Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.263
Filter
1.
Int J Biol Macromol ; 272(Pt 1): 132813, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38825276

ABSTRACT

Bionanocomposite films of three biopolymers including chitosan, gelatin, and pectin incorporated with rosemary essential oil (REO) were developed and characterized in terms of their physical, structural, mechanical, morphological, antioxidant, and antimicrobial properties. Incorporation of REO showed an increased hydrophobic nature thus, improved water vapor transmission rate (WVTR), tensile strength (TS), elongation-at-break (EAB), and thermal stability significantly (P ≤ 0.05) as compared to the control films. The addition of REO leads to more opaque films with relatively increased microstructural heterogeneity, resulting in an increase in film opacity. Fourier transform infrared spectroscopy (FTIR) and particle size revealed that REO incorporation exhibits high physicochemical stability in chitosan, gelatin, and pectin bionanocomposite films. Incorporation of REO exhibited the highest inhibitory activity against the tested pathogenic strains (Bacillus subtilis and Escherichia coli). Furthermore, the addition of REO increased the inhibitory activity of films against ABTS and DPPH free radicals. Therefore, chitosan, gelatin, and pectin-based bionanocomposite films containing REO as food packaging could act as a potential barrier to extending food shelf life.


Subject(s)
Antioxidants , Chitosan , Food Packaging , Gelatin , Nanocomposites , Oils, Volatile , Pectins , Chitosan/chemistry , Pectins/chemistry , Gelatin/chemistry , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Nanocomposites/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Food Packaging/methods , Tensile Strength , Steam , Bacillus subtilis/drug effects , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Spectroscopy, Fourier Transform Infrared
2.
Int J Biol Macromol ; 272(Pt 1): 132846, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38834111

ABSTRACT

Skin is the first barrier of body which stands guard for defending aggressive pathogens and environmental pressures all the time. Cutaneous metabolism changes in harmful exposure, following with skin dysfunctions and diseases. Lots of researches have reported that polysaccharides extracted from seaweeds exhibited multidimensional bioactivities in dealing with skin disorder. However, few literature systematically reviews them. The aim of the present paper is to summarize structure, bioactivities and structure-function relationship of algal polysaccharides acting on skin. Algal polysaccharides show antioxidant, immunomodulating, hydration regulating, anti-melanogenesis and extracellular matrix (ECM) regulating abilities via multipath ways in skin. These bioactivities are determined by various parameters, including seaweed species, molecular weight, monosaccharides composition and substitute groups. In addition, potential usages of algae-derived polysaccharides in skin care and therapy are also elaborated. Algal polysaccharides are potential ingredients in formulation that providing anti-aging efficacy for skin.


Subject(s)
Polysaccharides , Seaweed , Skin Aging , Polysaccharides/chemistry , Polysaccharides/pharmacology , Polysaccharides/therapeutic use , Skin Aging/drug effects , Humans , Seaweed/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/therapeutic use , Animals , Skin/drug effects , Skin/metabolism , Skin Care/methods , Structure-Activity Relationship
3.
Foods ; 13(11)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38890987

ABSTRACT

Lichens are organisms constituted by a symbiotic relationship between a fungus (mycobiont) and a photoautotrophic partner (photobiont). Lichens produce several bioactive compounds; however, the biotechnological exploitation of this organism is hampered by its slow growth. To start studying the possibility of exploiting lichens as alternative sources of bioactive compounds, eighteen lichens were collected in the north of Portugal in order to isolate and study the bioactivity of their photobionts. It was possible to isolate and cultivate only eight photobionts. Three of them, LFR1, LFA2 and LCF3, belong to the Coelastrella genus, the other two (LFA1 and LCF1) belong to the Chlorella genus and for the remaining three photobionts, LFS1, LCA1 and LCR1, it was impossible to isolate their microalgae. These only grow in consortium with bacteria and/or cyanobacteria. All extracts showed antioxidant activity, mainly at a concentration of 10 mg.mL-1. LFS1, a consortium extract, showed the highest antioxidant power, as well as the highest concentration of phenolic compounds (5.16 ± 0.53 mg of gallic acid equivalents (GAE).g-1). The extracts under study did not show significant antibacterial activity against Escherichia coli, Listeria or Salmonella. The Coelastrella sp. and LFA1 extracts showed the highest hyaluronidase inhibition. The LFR1 extract at a concentration of 5 mg.mL-1 showed the highest anti-inflammatory activity (79.77 ± 7.66%). The extracts of Coelastrella sp. and LFA1 also showed greater antidiabetic activity, demonstrating the high inhibitory power of α-amylase and α-glucosidase. LFR1 at a concentration of 5 mg.mL-1, due to its selective cytotoxicity inhibiting the growth of cancer cells (Caco-2 cells), is a promising anticancer agent.

4.
Polymers (Basel) ; 16(11)2024 May 27.
Article in English | MEDLINE | ID: mdl-38891458

ABSTRACT

A challenge in tissue engineering and the pharmaceutical sector is the development of controlled local release of drugs that raise issues when systemic administration is applied. Strontium is an example of an effective anti-osteoporotic agent, used in treating osteoporosis due to both anti-resorptive and anabolic mechanisms of action. Designing bone scaffolds with a higher capability of promoting bone regeneration is a topical research subject. In this study, we developed composite multi-layer three-dimensional (3D) scaffolds for bone tissue engineering based on nano-hydroxyapatite (HA), Sr-containing nano-hydroxyapatite (SrHA), and poly-ε-caprolactone (PCL) through the material extrusion fabrication technique. Previously obtained HA and SrHA with various Sr content were used for the composite material. The chemical, morphological, and biocompatibility properties of the 3D-printed scaffolds obtained using HA/SrHA and PCL were investigated. The 3D composite scaffolds showed good cytocompatibility and osteogenic potential, which is specifically recommended in applications when faster mineralization is needed, such as osteoporosis treatment.

5.
Food Chem ; 454: 139798, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38823201

ABSTRACT

Ingestion of fermented foods impacts human immune function, yet the bioactive food components underlying these effects are not understood. Here, we interrogated whether fermented food bioactivity relates to microbial metabolites derived from aromatic amino acids, termed aryl-lactates. Using targeted metabolomics, we established the presence of aryl-lactates in commercially available fermented foods. After pinpointing fermented food-associated lactic acid bacteria that produce high levels of aryl-lactates, we identified fermentation conditions to increase aryl-lactate production in food matrices up to 5 × 103 fold vs. standard fermentation conditions. Using ex vivo reporter assays, we found that food matrix conditions optimized for aryl-lactate production exhibited enhanced agonist activity for the human aryl-hydrocarbon receptor (AhR) as compared to standard fermentation conditions and commercial products. Reduced microbial-induced AhR activity has emerged as a hallmark of many chronic inflammatory diseases, thus we envision strategies to enhance AhR bioactivity of fermented foods to be leveraged to improve human health.


Subject(s)
Amino Acids, Aromatic , Fermentation , Fermented Foods , Receptors, Aryl Hydrocarbon , Humans , Fermented Foods/analysis , Fermented Foods/microbiology , Amino Acids, Aromatic/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Lactobacillales/metabolism , Lactates/metabolism
6.
Food Chem ; 458: 140139, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38943952

ABSTRACT

The aim of this work was to develop, for the first time, sustainable strategies, based on the use of Ultrasound-Assisted Extraction, Natural Deep Eutectic Solvents, and Pressurized Liquid Extraction, to extract proteins from lime (Citrus x latifolia) peels and to evaluate their potential to release bioactive peptides. PLE showed the largest extraction of proteins (66-69%), which were hydrolysed using three different enzymes (Alcalase 2.4 L FG, Alcalase®PURE 2.4 L, and Thermolysin). The in vitro antioxidant and antihypertensive activities of released peptides were evaluated. Although all hydrolysates showed antioxidant and antihypertensive activity, the hydrolysate obtained with Thermolysin showed the most significant values. Since the Total Phenolic Content in all hydrolysates was low, peptides were likely the main contributors to these bioactivities. Hydrolysates were analyzed by UHPLC-QTOF-MS and a total of 98 different peptides were identified. Most of these peptides were rich in amino acids associated with antioxidant activity.

7.
Int J Pharm ; : 124394, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38944169

ABSTRACT

Ulcerative colitis (UC) is a chronic bowel inflammatory disease affecting the colorectum. Epidermal growth factor (EGF) has been demonstrated to be effective to counteract UC. However, there exists the gastrointestinal challenges such as stomach acid, enzyme and bile salts for oral delivery of EGF. Herein, calcium alginate microsphere was prepared by the microfluidic technique to encapsulate EGF. The morphology of EGF-loaded microsphere (MS-EGF) was spherical and its average particle size was 80 ±â€¯23 µm. The encapsulation efficiency of EGF was reaching to 93.8 % ± 1.6 %. In vitro release experiments showed that MS-EGF presented the good pH-sensitive properties, that was, it could effectively resist the gastric acid and small intestinal fluids, and undergone the rapid dissolution in the artificial colon fluid. In vitro cellular experiments demonstrated that the bioactivity of EGF was well preserved by microsphere. Moreover, in vivo murine colitis model showed that MS-EGF presented the obvious colitis alleviation. Furthermore, the colonic morphology of colitis mice was effectively recovered and the tight junction between the gut epithelium was obviously repaired. In conclusion, calcium alginate microsphere might be a promising vehicle of EGF for UC treatment.

8.
J Biomed Mater Res B Appl Biomater ; 112(7): e35440, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38923882

ABSTRACT

Hydroxyapatites (HAps) synthesized from waste animal bones have recently gained attention due to their outstanding properties. This is because there is a need to fabricate scaffolds with desirable mechanical strength, ability to withstand high temperatures, and insoluble in solvents such as water, acetone, ethanol, and isopropyl alcohol. This study is an extensive summary of many articles on the routes of synthesis/preparation of HAp, and the optimum processing parameter, and the biomedical application areas, such as: drug administration, dental implants, bone tissue engineering, orthopedic implant coatings, and tissue regeneration/wound healing. A broad catalog of the synthesis methods (and combination methods), temperature/time, shape/size, and the calcium-to-phosphorous (Ca/P) value of diverse waste animal bone sources were reported. The alkaline hydrolysis method is proposed to be suitable for synthesizing HAp from natural sources due to the technique's ability to produce intrinsic HAp. The method is also preferred to the calcination method owing to the phase transformation that takes place at high temperatures during calcinations. However, calcinations aid in removing impurities and germs during heating at high temperatures. When compared to calcination technique, alkaline hydrolysis method results in crystalline HAp; the higher degree of crystallinity is disadvantageous to HAp bioactivity. In addition, the standardization and removal of impurities and contaminants, thorough biocompatibility to ensure clinical safety of the HAp to the human body, and improvement of the mechanical strength and toughness to match specific requirements for the various biomedical applications are the important areas for future studies.


Subject(s)
Bone and Bones , Durapatite , Animals , Durapatite/chemistry , Bone and Bones/chemistry , Humans , Tissue Engineering , Bone Substitutes/chemistry , Tissue Scaffolds/chemistry
9.
AIMS Microbiol ; 10(2): 288-310, 2024.
Article in English | MEDLINE | ID: mdl-38919717

ABSTRACT

Presently, most of the reported infections are of a bacterial origin; however, this leads to a limit within the literature and research around infections caused by fungal pathogens, which are now developing resistance to antibiotic medicines. Of the natural antimicrobial agents, honey has been observed with demonstrable and highly exploitable antimicrobial and infection control related to wound healing properties; therefore, it has been incorporated into many standard pharmaceutical formulations. Generally, these products utilize a pure sample of honey as a bioactive ingredient in a product which has been purposely designed for the convenience of application. This article aims to review information available from published reports on various bioactivities of a variety of medical-grade honey products, including manuka and other conventional non-manuka types sourced from different floral types and geographical regions. Additionally, this review highlights the antibiotic activities of various types of honey products tested against pathogenic strains of bacteria, yeast and fungi, and their applications in the formulation of healthcare products.

10.
Molecules ; 29(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38930911

ABSTRACT

The genus Strophantus belongs to the Apocynaceae family of flowering plants which grows primarily in tropical Africa. The plants are widely used in traditional herbal medicine. S. sarmentosus, in particular, is used for the treatment of, e.g., joint pain and rheumatoid arthritis, wound infections, head lice, diarrhea, snake bite, and eye conditions. Despite its widespread use, dedicated research characterizing its bioactive plant components is scarce. Investigations have focused mainly on its cardenolides because of their cardioactivity and historical use as cardiotonic. There are also studies concerning the antibacterial, antioxidant, and anti-inflammatory activity of plant extracts. This review summarizes the present knowledge surrounding the biochemical and analytical research on Strophantus, in general, and S. sarmentosus, in particular, and describes the current state of the field based on the available scientific literature.


Subject(s)
Apocynaceae , Plant Extracts , Plant Extracts/chemistry , Plant Extracts/pharmacology , Humans , Apocynaceae/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Phytochemicals/chemistry , Phytochemicals/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology
11.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38931428

ABSTRACT

Bee-collected pollen (BCP) and bee bread (BB) are honey bee products known for their beneficial biological properties. The main goal of this study was to investigate BB microbiota and its contribution to bioactivity exerted by BB. The microbiota of BB samples collected at different maturation stages was investigated via culture-independent (Next Generation Sequencing, NGS) and culture-dependent methods. Microbial communities dynamically fluctuate during BB maturation, ending in a stable microbial community structure in mature BB. Bee bread bacterial isolates were tested for phenotypes and genes implicated in the production and secretion of enzymes as well as antibacterial activity. Out of 309 bacterial isolates, 41 secreted hemicellulases, 13 cellulases, 39 amylases, 132 proteinases, 85 Coomassie brilliant blue G or R dye-degrading enzymes and 72 Malachite Green dye-degrading enzymes. Furthermore, out of 309 bacterial isolates, 42 exhibited antibacterial activity against Staphylococcus aureus, 34 against Pseudomonas aeruginosa, 47 against Salmonella enterica ser. Typhimurium and 43 against Klebsiella pneumoniae. Artificially fermented samples exerted higher antibacterial activity compared to fresh BCP, strongly indicating that BB microbiota contribute to BB antibacterial activity. Our findings suggest that BB microbiota is an underexplored source of novel antimicrobial agents and enzymes that could lead to new applications in medicine and the food industry.

12.
Polymers (Basel) ; 16(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38932077

ABSTRACT

In this work, we focused on the bioactivity and antibacterial behavior of PLA-based electrospun fibers, efibers, reinforced with both MgO and Mg(OH)2 nanoparticles, NPs. The evolution of PLA-based efibers was followed in terms of morphology, FTIR, XRD, and visual appearance. The bioactivity was discussed in terms of hydroxyapatite growth after 28 days, considered as T28, of immersion in simulated body fluid, SBF. In particular, the biomineralization process evidenced after immersion in SBF started at T14 in both systems. The number of precipitated crystals increased by increasing the amount of both NPs. The chemical composition of the precipitated crystals was also characterized in terms of the Ca/P molar ratio after T28 of immersion in SBF, indicating the presence of hydroxyapatite on the surface of both reinforced efibers. Moreover, a reduction in the average diameter of the PLA-based efibers was observed, reaching a maximum reduction of 46 and 60% in the average diameter of neat PLA and PLA:OLA efibers, respectively, after 28 days of immersion in SBF. The antibacterial behavior of the MgO and Mg(OH)2 NPs in the PLA-based electrospun fibers was tested against Escherichia coli, E. coli, as the Gram-negative bacteria, and Staphylococcus aureus, S. aureus, as the Gram-positive bacteria, obtaining the best antibacterial activity against the Gram-negative bacteria E. coli of 21 ± 2% and 34 ± 6% for the highest concentration of MgO and Mg(OH)2 NPs, respectively.

13.
Food Chem ; 458: 140154, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38944924

ABSTRACT

Recent research has primarily focused on strategies for modifying insoluble dietary fiber (IDF) to enhance its performance and functionality. IDF is obtained from various inexpensive sources and can be manipulated to alter its biological effects, making it possible to revolutionize food processing and nutrition. In this review, multiple IDF modification techniques are thoroughly examined and discussed, with particular emphasis on the resulting changes in the physicochemical properties, biological activities, and microstructure of the fiber. An extensive overview of the practical applications of modified IDF in food processing is provided. Our study aims to raise awareness about the vast possibilities presented by modified IDF and encourage further exploration and utilization of this field in the realm of food production.

14.
Eur J Med Chem ; 275: 116628, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38944933

ABSTRACT

Macrocyclic peptides possess unique features, making them highly promising as a drug modality. However, evaluating their bioactivity through wet lab experiments is generally resource-intensive and time-consuming. Despite advancements in artificial intelligence (AI) for bioactivity prediction, challenges remain due to limited data availability and the interpretability issues in deep learning models, often leading to less-than-ideal predictions. To address these challenges, we developed PepExplainer, an explainable graph neural network based on substructure mask explanation (SME). This model excels at deciphering amino acid substructures, translating macrocyclic peptides into detailed molecular graphs at the atomic level, and efficiently handling non-canonical amino acids and complex macrocyclic peptide structures. PepExplainer's effectiveness is enhanced by utilizing the correlation between peptide enrichment data from selection-based focused library and bioactivity data, and employing transfer learning to improve bioactivity predictions of macrocyclic peptides against IL-17C/IL-17 RE interaction. Additionally, PepExplainer underwent further validation for bioactivity prediction using an additional set of thirteen newly synthesized macrocyclic peptides. Moreover, it enabled the optimization of the IC50 of a macrocyclic peptide, reducing it from 15 nM to 5.6 nM based on the contribution score provided by PepExplainer. This achievement underscores PepExplainer's skill in deciphering complex molecular patterns, highlighting its potential to accelerate the discovery and optimization of macrocyclic peptides.

15.
Int J Biol Macromol ; : 133251, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38945708

ABSTRACT

Bioactive hydrogels are currently receiving significant attention. In this study, silk fibroin tyramine-modified gelatin hydrogels (SF-TG) with varying degrees of tyramine root substitution were explored. The physicochemical property and biocompatibility of low degree of substitution tyramine-modified gelatin hydrogel (SF-LTG) and high degree of substitution tyramine-modified gelatin hydrogel (SF-HTG) were compared. The results showed that SF-LTG possessed better mechanical property and higher biocompatibility. Thus, SF-LTG was selected as a bioactive matrix and loaded with basic fibroblast growth factor (bFGF); subsequently, curcumin-coupled chitosan rods (CCCRs-EGF) enriched with epidermal growth factor (EGF) were added to obtain SF-LTG-bFGF@CCCRs-EGF hydrogels. The results showed that SF-LTG-bFGF@CCCRs-EGF retained the basic structural and mechanical properties of the SF-LTG matrix gel material and underwent multiple loading and orderly release with different activities while displaying antioxidant, anti-inflammatory, antimicrobial, and pro-cellular proliferation activities and orderly regulation of activity during wound healing. Therefore, the SF-LTG-bFGF@CCCRs-EGF hydrogel is of great value in healing complex wounds.

16.
Int J Biol Macromol ; : 133132, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38945725

ABSTRACT

With the increased occurrence of bacteria resistance to conventional antibiotics, the development of novel antimicrobials is urgently needed. Traditional biomaterials used for delivering these agents often struggle to achieve sustained release while maintaining non-cytotoxic properties. In this study, we present an innovative approach using bacterial polyhydroxyalkanoates (PHA) as a carrier for antimicrobial delivery, specifically designed for wound healing applications. Octenidine dihydrochloride (OCT), a widely used antimicrobial agent, served as our model drug. To achieve the desired balance of OCT release and low cytotoxicity, we introduced a novel bio-derived additive, 3-hydroxy-pentadecanoic acid (3OHC15), extracted from bacteria. This additive significantly improved the hydrophilicity of PHA films, resulting in enhanced and sustained release of OCT. Importantly, the additive did not adversely affect the material's tensile strength or thermal properties. The increased OCT release led to improved antibacterial activity against both Gram-negative and -positive strains. Most notably, the incorporation of 3OHC15 in PHA mitigated the cytotoxic effects of the released drug on human fibroblasts, ensuring biocompatibility. This work represents a novel strategy in the design of biomaterials for the delivery of bioactive compounds, achieving a critical balance between efficacy and cytocompatibility, and marks a significant advancement in the field of antimicrobial delivery systems.

17.
J Pharm Bioallied Sci ; 16(Suppl 2): S1716-S1720, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38882788

ABSTRACT

Background: Bioactivity refers to the ability of a material to interact with living organisms or biological systems in a way that elicits a specific response. In the context of materials science and medicine, bioactivity is particularly important because it can determine the suitability of material for various applications. Objective: To evaluate and compare different commercially available calcium silicate-based materials regarding: 1. Morphological and elemental analysis at the dentin/material interface. 2. Calcium and silicon release and uptake by adjacent root canal dentine by evaluating the calcium and silicon incorporation depth in adjacent root canal dentin. Materials and Methods: This study examined four calcium silicate-based cements: Biodentine, MTA Angelus, BioAggregate, and MTA Plus. One hundred extracted human teeth with intact apices and no cavities were selected. Root sections measuring 3 mm in length were created at the mid-root level using low-speed diamond discs. Bioactivity was evaluated at 1, 7, 30, and 90 days, respectively. Results: The principal composition of the interfacial dentine layer and incorporation of calcium and silicon into dentine was measured at 1, 7, 30, and 90 days. Statistical analysis was performed by multiple comparisons using post hoc Tukey HSD. Conclusion: All the materials have shown bioactivity, i.e. release of calcium, silicon, and their uptake in the adjacent dentin in the presence of phosphate-buffered saline.

18.
Adv Colloid Interface Sci ; 331: 103229, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38878587

ABSTRACT

The unregulated and extensive application of synthetic compounds, such as preservatives, pesticides, and drugs, poses serious concerns to the environment, food security, and global health. Essential oils (EOs) are valid alternatives to these synthetic chemicals due to their therapeutic, antioxidant, and antimicrobial activities. Lavender essential oil (LEO) can be potentially applied in food, cosmetic, textile, agricultural, and pharmaceutical industries. However, its bioactivity can be compromised by its poor stability and solubility, which severely restrict its industrial applications. Encapsulation techniques can improve the functionality of LEO and preserve its bioactivity during storage. This review reports recent advances in the encapsulation of LEO by different methods, such as liposomes, emulsification, spray drying, complex coacervation, inclusion complexation, and electrospinning. It also outlines the effects of different processing conditions and carriers on the stability, physicochemical properties, and release behavior of encapsulated LEO. Moreover, this review focuses on the applications of encapsulated LEO in different food and non-food products.

19.
Nat Prod Res ; : 1-14, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38885316

ABSTRACT

Natural products have been important in the discovery of new drugs, but their use is limited due to issues with accessibility and synthesis. Tetrahydronaphthoquinoline-dione (THNQ-dione) is a key structural feature found in several natural and synthetic compounds that exhibit notable biological properties. The unique properties of THNQ-diones can be attributed to the fusion of tetrahydroquinoline and anthraquinone moieties. These alkaloids are synthesised through various biosynthetic pathways, leading to diverse structures and bioactivities. Despite their significance, THNQ-diones have not been extensively covered in the review literature, highlighting the importance of this article in discussing their natural occurrence and biological activities. This article explores the distribution of THNQ-dione alkaloids in different organisms and their potential as a source of novel bioactive natural products.

20.
Int J Environ Health Res ; : 1-19, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38887995

ABSTRACT

In practically every facet of life, especially nutrition, agriculture, and healthcare, microorganisms offer a prospective origin for abundant natural substances and products. Among these microorganisms, bacteria also possess the capability to rapidly acclimate to diverse environments, utilize varied resources, and effectively respond to environmental fluctuations, including those influenced by human activities like pollution and climate change. The ever-changing environment of freshwater bodies influences bacterial communities, offering opportunities for improving health and environmental conservation that remain unexplored. Herein, the study discusses the bacterial taxa along with specialised metabolites with antioxidant, antibacterial, and anticancer activity that have been identified from freshwater environments, thus achieving Sustainable Development Goals addressing health and wellbeing (SDG-3), economic growth (SDG-8) along with industrial development (SDG-9). The present review is intended as a compendium for research teams working in the fields of medicinal chemistry, organic chemistry, clinical research, and natural product chemistry.

SELECTION OF CITATIONS
SEARCH DETAIL
...