Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Talanta ; 274: 126042, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38583326

ABSTRACT

This work emphasizes the utilization of biochar, a renewable material, as an interesting platform for anchoring redox mediators and bioreceptors in the development of economic, environmentally friendly biosensors. In this context, Fe(III) ions were preconcentrated on highly functionalized activated biochar, allowing the stable synthesis of Prussian blue nanostructures with an average size of 58.3 nm. The determination of glucose was carried out by indirectly monitoring the hydrogen peroxide generated through the enzymatic reaction, followed by its subsequent redox reaction with reduced Prussian blue (also known as Prussian white) in a typical electrochemical-chemical mechanism. The EDC/NHS (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride and N-Hydroxysuccinimide) pair was employed for the stable covalent immobilization of the enzyme on biochar. The biosensor demonstrated good enzyme-substrate affinity, as evidenced by the Michaelis-Menten apparent kinetic constant (4.16 mmol L-1), and analytical performance with a wide linear dynamic response range (0.05-5.0 mmol L-1), low limits of detection (0.94 µmol L-1) and quantification (3.13 µmol L-1). Additionally, reliable repeatability, reproducibility, stability, and selectivity were obtained for the detection of glucose in both real and spiked human saliva and blood serum samples.


Subject(s)
Biosensing Techniques , Charcoal , Ferrocyanides , Glucose , Nanostructures , Ferrocyanides/chemistry , Biosensing Techniques/methods , Nanostructures/chemistry , Charcoal/chemistry , Glucose/analysis , Glucose/chemistry , Humans , Enzymes, Immobilized/chemistry , Glucose Oxidase/chemistry , Glucose Oxidase/metabolism , Blood Glucose/analysis , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/analysis , Limit of Detection
2.
Water Res ; 231: 119645, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36702022

ABSTRACT

Migrating electric field-assisted electrocoagulation (MEAEC) is a three-electrode electrochemical system, including waste flour-derived sponge biochar (SBC) as an adsorption electrode for efficient phosphorus removal from wastewater. The SBC was applied in the MEAEC system as a pseudo capacitance electrode with low energy consumption and reached an excellent effluent level (0.12 mg/L) with a 200-s treatment time in 1 mg/L phosphate synthetic wastewater. The SBC adsorption electrode had a total charge capacitance of 1.14 F/g with abundant micropores. Continuous charging and discharging at a constant voltage over 100 cycles demonstrated the excellent durability of the biochar electrodes. The energy demand of SBC-MEAEC was only 0.0058 kWh/m3 for 90% phosphate removal, which was 65% less than that of the control. The use of SBC in the MEAEC system greatly enhanced phosphate removal at low concentrations. In the SBC-MEAEC system, the electro-desorption synchronous electrocoagulation process demonstrated efficient concentration and release of ions after electro-adsorption. These results indicate that MEAEC with an SBC electrode could achieve a high level of phosphate removal with a much lower energy consumption than in previous studies. The recovered concentrated phosphorus flocs also contained fewer metal impurities than those in previous electrochemical approaches. The proposed desorption synchronous electrocoagulation utilizing waste-derived SBC electrodes provides a cost-effective pathway to treat low phosphorous-containing wastewater.


Subject(s)
Wastewater , Water Pollutants, Chemical , Phosphorus , Waste Disposal, Fluid/methods , Electrocoagulation , Phosphates , Electrodes , Water Pollutants, Chemical/analysis
3.
Chemosphere ; 301: 134744, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35489461

ABSTRACT

A biochar electrode based biofilm reactor was developed for advanced removal of nitrate from agricultural runoff. The corn-straw (Zea mays L.) biochar formed at 500 °C has an adsorption capacity of NO3--N up to 2.659 mg g-1. After 45-day start-up phase, the removal efficiency of nitrate reached 93.4% when impressed current was 20 mA, hydraulic retention time was 12 h and chemical oxygen demand/total nitrogen (C/N) ratio was 0.56 without additional carbon source. In comparison, neither electrochemical reduction alone nor microbial denitrification alone could obtain the ideal nitrate removal efficiency. The results implied that bio-electrochemical reduction was the main way of nitrate removal in the biofilm electrode reactor (BER). The denitrification efficiency of 88.9% could still be obtained when C/N = 0. It is because biochar can significantly promote the utilization efficiency of cathode electrons by microorganisms. Thus, biochar is a promising electrode material, which provides a new idea for the optimization of BER.


Subject(s)
Denitrification , Nitrates , Biofilms , Bioreactors , Charcoal , Electrodes , Nitrogen/chemistry , Nitrogen Oxides
4.
Chemosphere ; 289: 133138, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34863725

ABSTRACT

The electrochemical disinfection efficiency of Pseudomons putida was studied using ruthenium iridium coated titanium (RICT) electrode as anode and carbonized orange peel biochar (OPB) or graphite as the cathode. The results indicated that RICT/OPB system induced 6.5 and 7.0 log of P. putia inactivation after 60 s at 2 V and 45 s at 10 V, respectively. RICT/OPB system showed better efficiency than RICT/graphite system. The energy consumption of OPB cathode (17.5 Wh m-3 per log) was significantly lower than that of graphite cathode (23.09 Wh m-3 per log). Both anode and cathode played great roles on the disinfection. The anode absorbed electric energy to generate electrical hole, which can oxidize chloride ions to chlorine free radicals. The continuous porous structure of OPB can provide more adsorption sites and reduce electrolyte transport resistance, resulting in more Cl· production. Moreover, P. putia was much easier adsorbed to the anode surface in the RICT/OPB system because of the stronger electrostatic repulsion between cells and OPB cathode. As a result, P. putia was more easily inactivated by the Cl· produced on the anode. Besides chlorine active species, superoxide radical (O2·ï¹£) produced on surface of cathode may also result in P. putia inactivation. The endogenous CuO in OPB can induce persistent free radicals (PFRs) production during pyrosis process. O2·ï¹£ can be produced by O2 activation through the function of Cu2O/CuO and PFRs existed in OPB cathode. The more superoxide radical production led to the better disinfection effect than the graphite cathode. As a consequence, OPB electrode showed high efficiency electrochemical disinfection of P. putida.


Subject(s)
Charcoal , Citrus sinensis , Disinfection , Metals/pharmacology , Pseudomonas putida/drug effects , Charcoal/pharmacology , Electrodes , Escherichia coli , Fruit
5.
Chemosphere ; 288(Pt 2): 132400, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34597629

ABSTRACT

A novel biochar electrode Bio-Fe3O4/CF used for electroreduction of nitrate was prepared by the hydrothermal synthesis method. The results showed that the growth of spherical Fe3O4 on the surface of smooth biochar can significantly increase the nitrate reduction rate. Besides, the presence of Cl and Br in the solution could promote the conversion of NH4+ to N2, thereby regulating the element nitrogen in the solution. Mechanistic analysis showed that the interconversion of Fe (II) and Fe (III) facilitates the transfer of electrons to nitrate. This study not only provides a biochar electrode material for the efficient removal of nitrate but also simply reveals regulation of halogen in solution, which provides a particular theoretical and data basis for nitrate removal.


Subject(s)
Halogens , Nitrates , Charcoal , Electrodes
6.
J Hazard Mater ; 386: 121651, 2020 03 15.
Article in English | MEDLINE | ID: mdl-31767502

ABSTRACT

In this work, a novel Pd/N-doped loofah sponge-derived biochar (Pd/NLSBC) material with three-dimensional (3D) network structure was prepared through the carbonization-impregnation method and applied as cathode for electrocatalytic bromate removal. The N-doped biochar not only increased the adsorption capacity of electrode, but also facilitated electron transfer, subsequently resulting in the high electrocatalytic activity for bromate removal. The results indicated higher bromate adsorption capacity of Pd/NLSBC electrode was favorable to the electrocatalytic bromate removal. The influences of significant operating factors including calcination temperature, initial solution pH, applied current intensity, and initial bromate concentration on electrocatalytic bromate removal were also optimized. Under the current intensity of 10 mA, Pd/NLSBC-800 exhibited the highest bromate removal efficiency (96.7 %) and the bromide conversion rate reached almost 100 % at the initial bromate concentration of 0.781 µmol L-1. This process could be effectively performed over a wide range of pH (2.0-9.0) and be well fitted to the pseudo-first-order kinetic model under different conditions. The reaction mechanism study indicated that both direct electron transfer and indirect reduction by the active hydrogen atom (H*) contributed to the elctrocatalytic bromate removal. Meanwhile, Pd/NLSBC-800 electrode could maintain its high electrocatalytic activity for bromate removal after five cycles.


Subject(s)
Bromates/chemistry , Charcoal , Electrochemical Techniques/methods , Electrodes , Luffa/chemistry , Nitrogen/chemistry , Palladium/chemistry , Adsorption , Bromates/isolation & purification , Catalysis , Oxidation-Reduction , Photoelectron Spectroscopy
SELECTION OF CITATIONS
SEARCH DETAIL