Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 524
Filter
1.
Chem Biodivers ; : e202401061, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963913

ABSTRACT

In the current investigation, total phenolics and flavonoids of the methanolic extract obtained from the trunk bark of Acacia cyanophylla Lindl. were quantified by LC-HRMS technique. DPPH and ABTS reagents were employed to assay the antioxidant potential. The anti-tyrosinase and anti-α-amylase potentials were also assayed. The findings revealed that thirteen polyphenolic compounds were detected in the methanolic extract with trans-taxifolin (23.2 g/kg), as the major constituent. A. cyanophylla extract displayed a higher activity with DPPH test (IC50=10.14±1.00 µg/mL) than with ABTS (IC50=15.27±2.09 µg/mL). The same extract also exhibited interesting α-amylase inhibitory action (IC50 value of 4.00±0.17 µg/mL). Moreover, methanolic trunk bark extract exerted strong anti-tyrosinase capacity with an IC50 of 5.12±0.41 µg/mL in comparison to kojic acid (IC50=10.22±0.85 µg/mL) used as positive control. The antioxidant, anti-tyrosinase and anti-α-amylase potentials of the methanolic extract of A. cyanophylla trunk bark were reinforced by in silico molecular docking analyses, which confirmed the results of the in vitro tests.

2.
Food Chem ; 456: 140027, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38870819

ABSTRACT

Tuber and tuberous roots proteins are important sources for producing bioactive peptides. The objective of this review is to present the current research status of tubers and tuberous roots bioactive peptides (TTRBP), including its preparation methods, purification techniques, structure identification approaches, biological functions, and applications in the food industry. Moreover, the current challenges and future development trends of TTRBP are elucidated. Currently, TTRBP are mainly produced by enzymatic hydrolysis and fermentation. Pretreatment like high static pressure, ultrasound and microwave can assist enzymatic hydrolysis and facilitate TTRBP production. In addition, TTRBP are structurally diverse, which is related to the molecular weight, amino acids composition, and linkage mode. Accordingly, they have various biological activities (such as antioxidant, antihypertensive, hypoglycemic) and have been utilized in the food industry as functional ingredients and food additives. This review will provide valuable insights for the optimal utilization of tuber and tuberous roots.

3.
Food Chem ; 457: 140103, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38905824

ABSTRACT

Natural sweeteners generally refer to a sweet chemical component directly extracted from nature or obtained through appropriate modifications, mainly secondary metabolites of plants. Compared to the first-generation sweeteners represented by sucrose and the second-generation sweeteners represented by sodium cyclamate, natural sweeteners usually have high sweetness, low-calorie content, good solubility, high stability, and rarely toxic side effects. Historically, researchers mainly focus on the function of natural sweeteners as substitutes for sugars in the food industry. This paper reviews the bioactivities of several typical natural sweeteners, including anti-cancer, anti-inflammatory, antioxidant, anti-bacterial, and anti-hyperglycemic activities. In addition, we have summarized the extraction, physicochemical properties, and application of natural sweeteners. The article aimed to comprehensively collate vital information about natural sweeteners and review the potentiality of tapping bioactive compounds from natural products. Hopefully, this review provides insights into the further development of natural sweeteners as therapeutic agents and functional foods.

4.
Plant Physiol Biochem ; 214: 108884, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38945096

ABSTRACT

The phytohormones cytokinins are essential mediators of developmental and environmental signaling, primarily during cell division and endophytic interactions, among other processes. Considering the limited understanding of the regulatory mechanisms that affect the growth and bioactivity of the medicinal plant Nepeta nuda (Lamiaceae), our study aimed to explore how cytokinins influence the plant's metabolic status. Exogenous administration of active cytokinin forms on in vitro N. nuda internodes stimulated intensive callus formation and de novo shoot regeneration, leading to a marked increase in biomass. This process involved an accumulation of oxidants, which were scavenged by peroxidases using phenolics as substrates. The callus tissue formed upon the addition of the cytokinin 6-benzylaminopurine (BAP) acted as a sink for sugars and phenolics during the allocation of nutrients between the culture medium and regenerated plants. In accordance, the cytokinin significantly enhanced the content of polar metabolites and their respective in vitro biological activities compared to untreated in vitro and wild-grown plants. The BAP-mediated accumulation of major phenolic metabolites, rosmarinic acid (RA) and caffeic acid (CA), corresponded with variations in the expression levels of genes involved in their biosynthesis. In contrast, the accumulation of iridoids and the expression of corresponding biosynthetic genes were not significantly affected. In conclusion, our study elucidated the mechanism of cytokinin action in N. nuda in vitro culture and demonstrated its potential in stimulating the production of bioactive compounds. This knowledge could serve as a basis for further investigations of the environmental impact on plant productivity.

5.
Int J Biol Macromol ; 272(Pt 1): 132845, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38830495

ABSTRACT

Brown seaweed-derived polysaccharides, notably fucoidan and laminarin, are known for their extensive array of bioactivities and physicochemical properties. However, the effects of upper digestive tract modification on the bioactive performance of fucoidan and laminarin fractions (FLFs) sourced from Australian native species are largely unknown. Here, the digestibility and bioaccessibility of FLFs were evaluated by tracking the dynamic changes in reducing sugar content (CR), profiling the free monosaccharide composition using LC-MS, and comparing high-performance gel permeation chromatography profile variation via LC-SEC-RI. The effects of digestive progression on bioactive performance were assessed by comparing the antioxidant and antidiabetic potential of FLFs and FLF digesta. We observed that molecular weight (Mw) decreased during gastric digestion indicating that FLF aggregates were disrupted in the stomach. During intestinal digestion, Mw gradually decreased and CR increased indicating cleavage of glycosidic bonds releasing free sugars. Although the antioxidant and antidiabetic capacities were not eliminated by the digestion progression, the bioactive performance of FLFs under a digestive environment was reduced contrasting with the same concentration level of the undigested FLFs. These data provide comprehensive information on the digestibility and bioaccessibility of FLFs, and shed light on the effects of digestive progression on bioactive expression.


Subject(s)
Antioxidants , Polysaccharides , Seaweed , Polysaccharides/chemistry , Polysaccharides/pharmacology , Seaweed/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/metabolism , Upper Gastrointestinal Tract/metabolism , Upper Gastrointestinal Tract/drug effects , Molecular Weight , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Digestion/drug effects , Sulfates/chemistry , Glucans/chemistry , Glucans/pharmacology , Phaeophyceae/chemistry , Humans
6.
Food Chem ; 456: 139980, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38850607

ABSTRACT

Piperine, derived from black pepper (Piper nigrum L.), is responsible for the pungent sensation. The diverse bioactivities of piperine underscores its promising potential as a functional food ingredient. This review presents a comprehensive overview of the research progress in extraction, synthesis, pungency transduction mechanism and bioactivities of piperine. Piperine can be extracted through various methods, such as traditional, modern, and innovative extraction techniques. Its synthesis mainly included both chemical and biosynthetic approaches. It exhibits a diverse range of bioactivities, including anticancer, anticonvulsant, antidepressant, anti-inflammatory, antioxidant, immunomodulatory, anti-obesity, neuroprotective, antidiabetic, hepatoprotective, and cardiovascular protective activities. Piperine can bind to TRPV1 receptor to elicit pungent sensation. Overall, the present review can provide a theoretical reference for advancing the potential application of piperine in the field of food science.

7.
Pharmacol Ther ; 259: 108657, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38735487

ABSTRACT

Rosa roxburghii Tratt (RRT), known as chestnut rose, has been a subject of growing interest because of its diverse chemical composition and wide range of traditional uses. This comprehensive review aimed to thoroughly examine RRT, including its traditional applications, chemical diversity, and various bioactivities. The chemical profile of this plant is characterized by the presence of essential nutrients such as vitamin C (ascorbic acid), flavonoids, triterpenes, organic acids, tannins, phenolic compounds, polysaccharides, carotenoids, triterpenoids, volatile compounds, amino acids, and essential oils. These constituents contribute to the medicinal and nutritional value. Additionally, we explore the multifaceted bioactivities of RRT, including its potential as an anticancer agent, antioxidant, antiaging agent, antiatherogenic agent, hypoglycemic agent, immunoregulatory modulator, radioprotective agent, antimutagenic agent, digestive system regulator, anti-inflammatory agent, cardioprotective agent, and antibacterial agent, and its intriguing role in modulating the gut microbiota. Furthermore, we discuss the geographical distribution and genetic diversity of this plant species and shed light on its ecological significance. This comprehensive review provides a holistic understanding of RRT, bridges traditional knowledge with contemporary scientific research, and highlights its potential applications in medicine, nutrition, and pharmacology.


Subject(s)
Rosa , Humans , Rosa/chemistry , Animals , Plant Extracts/pharmacology , Medicine, Traditional/methods , Phytochemicals/pharmacology
8.
Mar Drugs ; 22(5)2024 May 07.
Article in English | MEDLINE | ID: mdl-38786604

ABSTRACT

Marine sponges of the genus Spongia have proven to be unabated sources of novel secondary metabolites with remarkable scaffold diversities and significant bioactivities. The discovery of chemical substances from Spongia sponges has continued to increase over the last few years. The current work provides an up-to-date literature survey and comprehensive insight into the reported metabolites from the members of the genus Spongia, as well as their structural features, biological activities, and structure-activity relationships when available. In this review, 222 metabolites are discussed based on published data from the period from mid-2015 to the beginning of 2024. The compounds are categorized into sesquiterpenes, diterpenes, sesterterpenes, meroterpenes, linear furanoterpenes, steroids, alkaloids, and other miscellaneous substances. The biological effects of these chemical compositions on a vast array of pharmacological assays including cytotoxic, anti-inflammatory, antibacterial, neuroprotective, protein tyrosine phosphatase 1B (PTP1B)-inhibitory, and phytoregulating activities are also presented.


Subject(s)
Porifera , Porifera/metabolism , Porifera/chemistry , Animals , Humans , Structure-Activity Relationship , Biological Products/pharmacology , Biological Products/chemistry , Secondary Metabolism
9.
Plants (Basel) ; 13(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38732426

ABSTRACT

Prenylated flavonoids (PFs) are natural flavonoids with a prenylated side chain attached to the flavonoid skeleton. They have great potential for biological activities such as anti-diabetic, anti-cancer, antimicrobial, antioxidant, anti-inflammatory, enzyme inhibition, and anti-Alzheimer's effects. Medicinal chemists have recently paid increasing attention to PFs, which have become vital for developing new therapeutic agents. PFs have quickly developed through isolation and semi- or full synthesis, proving their high value in medicinal chemistry research. This review comprehensively summarizes the research progress of PFs, including natural PFs from the Moraceae family and their pharmacological activities. This information provides a basis for the selective design and optimization of multifunctional PF derivatives to treat multifactorial diseases.

10.
Molecules ; 29(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38792040

ABSTRACT

Proanthocyanidins, natural polyphenolic compounds abundantly present in plants, exhibit diverse bioactivities, including antioxidative, anti-inflammatory, and antibacterial effects. These bioactivities are intricately linked to the degree of polymerization of these compounds. Through a comprehensive analysis of recent domestic and international research, this article synthesizes the latest advancements in the extraction process, degradation methods, as well as the biological activities and underlying mechanisms of proanthocyanidins. Furthermore, future research endeavors should prioritize the refinement of extraction techniques, the elucidation of bioactive mechanisms, and the development of formulations with enhanced potency. This will maximize the utilization of proanthocyanidins across diverse applications.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Proanthocyanidins , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/isolation & purification , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/isolation & purification , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/isolation & purification , Plant Extracts/chemistry , Plant Extracts/pharmacology , Proanthocyanidins/chemistry , Proanthocyanidins/isolation & purification , Proanthocyanidins/pharmacology
11.
Antioxidants (Basel) ; 13(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38790664

ABSTRACT

Olive pomace is an agro-industrial waste product generated from the olive oil industry and constituted by bioactive compounds with potential applications in several industrial sectors. The purpose of this work was to evaluate the effects of electron beam (e-beam) radiation on olive pomace, specifically on phenolic compounds (by HPLC-DAD-ESI/MS) and the bioactive properties (antioxidant, antiproliferative, and antimicrobial activities) of crude olive pomace (COP) and extracted olive pomace (EOP) extracts. The amount of total flavonoid content and the reducing power of COP extracts were higher than those obtained for EOP extracts. The results suggested that e-beam radiation at 6 kGy increased both total phenolic and total flavonoid contents as well as the reducing power of COP extracts, due to the higher extractability (>2.5-fold) of phenolic compounds from these samples, while decreasing the scavenging activity of extracts. The extracts of both olive pomaces showed antibacterial potential, and COP extracts at 400 µg/mL also presented antiproliferative activity against A549, Caco-2, 293T, and RAW264.7 cell lines, with both properties preserved with the e-beam treatment. All in all, e-beam radiation at 6 kGy appears to be a promising technology to valorize the pollutant wastes of the olive oil industry through enhancing phenolic extractability and bioactive properties, and, furthermore, to contribute to the environmental and economical sustainability of the olive oil industry.

12.
Molecules ; 29(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38792130

ABSTRACT

Lycium ruthenicum Murray possesses significant applications in both food and medicine, including antioxidative, anti-tumor, anti-fatigue, anti-inflammatory, and various other effects. Consequently, there has been a surge in research endeavors dedicated to exploring its potential benefits, necessitating the organization and synthesis of these findings. This article systematically reviews the extraction and content determination methods of active substances such as polysaccharides, anthocyanins, flavonoids, and polyphenols in LRM in the past five years, as well as some active ingredient composition determination methods, biological activities, and product development. This review is divided into three main parts: extraction and determination methods, their bioactivity, and product development. Building upon prior research, we also delve into the economic and medicinal value of Lycium ruthenicum Murray, thereby contributing significantly to its further exploration and development. It is anticipated that this comprehensive review will serve as a valuable resource for advancing research on Lycium ruthenicum Murray.


Subject(s)
Lycium , Plant Extracts , Lycium/chemistry , Plant Extracts/chemistry , Anthocyanins/chemistry , Humans , Flavonoids/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Polyphenols/chemistry , Phytochemicals/chemistry , Phytochemicals/pharmacology , Polysaccharides/chemistry
13.
Front Nutr ; 11: 1406817, 2024.
Article in English | MEDLINE | ID: mdl-38746936

ABSTRACT

Russula, a renowned edible fungus, has gained popularity as a functional food among diverse populations due to the abundant presence of amino acids, proteins, and polysaccharides. As the primary constituents of Russula, polysaccharides exhibit a wide range of biological properties, making them an exceptional choice for incorporation into food, medicines, and diverse biotechnological applications. This review provides a summary of the recent research on the extraction, purification, and biological applications of polysaccharides from various Russula spp. Currently, there are many advanced extraction technologies, such as hot water-based extraction, alkali-based extraction, ultrasonic-assisted extraction and microwave-assisted extraction. Hence, the latest progress of extraction technologies, as well as their advantages and limitations will be discusses and summarizes in this review. The separation and purification methods of polysaccharide from Russula were introduced, including ethanol precipitation, deproteinization and gel filtration chromatography. It also focuses on exploring the diverse bioactive capabilities of Russula, including anti-oxidant, anti-tumor, immunomodulatory, anti-inflammation, and anti-bacterial properties. Hence, this review aims to foster a comprehensive understanding of the polysaccharides from various Russula spp. and pave the way for their promising and potential future applications in the medical and functional fields.

14.
Phytochemistry ; 223: 114117, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38697243

ABSTRACT

Cembranoids and labdanes are two important types of diterpenes in tobacco (Nicotiana genus) that are predominantly found in the leaf and flower glandular trichome secretions. This is the first systematic review of the biosynthesis, chemical structures, bioactivities, and utilisation values of cembranoid and labdane diterpenes in tobacco. A total of 131 natural cembranoid diterpenes have been reported in tobacco since 1962; these were summarised and classified according to their chemical structure characteristics as isopropyl cembranoids (1-88), seco-cembranoids (89-103), chain cembranoids (104-123), and polycyclic cembranoids (124-131). Forty natural labdane diterpenes reported since 1961 were also summarised and divided into epoxy side chain labdanes (132-150) and epoxy-free side chain labdanes (151-171). Tobacco cembranoid and labdane diterpenes are both formed via the methylerythritol 4-phosphate pathway and are synthesised from geranylgeranyl diphosphate. Their biosynthetic pathways and the four key enzymes (cembratrienol synthase, cytochrome P450 hydroxylase, copalyl diphosphate synthase, and Z-abienol cyclase) that affect their biosynthesis have been described in detail. A systematic summary of the bioactivity and utilisation values of the cembranoid and labdane diterpenes is also provided. The agricultural bioactivities associated with cembranoid and labdane diterpenes include antimicrobial and insecticidal activities as well as induced resistance, while the medical bioactivities include cytotoxic and neuroprotective activities. Further research into the cembranoid and labdane diterpenes will help to promote their development and utilisation as plant-derived pesticides and medicines.


Subject(s)
Diterpenes , Nicotiana , Trichomes , Diterpenes/chemistry , Diterpenes/pharmacology , Diterpenes/metabolism , Trichomes/chemistry , Trichomes/metabolism , Nicotiana/chemistry , Molecular Structure , Humans
15.
Front Nutr ; 11: 1359813, 2024.
Article in English | MEDLINE | ID: mdl-38585610

ABSTRACT

Perilla frutescens (L.) Britton is an annual herb plant of the Perilla genus in the Labiatae family, which is commonly utilized as an edible and medicinal resource. Polysaccharides are among the major components and essential bioactive compounds of P. frutescens, which exhibit a multitude of biological activities, including antioxidant, antitumor, anti-fatigue, immunoregulation, hepatoprotective, anti-inflammatory, and lipid-lowering effects. As a natural carbohydrate, P. frutescens polysaccharide has the potential to be utilized in the development of drugs and functional materials. In this paper, we provide an overview of progress made on the extraction, purification, structural characterization, and bioactivity of polysaccharides from different parts of P. frutescens. The challenges and opportunities for research are discussed, along with the potential development prospects and future areas of focus in the study of P. frutescens polysaccharides.

16.
Int J Biol Macromol ; 269(Pt 1): 131813, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38685537

ABSTRACT

Microbial exopolysaccharides (EPS) have various physiological functions such as antioxidant, anti-tumor, cholesterol lowering, and immune regulation. However, improving traditional fermentation conditions to increase the production of EPS from Lactiplantibacillus plantarum (L. plantarum) is limited. In this study, we aimed to better improve EPS production and physiological functions of L. plantarum YM-4-3 strain by overexpressing and knocking out the priming glycosyltransferase genes cps 2E and cps 4E for the first time. As a result, the EPS production of the overexpression strain was 30.15 %, 26.84 % and 36.29 % higher than WT, respectively. The EPS production of the knockout strain was significantly lower than that of the WT. At the same time, transcriptome data showed that the gene expression levels of each experimental strain had changed. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways found that the glycolysis/gluconeogenesis pathway had the highest gene enrichment in the metabolic pathway. The monosaccharide components of the EPS of each experimental strain were different from those of the WT and the EPS of the experimental strain showed stronger activity against oxidation. In conclusion, this study contributes to the efficient production and application of L. plantarum EPS and helps to understand the mechanism of EPS regulation in L. plantarum.


Subject(s)
Glycosyltransferases , Lactobacillus plantarum , Polysaccharides, Bacterial , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Polysaccharides, Bacterial/biosynthesis , Lactobacillus plantarum/genetics , Lactobacillus plantarum/metabolism , Gene Expression Regulation, Bacterial , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Fermentation
17.
Front Pharmacol ; 15: 1322083, 2024.
Article in English | MEDLINE | ID: mdl-38576489

ABSTRACT

Plants, renowned for their rich reservoir of metabolites, play a pivotal role in addressing health-related issues. The Verbenaceae family stands out, showcasing immense potential in preventing and treating chronic diseases. Vitex trifolia L. (V. trifolia), a shrub with a rich history in traditional medicine, particularly in Eastern Asia, has garnered attention for its diverse therapeutic applications. This comprehensive review aims to bridge traditional knowledge and contemporary insights by investigating ethnopharmacology, phytochemistry, and pharmacological effects of V. trifolia. The keyword "V. trifolia" and its synonyms were searched within the main scientific databases including PubMed, Web of Science, ScienceDirect, Google Scholar, and Baidu Scholar (from 1974 to 2022, last search: 21.10.2023). Phytochemical analyses reveal a spectrum of secondary metabolites in V. trifolia, including terpenoids, flavonoids, lignans, phytosterols, anthraquinones, and fatty acids. Notably, terpenoids and flavonoids emerge as the main bioactive metabolites. Pharmacological studies validate its therapeutic potential, demonstrating significant antioxidant, anti-inflammatory, hepatoprotective, anticancer, anti-amnesic, antimicrobial, antiviral, anti-malaria, antispasmodic activities, and reported insecticidal effects. Despite existing literature exploring pharmacological attributes and secondary metabolites of related species, a conspicuous gap exists, specifically focusing on the pharmacological activities and novel methods of purification of pure metabolites from V. trifolia. This review aimed to fill this gap by delving into traditional medicinal applications, exploring secondary metabolites comprehensively, and providing an in-depth analysis of pharmacological effects of pure metabolites. Combining traditional uses with contemporary pharmacological insights, this article sought to serve as a crucial reference for future research and practical application of V. trifolia. This approach contributes substantially to understanding the plant, fostering scientific inquiry, and facilitating its broader application in healthcare.

18.
Phytochemistry ; 222: 114089, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38626831

ABSTRACT

Meroterpenoids discovered in Rhododendrons species possess unique chemical structures and biological activities and are expected to become new drug targets for Alzheimer's disease, metabolic disorders, and chronic kidney disease, and these compounds have attracted increasing attention in recent years. In this study, Rhododendron meroterpenoids and their structures, classifications, racemate distribution, biosynthetic pathways, chemical synthesis, and bioactivities are reviewed prior to 2023.


Subject(s)
Rhododendron , Terpenes , Rhododendron/chemistry , Terpenes/chemistry , Terpenes/pharmacology , Terpenes/isolation & purification , Terpenes/chemical synthesis , Humans , Molecular Structure , Drug Discovery
19.
Mar Drugs ; 22(4)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38667775

ABSTRACT

The genus Bruguiera, a member of the Rhizophoraceae family, is predominantly found in coastal areas as a mangrove plant, boasting a rich and diverse community of endophytes. This review systematically compiled approximately 496 compounds derived from both the Bruguiera genus and its associated endophytes, including 152 terpenoids, 17 steroids, 16 sulfides, 44 alkaloids and peptides, 66 quinones, 68 polyketides, 19 flavonoids, 38 phenylpropanoids, 54 aromatic compounds, and 22 other compounds. Among these, 201 compounds exhibited a spectrum of activities, including cytotoxicity, antimicrobial, antioxidant, anti-inflammatory, antiviral, antidiabetic, insecticidal and mosquito repellent, and enzyme inhibitory properties, etc. These findings provided promising lead compounds for drug discovery. Certain similar or identical compounds were found to be simultaneously present in both Bruguiera plants and their endophytes, and the phenomenon of their interaction relationship was discussed.


Subject(s)
Endophytes , Rhizophoraceae , Endophytes/chemistry , Humans , Rhizophoraceae/microbiology , Animals
20.
Foods ; 13(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38672815

ABSTRACT

The Cucurbitaceae family is an extensive group of fruits and vegetables that exhibit common characteristics; for example, they are farmed on a global scale and exhibit a wide range of applications, including fresh consumption and use in various food and beverage products. As is frequent, many species or genera share a common name, and this can lead to some confusion when looking for information about a specific variety. In this review, we describe the findings about the biological activity, like antibacterial, antiviral, antidiabetic, and anticancer properties, of two genera of this family, Cucumis and Momordica, which have been characterized and evaluated in several research studies and regarding which information is readily accessible. Those activities rely on the various physicochemical qualities and nutritional content of each variety, including factors like ß-carotene and polyphenols, among others. The goal of this review is to provide a rapid search for each activity examined in the literature, enabling future research on their potential uses in functional foods and nutraceutical supplements.

SELECTION OF CITATIONS
SEARCH DETAIL
...