bioactive compounds derived from a Meretrix lusoria Protamex enzymatic hydrolysate (MLP) fraction (≤1 kDa) through a 6-week treatment (150 mg/kg or 300 mg/kg, administered once daily) in leptin receptor-deficient db/db mice. The MLP treatment significantly decreased the body weight, serum total cholesterol, triglycerides, and LDL-cholesterol levels while also exhibiting a beneficial effect on hepatic and serum marker parameters in db/db mice. A histological analysis revealed a reduction in hepatic steatosis and epididymal fat following MLP treatment. Furthermore, poor glucose tolerance was improved, and hepatic antioxidant enzyme activities were elevated in MLP-treated mice compared to db/db control mice. Western blot analysis showed an increased expression of the AMPK protein after MLP treatment. In addition, the expression of lipogenic genes decreased in db/db mice. These findings indicate that bioactive peptides, which are known to regulate blood glucose levels, lipid metabolism, and adipogenesis, could be beneficial functional food additives and pharmaceuticals.


Subject(s)
Anti-Obesity Agents , Obesity , Peptides , Animals , Obesity/drug therapy , Mice , Male , Peptides/pharmacology , Anti-Obesity Agents/pharmacology , Protein Hydrolysates/pharmacology , Liver/drug effects , Liver/metabolism , Blood Glucose/drug effects , Blood Glucose/metabolism , Hypoglycemic Agents/pharmacology , Lipid Metabolism/drug effects , AMP-Activated Protein Kinases/metabolism , Mice, Inbred C57BL , Receptors, Leptin/metabolism , Receptors, Leptin/genetics , Adipogenesis/drug effects , Body Weight/drug effects
6.
Foods ; 13(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38928795

ABSTRACT

Bioactive peptides derived from both exogenous and endogenous origins have been studied extensively to use their beneficial effects in humans and animals. Bioactive peptides exhibit beneficial bodily functions and contribute to a healthy gastrointestinal system by influencing barrier functions, immune responses, and gut microbiota. Gut microbiota is a diverse microbial community that significantly influences the overall well-being and homeostasis of the body. Factors such as diet, age, lifestyle, medication, and environmental circumstances can affect the composition and diversity of the gut microbiota. The disturbances or imbalances in the gut microbiota have been associated with various health problems. The interplays between bioactive peptides and gut microbiota are not fully understood, but bioactive peptides hold promise as modulators of the gut microbiota to promote gut health. Almost all the bioactive research on human health, including the development of therapeutics and nutritional interventions, uses cell culture, even though their direct biofunctional activities can only occur when absorbed in the intestine and into the blood system. This review focuses on the current understanding of bioactive peptides in gut microbiota and their impact and mechanisms on gut and human health. The novelty of this review lies in its comprehensive analysis of the multifaceted interactions between bioactive peptides and gut microbiota, integrating knowledge from diverse disciplines between microbiology and nutrition. By elucidating the underlying mechanisms and identifying current research gaps, this review offers an outlook on the potential of bioactive peptides in promoting gut health and shaping future therapeutic and nutritional interventions.

7.
Article in English | MEDLINE | ID: mdl-38888698

ABSTRACT

A study was carried out on the immobilization of pepsin in activated carbon functionalized by different techniques (glutaraldehyde, genipin, and metallization) aiming at its application in obtaining bioactive peptides through casein hydrolysis. Studies of the immobilized derivatives were carried out in addition to the evaluation of the antioxidant potential of the peptides. Among the pH range studied, pH 3.0 was selected due to the higher activity of the derivatives at this pH. The support modification by metallization was the method with the best results, providing a 121% increase in enzymatic activity compared to other immobilization methods. In addition, this derivative provided activity closer to the soluble enzyme activity (3.30 U) and better storage stability, and allows reuse for more than 8 cycles. In turn, the peptides from casein hydrolysis showed potential as antioxidant agents, with a DPPH radical scavenging activity higher than 70%, maximum protection against ß-carotene oxidation close to 70%, and a maximum reducing power of Fe(III) into Fe(II) of 400 uM by the FRAP assay. The results showed that the new techniques for modification of activated carbon can be a promising approach for pepsin immobilization.

8.
Crit Rev Food Sci Nutr ; : 1-22, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38889067

ABSTRACT

Innovating food additives stands as a cornerstone for the sustainable evolution of future food systems. Peptides derived from food proteins exhibit a rich array of physicochemical and biological attributes crucial for preserving the appearance, flavor, texture, and nutritional integrity of foods. Leveraging these peptides as raw materials holds great promise for the development of novel food additives. While numerous studies underscore the potential of peptides as food additives, existing reviews predominantly focus on their biotic applications, leaving a notable gap in the discourse around their abiotic functionalities, such as their physicochemical properties. Addressing this gap, this review offers a comprehensive survey of peptide-derived food additives in food systems, accentuating the application of peptides' abiotic properties. It furnishes a thorough exploration of the underlying mechanisms and diverse applications of peptide-derived food additives, while also delineating the challenges encountered and prospects for future applications. This well-time review will set the stage for a deeper understanding of peptide-derived food additives.

9.
Nutrients ; 16(11)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38892690

ABSTRACT

Dietary interventions represent an interesting alternative to pharmacological treatments for improving the quality of life (QoL) of subjects suffering from gastroesophageal reflux disease (GERD). This randomized, double-blind, placebo-controlled study aimed to evaluate the efficacy of a food supplement (FS) containing a probiotic strain, bioactive peptides, and vitamins in relieving heartburn/dyspeptic symptoms in subjects with mild-to-moderate GERD. Fifty-six adult participants were randomly assigned to receive the placebo or the active FS for 28 days. Subjects were asked to record daily the frequency and intensity of heartburn episodes and the intake of over- the-counter (OTC) medications. GERD-QoL and self-assessment questionnaires were also completed every two weeks and at the end of the treatment, respectively. FS was effective in achieving a progressive and significant reduction of heartburn frequency and severity, with an intergroup significant difference at the end of the treatment period. FS group also reported a reduction in the OTC medication intake, whereas placebo administration did not modify the OTC intake. Results from the QoL and self-assessment questionnaires showed that FS administration achieved a progressive and statistically significant intragroup and intergroup improvement in the QoL score and a higher positive response with respect to the placebo treatment.


Subject(s)
Dietary Supplements , Gastroesophageal Reflux , Lactobacillus acidophilus , Peptides , Probiotics , Quality of Life , Vitamins , Humans , Gastroesophageal Reflux/drug therapy , Male , Double-Blind Method , Female , Adult , Probiotics/administration & dosage , Probiotics/therapeutic use , Middle Aged , Vitamins/administration & dosage , Treatment Outcome , Peptides/administration & dosage , Peptides/therapeutic use , Heartburn/drug therapy , Surveys and Questionnaires , Severity of Illness Index
10.
Food Res Int ; 189: 114573, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38876600

ABSTRACT

Food proteins and their peptides play a significant role in the important biological processes and physiological functions of the body. The peptides show diverse biological benefits ranging from anticancer to antihypertensive, anti-obesity, and immunomodulatory, among others. In this review, an overview of food protein digestion in the gastrointestinal tract and the mechanisms involved was presented. As some proteins remain resistant and undigested, the multifarious factors (e.g. protein type and structure, microbial composition, pH levels and redox potential, host factors, etc.) affecting their colonic fermentation, the derived peptides, and amino acids that evade intestinal digestion are thus considered. The section that follows focuses on the mechanisms of the peptides with anticancer, antihypertensive, anti-obesity, and immunomodulatory effects. As further considerations were made, it is concluded that clinical studies targeting a clear understanding of the gastrointestinal stability, bioavailability, and safety of food-based peptides are still warranted.


Subject(s)
Anti-Obesity Agents , Antihypertensive Agents , Antineoplastic Agents , Dietary Proteins , Digestion , Peptides , Humans , Antihypertensive Agents/pharmacology , Dietary Proteins/metabolism , Peptides/pharmacology , Antineoplastic Agents/pharmacology , Anti-Obesity Agents/pharmacology , Gastrointestinal Tract/metabolism , Animals , Immunologic Factors/pharmacology , Gastrointestinal Microbiome/drug effects , Biological Availability , Immunomodulating Agents/pharmacology
11.
Adv Food Nutr Res ; 110: 275-325, 2024.
Article in English | MEDLINE | ID: mdl-38906589

ABSTRACT

Nowadays, the growing knowledge about the high nutritional value and potential functionality of hempseeds, the edible fruits of the Cannabis sativa L. plant, has sparked a surge in interest in exploring the worthwhile attributes of hempseed proteins and peptides. This trend aligns with the increasing popularity of hemp-based food, assuming a vital role in the global food chain. This chapter targets the nutritional and chemical composition of hempseed in terms of short- and medium-chain bioactive peptides. The analytical approaches for their characterization and multifunctional properties are summarized in detail. Moreover, the processing, functionality, and application of various hempseed protein products are discussed. In the final part of the chapter-for evaluating their propensity to be transported by intestinal cells-the transepithelial transport of peptides within hempseed protein hydrolysate is highlighted.


Subject(s)
Cannabis , Peptides , Plant Proteins , Seeds , Cannabis/chemistry , Seeds/chemistry , Plant Proteins/chemistry , Peptides/chemistry , Humans , Nutritive Value
12.
Adv Food Nutr Res ; 110: 243-274, 2024.
Article in English | MEDLINE | ID: mdl-38906588

ABSTRACT

Alcohol intake has become one of the leading risks to human health and wellness, among which acute and/or chronic alcohol-induced liver injury is a leading threaten, with few therapeutic options other than abstinence. In recent years, studies suggested that certain bioactive peptides from food sources could represent natural and safe alternatives for the prevention of alcoholic liver injury. Hence, this chapter focus on the advanced research on bioactive peptides exerting hepatoprotective activity against alcoholic liver injury. The main sources of protein, strategies for the preparation of hepatoprotective hydrolysates and peptides, underlying mechanisms of peptides on hepatoprotection, and possible structure-activity relationship between peptides and hepatoprotective activity were summarized and discussed, aiming to give a systematic insight into the research progress of hepatoprotective peptides. However, more efforts would be needed to give a clearer insight into the underlying mechanisms and structure-activity relationship before using hepatoprotective peptides as functional food ingredients or dietary supplements.


Subject(s)
Liver Diseases, Alcoholic , Peptides , Humans , Liver Diseases, Alcoholic/prevention & control , Peptides/pharmacology , Peptides/chemistry , Protective Agents/pharmacology , Animals , Structure-Activity Relationship , Liver/drug effects
13.
Crit Rev Food Sci Nutr ; : 1-20, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38907628

ABSTRACT

Bioactive peptides from vegetal sources have been shown to have functional properties as anti-inflammatory, antioxidant, antihypertensive or antidiabetic capacity. For this reason, they have been proposed as an interesting and promising alternative to improve human health. In recent years, the numerous advances in the bioinformatics field for in silico prediction have speeded up the discovery of bioactive peptides, also reducing the associated costs when using an integrated approach between the classical and bioinformatics discovery. This review aims to provide an overview of the evolution, limitations and latest advances in the field of bioinformatics and computational tools, and specifically make a critical and comprehensive insight into computational techniques used to study the mechanism of interaction that allows the explanation of plant bioactive peptide functionality. In particular, molecular docking is considered key to explain the different functionalities that have been previously identified. The assumptions to simplify such a high complex environment implies a degree of uncertainty that can only be guaranteed and validated by in vitro or in vivo studies, however, the combination of databases, software and bioinformatics applications with the classical approach has become a promising procedure for the study of bioactive peptides.

14.
Toxicon ; 247: 107835, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38942240

ABSTRACT

Serine peptidases and metallopeptidases are the primary toxins found in Bothrops snakes venoms, which act on proteins in the tissues of victims or prey, and release of peptides formed through proteolytic activity. Various studies have indicated that these peptides, released by the proteolytic activity of heterologous enzymes, generate molecules with unidentified functions, referred to as cryptids. To address this, we purified serine peptidases from Bothrops jararaca venom using molecular exclusion chromatography and then incubated them with the endogenous substrate myoglobin. As a control, we also incubated the substrate with trypsin. The resulting proteolytic fragments were analyzed, separated, and collected via HPLC. These fractions were then tested on cell cultures, the active fractions were sequenced (ALELFR and TGHPETLEK) and synthesized. After confirming their activity, the peptides underwent sequencing and synthesis for additional cell tests, including the increase of cell viability, cycle phases, proliferation, signaling, growth kinetics, angiogenesis, and migration. The results revealed that the synthesized peptides exhibited cellular repair properties, suggesting a potential role in tissue repair in the range of 0.05-5 µ M. Additionally, the effects of fragments resulting from myoglobin degradation isolated (ALELFR and TGHPETLEK) revealed a regenerative action on tissue.

15.
Food Res Int ; 188: 114473, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823837

ABSTRACT

Oral delivery of larger bioactive peptides (>20 amino acids) to the small intestine remains a challenge due to their sensitivity to proteolytic degradation and chemical denaturation during gastrointestinal transit. In this study, we investigated the capacity of crosslinked alginate microcapsules (CLAMs) formed by spray drying to protect Plantaricin EF (PlnEF) (C-EF) in gastric conditions and to dissolve and release PlnEF in the small intestine. PlnEF is an unmodified, two-peptide (PlnE: 33 amino acids; PlnF: 34 amino acids) bacteriocin produced by Lactiplantibacillus plantarum with antimicrobial and gut barrier protective properties. After 2 h incubation in simulated gastric fluid (SGF) (pH 1.5), 43.39 % ± 8.27 % intact PlnEF was liberated from the CLAMs encapsulates, as determined by an antimicrobial activity assay. Transfer of the undissolved fraction to simulated intestinal fluid (SIF) (pH 7) for another 2 h incubation resulted in an additional release of 16.13 % ± 4.33 %. No active PlnEF was found during SGF or sequential SIF incubations when pepsin (2,000 U/ml) was added to the SGF. To test PlnEF release in C-EF contained in a food matrix, C-EF was mixed in peanut butter (PB) (0.15 g C-EF in 1.5 g PB). A total of 12.52 % ± 9.09 % active PlnEF was detected after incubation of PB + C-EF in SGF without pepsin, whereas no activity was found when pepsin was included. Transfer of the remaining PB + C-EF fractions to SIF yielded the recovery of 46.67 % ± 13.09 % and 39.42 % ± 11.53 % active PlnEF in the SIF following exposure to SGF and to SGF with pepsin, respectively. Upon accounting for the undissolved fraction after SIF incubation, PlnEF was fully protected in the CLAMs-PB mixture and there was not a significant reduction in active PlnEF when pepsin was present. These results show that CLAMs alone do not guard PlnEF bacteriocin peptides from gastric conditions, however, mixing them in PB protected against proteolysis and improved intestinal release.


Subject(s)
Alginates , Bacteriocins , Capsules , Alginates/chemistry , Peptides/chemistry , Intestine, Small/metabolism , Lactobacillus plantarum/metabolism , Hydrogen-Ion Concentration , Cross-Linking Reagents/chemistry , Pepsin A/metabolism
16.
Molecules ; 29(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38893467

ABSTRACT

The investigation of collagen hydrolysates (CHs) is essential due to their widespread use in health, cosmetic, and therapeutic industries, attributing to the presence of bioactive dipeptides (DPs) and tripeptides (TPs). This study developed a novel targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) method with propyl chloroformate (PCF) derivatization to measure three bioactive peptides-Hydroxyprolyl-glycine (Hyp-Gly), Glycyl-prolyl-hydroxyproline (Gly-Pro-Hyp), and Prolyl-hydroxyproline (Pro-Hyp)-in CHs, with strong correlation coefficients (0.992, 1.000, and 0.995, respectively) and low limits of detection (LODs) of 1.40, 0.14, and 1.16 µM, respectively. Untargeted data-dependent acquisition (DDA) analyses measured peptide size distribution, while amino acid analysis assessed nutritional content. The analysis of ten commercial CHs revealed similar amino acid profiles but varied peptide lengths, indicating diverse hydrolysis conditions. Products with higher proportions of smaller peptides showed elevated levels of the targeted bioactive peptides, suggesting that a smaller peptide size may increase bioactivity. These findings can inform the optimization of CH supplements, providing consumers with detailed peptide content for more informed choices. Data are available via ProteomeXchange with the identifier PXD051699.


Subject(s)
Collagen , Peptides , Protein Hydrolysates , Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , Collagen/analysis , Collagen/chemistry , Chromatography, Liquid/methods , Protein Hydrolysates/chemistry , Protein Hydrolysates/analysis , Peptides/chemistry , Peptides/analysis , Hydrolysis , Dipeptides/chemistry , Dipeptides/analysis , Amino Acids/analysis , Amino Acids/chemistry , Oligopeptides/chemistry , Oligopeptides/analysis
17.
Antioxidants (Basel) ; 13(6)2024 May 24.
Article in English | MEDLINE | ID: mdl-38929075

ABSTRACT

Legumes, including beans, peas, chickpeas, and lentils, are cultivated worldwide and serve as important components of a balanced and nutritious diet. Each legume variety contains unique levels of protein, starch, fiber, lipids, minerals, and vitamins, with potential applications in various industries. By-products such as hulls, rich in bioactive compounds, offer promise for value-added utilization and health-focused product development. Various extraction methods are employed to enhance protein extraction rates from legume by-products, finding applications in various foods such as meat analogs, breads, and desserts. Moreover, essential fatty acids, carotenoids, tocols, and polyphenols are abundant in several residual fractions from legumes. These bioactive classes are linked to reduced incidence of cardiovascular diseases, chronic inflammation, some cancers, obesity, and type 2 diabetes, among other relevant health conditions. The present contribution provides a comprehensive review of the nutritional and bioactive composition of major legumes and their by-products. Additionally, the bioaccessibility and bioavailability aspects of legume consumption, as well as in vitro and in vivo evidence of their health effects are addressed.

18.
Pharmacol Ther ; 260: 108682, 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38917886

ABSTRACT

The extracellular matrix (ECM) represents a complex multi-component environment that has a decisive influence on the biomechanical properties of tissues and organs. Depending on the tissue, ECM components are subject to a homeostasis of synthesis and degradation, a subtle interplay that is influenced by external factors and the intrinsic aging process and is often disturbed in pathologies. Upon proteolytic cleavage of ECM proteins, small bioactive peptides termed matrikines can be formed. These bioactive peptides play a crucial role in cell signaling and contribute to the dynamic regulation of both physiological and pathological processes such as tissue remodeling and repair as well as inflammatory responses. In the skin, matrikines exert an influence for instance on cell adhesion, migration, and proliferation as well as vasodilation, angiogenesis and protein expression. Due to their manifold functions, matrikines represent promising leads for developing new therapeutic options for the treatment of skin diseases. This review article gives a comprehensive overview on matrikines in the skin, including their origin in the dermal ECM, their biological effects and therapeutic potential for the treatment of skin pathologies such as melanoma, chronic wounds and inflammatory skin diseases or for their use in anti-aging cosmeceuticals.

19.
J Agric Food Chem ; 72(27): 15248-15255, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38940702

ABSTRACT

Egg white hydrolysates (EWH) and ovotransferrin-derived peptides have distinct beneficial effects on glucose metabolism. This research aims to investigate whether ovalbumin hydrolysates (OVAHs), without ovotransferrin can improve insulin signaling pathway in high-fat diet (HFD)-fed mice. Two types of ovalbumin hydrolysates were produced, either using thermoase (OVAT), or thermoase + pepsin (OVATP). Both OVAHs-supplemented groups exhibited lower body weight gain (P < 0.001) and enhanced oral glucose tolerance (P < 0.05) compared with HFD. Moreover, diet supplementation with either hydrolysate increased the insulin-stimulated activation of protein kinase B (AKT) and insulin receptor ß (IRß) (P < 0.0001) in skeletal muscle. In conclusion, OVAHs improved glucose tolerance and insulin-dependent signaling pathway in HFD-fed mice.


Subject(s)
Diet, High-Fat , Insulin , Mice, Inbred C57BL , Muscle, Skeletal , Ovalbumin , Protein Hydrolysates , Signal Transduction , Animals , Diet, High-Fat/adverse effects , Insulin/metabolism , Mice , Signal Transduction/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Male , Protein Hydrolysates/chemistry , Protein Hydrolysates/administration & dosage , Protein Hydrolysates/metabolism , Humans , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Insulin Resistance , Receptor, Insulin/metabolism , Receptor, Insulin/genetics
20.
Tissue Cell ; 89: 102430, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38908225

ABSTRACT

Mesenchymal stem cells are used in the treatment of many diseases, particularly in the repair of bone injuries. Algae with various medicinal applications are considered important natural resources. There is limited research on the effects of bioactive peptides from algae extraction on mesenchymal stem cells. In this study the impact of bioactive proteins, protein lysates and peptide fractions (<3, <30 and <50 kDa) isolated from two algae species, Spirulina platensis and Gracilaria gracilis on the proliferation and osteogenic differentiation of human amniotic mesenchymal stem cells (hAMSCs) was investigated. The proteins were extracted ant hydrolyzed with trypsin enzyme to create peptides, which were then separated by ultrafiltration. hAMSCs were exposed to different concentrations of bioactive compounds (100, 300, 500 and 700 µg/ml) for varying time periods. Cell proliferation was assessed using the with 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and to evaluate differentiation into bone tissue, the amount of mineral deposition was measured with alizarin red staining, and alkaline phosphatase enzyme activity was determined using a colorimetric method. The expression of Runx2, Osteocalcin, and ß-Catenin genes expression was analyzed using RT-qPCR on days 7, 14 and 21 post-treatment. The results indicated that the <3 kDa peptide fraction of S. platensis and G. gracilis had no cytotoxic effects, increased cell proliferation at a concentration of 300 µg/ml, and enhanced the expression of osteogenic marker genes, alkaline phosphatase enzyme a activity, and calcium deposition in the extracellular matrix. In general, fractions that show positive effects on hAMSC differentiation have the potential to treat bone defects and promote osteoregeneration.

SELECTION OF CITATIONS
SEARCH DETAIL
...