Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 780
Filter
1.
Front Med (Lausanne) ; 11: 1333472, 2024.
Article in English | MEDLINE | ID: mdl-38873209

ABSTRACT

Background: This study aims to discern the significance of common hematological and biochemical parameters for predicting urinary tract infections in geriatric patients with hip fractures. Methods: Multivariable logistic regression and propensity score-matched analyses were conducted to calculate adjusted odds ratios (ORs) and 95% confidence intervals (CIs) for UTIs. The abilities of these parameters to predict UTIs were evaluated by receiver operating characteristic (ROC) curves. Dose-response relationships were assessed by categorizing hematological and biochemical parameters into quartiles. Subgroup analyses were further explored to investigate the relationship between these parameters and urinary tract infections. Results: Out of the 1,231 participants, 23.2% were diagnosed with UTIs. Hyperglycemia, hypoproteinemia and hyperglobulinemia were risk factors for UTIs in multivariate analysis. After propensity score matching, hyperglycemia (OR 2.14, 95% CI 1.50-3.05, p < 0.001), hypoproteinemia (OR 1.75, 95% CI 1.18-2.63, p = 0.006), and hyperglobulinemia (OR 1.38, 95% CI 0.97-1.97, p = 0.074) remained significantly associated with increased odds of urinary tract infections. ROC curve analyses showed moderate predictive accuracy of blood glucose, albumin and globulin for UTIs, with areas under the curves of 0.714, 0.633, and 0.596, respectively. Significant dose-response relationships were observed between these parameters and UTIs. The associations were consistent in subgroup analyses. Conclusion: Blood glucose, albumin and globulin levels can facilitate early identification of geriatric hip fracture patients at high risk of UTIs. These easily obtainable hematological and biochemical parameters provide a practical clinical prediction tool for individualized UTI prevention in this population.

2.
Curr Ther Res Clin Exp ; 100: 100737, 2024.
Article in English | MEDLINE | ID: mdl-38860148

ABSTRACT

Background: Hepatotoxicity is the foremost issue for clinicians and the primary reason for pharmaceutical product recalls. A biomarker is a measurable and quantifiable attribute used to evaluate the efficacy of a treatment or to diagnose a disease. There are various biomarkers which are used for the detection of liver disease and the intent of liver damage. Objective: This review aims to investigate the current state of hepatotoxicity biomarkers and their utility in clinical settings. Using hepatic biomarkers, the presence of liver injury, its severity, prognosis, causative agent, and type of hepatotoxicity can all be determined. Methods: Relevant published articles up to 2022 were systematically retrieved from MEDLINE/PubMed, SCOPUS, EMBASE, and WOS databases using keywords such as drug toxicity, hepatotoxicity biomarkers, biochemical parameters, and nonalcoholic fatty liver disease. Results: In clinical trials and everyday practice, biomarkers of drug-induced liver injury are essential for spotting the most severe cases of hepatotoxicity. Hence, developing novel biomarker approaches to enhance hepatotoxicity diagnosis will increase specificity and/or identify the person at risk. Importantly, early clinical studies on patients with liver illness have proved that some biomarkers such as aminotransferase, bilirubin, albumin, and bile acids are even therapeutically beneficial. Conclusions: By assessing the unique signs of liver injury, health care professionals can rapidly and accurately detect liver damage and evaluate its severity. These measures contribute to ensuring prompt and effective medical intervention, hence reducing the risk of long-term liver damage and other major health concerns.

3.
Physiol Mol Biol Plants ; 30(5): 791-805, 2024 May.
Article in English | MEDLINE | ID: mdl-38846455

ABSTRACT

Key message: Naringenin based nanocomposite alleviate the harmful effects of drought stress in Cuminum cyminum and enhance carefully the plant tolerance against drought condition with different mechanisms. Abstract: In the recent years, drought stress is considered as one of the most important stressful conditions for agricultural plants. Reducing the effects of drought on plants is a crucial need nowadays, which calls for innovative methods. Naringenin is one of the most known plant flavonoids with antioxidant properties. In the present work, a naringenin based nanocomposite containing carboxymethylcellulose (CMC) as carrier (CMC-Nar) with an average size of 65 nm were synthesized by coacervation method. In order to investigate the effect of CMC nanocomposites containing naringenin (CMC-Nar) and pure naringenin in modulating the effects of drought stress, cultivation of Cuminum cyminum (varieties: Isfahan and Kashan) was carried out in greenhouse conditions. Drought stress was imposed as 30% of the field capacity. Various physiological, biochemical, and phytochemical assays were performed after treating the plants in drought conditions (30%). The results indicated that treatment of nanocomposites (CMC-Nar) and pure naringenin at drought conditions increased growth and photosynthetic parameters such as germination, shoot and root fresh weight, shoot dry weight, and chlorophyll content of the Cumin. Stress markers such as malondialdehyde, H2O2, and electrolyte leakage decreased under the treatment of narinjenin and especially nanocomposites (CMC-Nar) under drought conditions. Moreover, under same condition and treatments, some biochemical parameters including soluble sugar and total protein increased but the activity of antioxidant enzymes and the level of free amino acids has gone down. Compatible Solutes (Proline and glycine betaine) also increased. There was an increase in phytochemical parameters such as total phenols, flavonoids, anthocyanin, and tannins under naringenin and nanocomposites (CMC-Nar) treatment in drought conditions. In general, nanocomposites and pure naringenin reduced the harmful effects of drought stress, and the ameliorating impacts of nanocomposites (CMC-Nar) are more than pure naringenin. According to the results: In most cases, the impact of drought stress was modulated to a greater extent by (CMC-Nar) nanocomposites in the Isfahan variety compared to the Kashan variety. This research tries to propose a new method to reduce the effects of drought stress on Cuminum cyminum. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01460-7.

4.
Heliyon ; 10(11): e32056, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38882340

ABSTRACT

Washed red blood cells (RBCs) can be used to treat immune-related diseases. However, whether the washing process changes the quality of RBCs and affects the curative effect of transfusion therapy remains unclear. We retrospectively analysed the clinical data of patients who received blood transfusion. The physiological and biochemical parameters of RBCs were tested on an automated haematology-biochemical analyser. CD47 and phosphatidylserine (PS) plasma membrane expression were analysed using flow cytometry. Morphological changes in RBCs were observed using scanning electron microscopy. The results showed that the curative effect on patients who received washed RBCs was weaker than that on those who received non-washed RBCs. Physiological and biochemical parameters of RBCs were not significantly different. RBC immune indices changed significantly after washing. The expression of "don't eat me" signals was weakened, whereas the intensity of "eat me" signals was enhanced. This study suggests that the current use of physiological and biochemical parameters as indicators to evaluate the quality of RBCs may not be comprehensive and that evaluation of the real status of RBCs requires other effective parameters. Immune molecules in RBCs are expected to become supplementary markers for evaluating RBC quality.

5.
Plants (Basel) ; 13(10)2024 May 20.
Article in English | MEDLINE | ID: mdl-38794488

ABSTRACT

Salinity reduces crop yields and quality, causing global economic losses. Zinc oxide nanoparticles (ZnO-NPs) improve plant physiological and metabolic processes and abiotic stress resistance. This study examined the effects of foliar ZnO-NPs at 75 and 150 mg/L on tomato Kecskeméti 549 plants to alleviate salt stress caused by 150 mM NaCl. The precipitation procedure produced ZnO-NPs that were characterized using UV-VIS, TEM, STEM, DLS, EDAX, Zeta potential, and FTIR. The study assessed TPCs, TFCs, total hydrolyzable sugars, total free amino acids, protein, proline, H2O2, and MDA along with plant height, stem width, leaf area, and SPAD values. The polyphenolic burden was also measured by HPLC. With salt stress, plant growth and chlorophyll content decreased significantly. The growth and development of tomato plants changed by applying the ZnO-NPs. Dosages of ZnO-NPs had a significant effect across treatments. ZnO-NPs also increased chlorophyll, reduced stress markers, and released phenolic chemicals and proteins in the leaves of tomatoes. ZnO-NPs reduce salt stress by promoting the uptake of minerals. ZnO-NPs had beneficial effects on tomato plants when subjected to salt stress, making them an alternate technique to boost resilience in saline soils or low-quality irrigation water. This study examined how foliar application of chemically synthesized ZnO-NPs to the leaves affected biochemistry, morphology, and phenolic compound synthesis with and without NaCl.

6.
Cureus ; 16(4): e58889, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38800147

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) has had a significant impact on global health and healthcare systems. This retrospective study aimed to assess the association between biochemical parameters and outcomes in COVID-19 patients in Jazan, Saudi Arabia. METHODS: After establishing the inclusion criteria and obtaining ethical approval, data from 156 reverse transcriptase-polymerase chain reaction (RT-PCR)-confirmed COVID-19 patients were collected from electronic medical records from a general hospital in Samtah, Jazan, from April 2020 to October 2021. The collected data included patient demographics and liver, kidney, heart, and electrolyte function marker levels. Descriptive, inferential, and principal component analyses were conducted. RESULTS: Survival rates varied according to age and body mass index (BMI). Statistical analysis demonstrated that the levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), sodium (Na), potassium (K), blood urea nitrogen (BUN), creatinine (Cr), creatine kinase (CK), CK myocardial band (MB), and lactate dehydrogenase (LDH) were significantly higher (P < 0.05) than the reference values, as assessed using the one-sample t-test. Principal component analysis (PCA) also revealed an underlying pattern in the variation of these biochemical markers. These findings suggest that certain biochemical parameters may serve as useful indicators for monitoring the condition of COVID-19 patients. CONCLUSION: This retrospective study in Jazan, Saudi Arabia highlights the association between biochemical parameters and outcomes in COVID-19 patients. Elevated levels of markers of liver, kidney, heart, and electrolyte function suggest organ damage and dysregulation. The pattern identified through PCA provides insights into disease severity. Monitoring these parameters may serve as valuable indicators for assessing COVID-19 patients. Further research is needed to validate these findings, explore their potential for personalized treatment strategies, and improve patient outcomes during the ongoing pandemic.

7.
Environ Geochem Health ; 46(6): 197, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696118

ABSTRACT

Micro/nanoplastics (MNPs) are emerging as environmental pollutants with potential threats to human health. The accumulation of MNPs in the body can cause oxidative stress and increase the risk of cardiovascular disease (CVD). With the aim to systematically evaluate the extent of MNPs-induced oxidative damage and serum biochemical parameters in rats and mice, a total of 36 eligible articles were included in this meta-analysis study. The results reported that MNPs can significantly increase the levels of oxidants such as reactive oxygen species (ROS) and malondialdehyde (MDA) (P < 0.05), and resulted in notable increase in serum biochemical parameters including aspartate aminotransferase (AST) and alanine aminotransferase (ALT) (P < 0.05). Conversely, MNPs significantly reduced levels of antioxidants such as superoxide dismutase (SOD), glutathione (GSH), glutathione peroxidase (GPx) and catalase (CAT) (P < 0.05). Subgroup analysis revealed that smaller MNPs with oral administration and prolonged treatment, were associated with more pronounced oxidative stress and enhanced serum biochemical parameters alteration. In addition, after affected by MNPs, the levels of ALT and AST in liver group (SMD = 2.26, 95% CI = [1.59, 2.94] and SMD = 3.10, 95% CI = [1.25, 4.94]) were higher than those in other organs. These comprehensive results provide a scientific foundation for devising strategies to prevent MNPs-induced damage, contributing to solution of this environmental and health challenge.


Subject(s)
Oxidative Stress , Animals , Oxidative Stress/drug effects , Rats , Mice , Aspartate Aminotransferases/blood , Microplastics/toxicity , Alanine Transaminase/blood , Antioxidants/metabolism , Reactive Oxygen Species/metabolism , Liver/drug effects , Liver/metabolism , Environmental Pollutants/toxicity , Nanoparticles , Malondialdehyde/blood , Superoxide Dismutase/metabolism
8.
Front Public Health ; 12: 1347334, 2024.
Article in English | MEDLINE | ID: mdl-38807995

ABSTRACT

The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emerging crisis affecting the public health system. The clinical features of COVID-19 can range from an asymptomatic state to acute respiratory syndrome and multiple organ dysfunction. Although some hematological and biochemical parameters are altered during moderate and severe COVID-19, there is still a lack of tools to combine these parameters to predict the clinical outcome of a patient with COVID-19. Thus, this study aimed at employing hematological and biochemical parameters of patients diagnosed with COVID-19 in order to build machine learning algorithms for predicting COVID mortality or survival. Patients included in the study had a diagnosis of SARS-CoV-2 infection confirmed by RT-PCR and biochemical and hematological measurements were performed in three different time points upon hospital admission. Among the parameters evaluated, the ones that stand out the most are the important features of the T1 time point (urea, lymphocytes, glucose, basophils and age), which could be possible biomarkers for the severity of COVID-19 patients. This study shows that urea is the parameter that best classifies patient severity and rises over time, making it a crucial analyte to be used in machine learning algorithms to predict patient outcome. In this study optimal and medically interpretable machine learning algorithms for outcome prediction are presented for each time point. It was found that urea is the most paramount variable for outcome prediction over all three time points. However, the order of importance of other variables changes for each time point, demonstrating the importance of a dynamic approach for an effective patient's outcome prediction. All in all, the use of machine learning algorithms can be a defining tool for laboratory monitoring and clinical outcome prediction, which may bring benefits to public health in future pandemics with newly emerging and reemerging SARS-CoV-2 variants of concern.


Subject(s)
Algorithms , COVID-19 , Machine Learning , SARS-CoV-2 , Humans , COVID-19/diagnosis , Male , Female , Middle Aged , Severity of Illness Index , Adult , Biomarkers/blood , Aged , Prognosis
9.
Life (Basel) ; 14(5)2024 May 09.
Article in English | MEDLINE | ID: mdl-38792630

ABSTRACT

Alopecia constitutes one of the most common dermatological disorders, and its steadily increasing prevalence is a cause for concern. Alopecia can be divided into two main categories, cicatricial/scarring and non-cicatricial/non-scarring, depending on the causes of hair loss and its patterns. The aim of this study was to investigate the relationship between anthropometric and nutritional laboratory parameters in Caucasian adult women and men with non-cicatricial alopecia. A total of 50 patients (37 with non-cicatricial alopecia and 13 healthy controls) were included in the study. Clinical examination and scalp trichoscopy were performed. The anthropometric and nutritional laboratory parameters were collected and analyzed. No statistically significant differences in the laboratory findings were found. The patients with non-cicatricial alopecia were statistically significantly younger as compared to the controls. An elevated risk of hair loss, which was detected among the younger participants, might be associated with a modern lifestyle and the so-called 'Western diet'. It seems safe to assume that suboptimal nutrition and poor eating habits during childhood might constitute risk factors for early hair loss.

10.
Sci Rep ; 14(1): 11568, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38773157

ABSTRACT

Artemisia cina (Ac) is a plant with anthelmintic compounds such as 3'-demethoxy-6-O-demethylisoguaiacin (D) and norisoguaiacin (N). Three major objectives were proposed: (1) To evaluate biochemical parameters in blood (2) to determine the tissue oxidative stress by biomarkers as TBARS and glutathione peroxidase activity, and (3) to evaluate anatomopathological changes in organs such as the brain, liver, kidney, and lung after oral administration of n-hexane extract of Ac and D and N. D and N were administrated following the OECD guides for acute oral toxicity evaluation (Guide 420). Fifty Wistar rats were distributed into ten groups as follows: Group 1 (G1): 4 mg/Kg; G2: 40 mg/Kg; G3: 240 mg/Kg; G4: 1600 mg/Kg of n-hexane extract of Ac. G5: 2 mg/Kg; G6: 20 mg/Kg; G7: 120 mg/Kg; G8: 800 mg/Kg of D and N, G9: water and G10: polyvinylpyrrolidone at 2000 mg/Kg. At 14 days, the rats were euthanized, and the blood, liver, brain, kidney, and lung were taken for biochemical analysis, anatomopathological changes, and TBARS and GSH evaluation. Glucose, cholesterol, and phosphorus were altered. Histopathological analysis showed multifocal neuronal degeneration in the brain (G2). The kidney and lungs had changes in G7. The GSH and TBARS increased in G6 and G7. The TBARS activity was higher in G1 and G2. In conclusion, extract and D and N of Ac did not have damage at therapeutic doses. D, N, and n-hexane extract of A. cina do not cause histopathological damage at pharmaceutical doses. Still, the brain, kidney, and liver are related to biochemical parameters at higher doses. However, compounds are proposed as antioxidant agents.


Subject(s)
Biomarkers , Oxidative Stress , Plant Extracts , Rats, Wistar , Animals , Oxidative Stress/drug effects , Rats , Plant Extracts/pharmacology , Plant Extracts/chemistry , Male , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Brain/pathology , Brain/drug effects , Brain/metabolism , Liver/drug effects , Liver/pathology , Liver/metabolism , Glutathione Peroxidase/metabolism , Thiobarbituric Acid Reactive Substances/metabolism
11.
Environ Monit Assess ; 196(6): 559, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767736

ABSTRACT

The study of biochemical parameters provides an idea of the resistance of plants against air pollutants. Biochemical and Physiological parameters are studied with the help of Air pollution tolerance index (APTI). Fifteen plant species were evaluated to assess biochemical and APTI from two polluted sites (Phagwara Industrial area and Phagwara Bus stand area). The values of APTI were found to be highest for Mangifera indica (19.6), Ficus religiosa (19.3), and Ficus benghalensis (15.8) in the industrial area. On the roadside, Mangifera indica (16.8), Ficus benghalensis (16.5), and Ficus religiosa (16.4). Mangifera indica, Ficus religiosa, and Ficus benghalensis were found to be excellent performers in reducing pollution at both the sampling sites as per the APTI values. The order of tolerance was Mangifera indica > Ficus religiosa > Ficus benghalensis > Polyalthia longifolia > Mentha piperita in both the polluted sites. Morphological changes were observed in the plants, suggesting the possibility of pollution stress, which is probably responsible for the changes in biochemical parameters. As a result, the relationship between morphological and biochemical parameters of selected plant species growing in roadside and industrial areas was explored. The findings revealed that relative water content showed a significant positive and negative correlation with leaf surface texture and leaf surface area. On the other hand, ascorbic acid showed a significant positive correlation with them. In conclusion, it has been studied that morphological parameters including biochemical parameters can be proved to be important in investigating the ability of plants to cope with air pollution and in calculating tolerance index.


Subject(s)
Air Pollutants , Environmental Monitoring , Plant Leaves , Plant Leaves/chemistry , Air Pollutants/analysis , Mangifera , Air Pollution , Ficus , Plants , Industry
12.
Antioxidants (Basel) ; 13(5)2024 May 03.
Article in English | MEDLINE | ID: mdl-38790670

ABSTRACT

Soil is an environment with numerous niches, where bacteria are exposed to diverse conditions. Some bacteria are exposed earlier than others to pressure, and the emission of signals that other bacteria can receive and perceive may allow a better response to an eminent stimulus. To shed light on how bacteria trigger their response and adapt to changes in the environment, the intra- and interspecific influences of volatiles on bacterial strains growing under non-stressed and cadmium-stressed conditions were assessed. Each strain was exposed to its volatiles emitted by cells growing under different conditions to test whether the environment in which a cell grows influences neighboring cells. The five genera tested showed different responses, with Rhizobium displaying the greatest influence. In a second experiment, 13 strains from different genera were grown under control conditions but exposed to volatiles released by Cd-stressed Rhizobium cells to ascertain whether Rhizobium's observed influence was strain-specific or broader. Our results showed that the volatiles emitted by some bacteria under stress are differentially perceived and translated into biochemical changes (growth, alteration of the antioxidant response, and oxidative damage) by other bacteria, which may increase the adaptability and resilience of bacterial communities to environmental changes, especially those with a prooxidant nature. Cadmium (Cd) contamination of soils constitutes a risk to the environment and human health. Here, we showed the effects of Cd exposure on bacteria and how volatile communication influences the biochemistry related to coping with oxidative stress. This knowledge can be important for remediation and risk assessment and highlights that new biological features, such as volatile communication, should be considered when studying and assessing the impact of contaminants on soil ecosystems.

13.
Medicina (Kaunas) ; 60(5)2024 May 09.
Article in English | MEDLINE | ID: mdl-38792967

ABSTRACT

Background and Objectives: mortality and morbidity due to cardiovascular causes are frequently experienced in amputees. Research on the effects of chronic exercise on biomarkers and cardiac damage indicators in these individuals is limited. The aim of this study was to investigate the effects of a core training program on brain natriuretic-related peptide, as well as hematological and biochemical parameters in amputee soccer players. Materials and Methods: The participants were randomly allocated to the following two groups: a core exercise group (CEG) and a control group (CG). While the CG continued routine soccer training, the CEG group was included in a core exercise program different from this group. During the study, routine hemogram parameters of the participants, various biochemical markers, and the concentration of brain natriuretic-related peptide (NT-pro-BNP) were analyzed. Results: after the training period, notable improvements in various hematological parameters were observed in both groups. In the CEG, there were significant enhancements in red blood cell count (RBC), hematocrit (HCT), mean corpuscular hemoglobin concentration (MCHC), and mean corpuscular hemoglobin (MCH) values. Similarly, the CG also showed substantial improvements in RBC, HCT, mean corpuscular volume (MCV), MCHC, MCH, red cell distribution width-standard deviation (RDW-SD), platelet-to-lymphocyte ratio (PLCR), mean platelet volume (MPV), and platelet distribution width (PDW). Moreover, in the CEG, serum triglycerides (TG) and maximal oxygen uptake (MaxVO2) exhibited significant increases. Conversely, TG levels decreased in the CG, while high-density lipoprotein (HDL), low-density lipoprotein (LDL), and MaxVO2 levels demonstrated substantial elevations. Notably, the N-terminal pro-brain natriuretic peptide (BNP) levels did not undergo significant changes in either the CEG or the CG following the core exercise program (p > 0.05). However, in the CEG, a meaningful positive correlation was observed between NT-pro-BNP and creatine kinase (CK) levels before and after the core exercise program. Conclusions: the findings emphasized the potential benefits of core training in enhancing specific physiological aspects, such as erythrocyte-related parameters and lipid metabolism, as well as aerobic capacity. Furthermore, the observed correlation between NT-pro-BNP and CK levels in the CEG provides intriguing insights into the unique physiological adaptations of amputee athletes.


Subject(s)
Amputees , Athletes , Exercise , Natriuretic Peptide, Brain , Peptide Fragments , Humans , Natriuretic Peptide, Brain/blood , Male , Athletes/statistics & numerical data , Adult , Exercise/physiology , Peptide Fragments/blood , Amputees/rehabilitation , Biomarkers/blood , Soccer/physiology , Hematocrit/methods , Erythrocyte Indices/physiology
14.
Cureus ; 16(4): e57766, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38716031

ABSTRACT

BACKGROUND: Pregnant women constitute a high-risk group for nutrient deficiency anemia which may be associated with detrimental effects on maternal and infant health. OBJECTIVES:  This study aimed to assess and compare hematological and biochemical changes across trimesters in pregnant women, considering parameters such as hemoglobin, serum iron, unsaturated iron-binding capacity (UIBC), total iron-binding capacity (TIBC), ferritin, vitamin B12, and folic acid. The research sought to identify mean value differences, correlations, and potential implications for maternal healthcare practices. METHODS:  A hospital-based prospective observational study was conducted, involving 60 primigravida women with singleton pregnancies. The subjects were assessed during the first, second, and third trimesters. Biochemical parameters were assessed using standard methods, and statistical analysis was performed to identify significance and correlations. RESULTS:  The study revealed a significant decline in hemoglobin, serum iron, ferritin, vitamin B12, and folic acid as pregnancy advanced. Hemoglobin levels decreased from 11.40 g/dl (first trimester) to 10.43 g/dl (third trimester). Serum iron exhibited a decline from 109.73 µg/dl (first trimester) to 94.03 µg/dl (third trimester). Serum ferritin decreased from 24.93 ng/ml (first trimester) to 18.21 ng/ml (third trimester). Vitamin B12 levels dropped from 255.92 pg/ml (first trimester) to 92.13 pg/ml (third trimester). Folic acid levels decreased from 13.82 ng/ml (first trimester) to 11.77 ng/ml (third trimester). UIBC and TIBC concentrations increased progressively across trimesters. Statistical evaluations confirmed the significance of these trends. The coefficient of correlation indicated positive relationships between hemoglobin and serum iron, ferritin, folic acid, and vitamin B12. Positive correlation between serum iron and ferritin, vitamin B12, and negative with folic acid. Serum ferritin negatively correlated with vitamin B12 and folic acid. Serum folic acid and vitamin B12 are positively correlated. CONCLUSION:  The findings emphasize the dynamic nature of hematological and biochemical changes during pregnancy. The observed trends have profound implications for maternal healthcare practices, urging targeted interventions, early monitoring, and supportive supplementation. Recognizing these variations contributes to the optimization of health outcomes for both mother and child.

15.
Cureus ; 16(4): e58551, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38765443

ABSTRACT

Introduction Anti-citrullinated protein/peptide antibodies (ACPA) are crucial for the diagnosis and prognosis of rheumatoid arthritis (RA) and are associated with class II HLA-DRB1 alleles. The study's goal was to determine how DRB1 alleles and hematological and biochemical parameters affect ACPA production in RA patients from Sudan. Methods The study analyzed the hematological and biochemical parameters and the frequency of HLA-DRB1 alleles in 120 RA patients and 100 controls. Automated analyzers, ELISA, the latex agglutination test, and the Westergren method were utilized for hematological and biochemical testing. HLA class II alleles were genotyped using polymerase chain reaction-sequence-specific primers (PCR-SSP). The student's t-test and the chi-square (Χ2) test were employed to identify significant alterations between the examined parameters and allele frequencies. Results A total of 51.7% of 120 RA patients tested positive for ACPA (ACPA+). Among those patients, the DRB1*04 and *10 alleles were significantly more prevalent (22.2% vs. 8.9%, P = 0.048 and 23.8% vs. 8.9%, P = 0.030, respectively). RA patients had significantly higher counts of platelet count test (PLT; P = 0.011), lymphocytes (LY; P = 0.000), neutrophils (NE; P = 0.025), monocytes (MO; P = 0.000), eosinophils (EO; P = 0.000), neutrophil-to-lymphocyte ratio (NLR; P = 0.006), C-reactive protein (CRP; P = 0.000), and erythrocyte sedimentation rate (ESR; P = 0.000) than controls. Patients also showed low counts of red blood cells (RBC; P = 0.003), hemoglobin (Hb; P = 0.024), mean platelet volume (MPV; P = 0.000), and basophils (BA; P = 0.048). ACPA+ RA patients had elevated white blood cells (WBC; P = 0.046), PLT (P = 0.029), and low mean corpuscular hemoglobin concentration (MCHC; P = 0.022). The hematological and biochemical parameters of ACPA+ RA patients with the DRB1*04 or *10 alleles did not differ significantly. Conclusions We found significant differences in hematological and biochemical parameters between RA patients and controls that had nothing to do with ACPA positivity or the frequency of DRB1*04 or *10 alleles.

16.
Ecotoxicol Environ Saf ; 278: 116347, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38691881

ABSTRACT

Hypoxia, largely triggered by global warming and water contamination, has become an environmental issue of great concern, posing a great threat to aquatic ecosystem. As one of the world's most economically important fish, rainbow trout (Oncorhynchus mykiss) is extremely intolerant of hypoxic environments, however, little is known about the roles of non-coding RNAs (ncRNAs) in the response of rainbow trout to hypoxia stress. Herein, effects of moderate (Tm12L) and severe hypoxia for 12 h (Ts12L) and 12 h reoxygenation on histology, biochemical parameters (antioxidant, metabolism and immunity) and transcriptome (lncRNA, miRNA and mRNA) in rainbow trout liver were investigated. We further validated the regulatory relationships between LOC110519952, novel-m0023-5p and glut1a via dual­luciferase reporter, overexpression and silencing assays. Compared with Tm12L, the liver in Ts12L showed more severe oxidative damage. Anaerobic, lipid and protein metabolism was enhanced under hypoxia stress, especially in Ts12L. We also found that Tm12L could strengthen innate immune response, which was inhibited in Ts12L. Besides, several hypoxia-related genes (glut1a, vegfaa, hmox, epoa, foxo1a and igfbp1) and ceRNA networks were identified from 1824, 427 and 545 differentially expressed mRNAs, miRNAs and lncRNAs, including LOC118965299-novel-m0179-3p-epoa, LOC110519952-novel-m0023-5p-glut1a, MSTRG.7382.2-miR-184-y-hmox and LOC110520012-miR-206-y-vegfaa. Through in vitro and in vivo functional analysis, we demonstrated that glut1a is a target of novel-m0023-5p, and LOC110519952 can positively regulate glut1a by targeting novel-m0023-5p. Introduction of LOC110519952 could attenuate the promoting effects of novel-m0023-5p on rainbow trout liver cell viability and proliferation. This study highlights the differences in the regulatory mechanism of rainbow trout under different concentrations of hypoxia stress and provides valuable data for further research on the molecular mechanisms of fish adaptation to hypoxic environments.


Subject(s)
Oncorhynchus mykiss , Transcriptome , Animals , Oncorhynchus mykiss/genetics , MicroRNAs/genetics , Liver/metabolism , Stress, Physiological , Hypoxia , RNA, Long Noncoding/genetics , Oxidative Stress , Immunity, Innate/genetics
17.
Poult Sci ; 103(6): 103702, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38652950

ABSTRACT

The aim of this study was to investigate the effects of solid-state fermented cottonseed meal (FCSM) inclusion levels on the growth performance, serum biochemical parameters and hepatic lipid metabolism in geese from 28 to 70 d of age. A total of 288 twenty-eight-d-old male geese were randomly divided into 4 treatments with FCSM levels of 0, 5, 15 and 25% including 0, 22.74, 67.33, 111.27 mg FG/kg diet, respectively. Each treatment contained 6 replicates and 12 birds per replicate. Treatments of FCSM inclusions from 0 to 25% had no effect on growth rate and feed intake in geese during d 28 to 70. The F/G ratio was increased (P < 0.05) in geese fed the diet with 25% FCSM compared with birds fed the diet with 0% FCSM. Treatment with 25% FCSM levels had no effect on the contents of TC, TG, HDL-C, LDL-C, but increased (P < 0.05) AST and ALT activities in serum of geese at d 70. Treatment with 25% FCSM increased the contents of FG, HDL-C, TC, C18:2n6, C20:4n6 and PUFA and decreased (P < 0.05) the contents of NEFA, SFA, MUFA in liver compared with treatment of 0% FCSM inclusion. Additionally, treatment with 25% FCSM decreased (P < 0.05) the PPARα, AMPK, and LXR mRNA expression related to lipid deposition, and increased (P < 0.05) PPARγ and ACC mRNA expression related to lipolysis in liver compared with birds fed the diet with 0% FCSM. Overall, treatment with 0 to 15% FCSM (<=67.33 mg FG/kg diet) had no adverse effects on the growth performance and lipid metabolism of geese. However, treatment fed 25% FCSM (111.27 mg FG/kg diet) decreased feed efficiency and promoted hepatic lipid deposition associated with the alteration of related gene expression in geese at 28 to 70 d of age.


Subject(s)
Animal Feed , Diet , Geese , Lipid Metabolism , Liver , Animals , Geese/growth & development , Male , Animal Feed/analysis , Diet/veterinary , Liver/metabolism , Fermentation , Random Allocation , Cottonseed Oil/metabolism , Cottonseed Oil/administration & dosage , Animal Nutritional Physiological Phenomena/drug effects , Dose-Response Relationship, Drug , Dietary Supplements/analysis
18.
Animals (Basel) ; 14(7)2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38612347

ABSTRACT

As a reactive species, the red deer is sensitive to both negative exogenous and endogenous stimuli. An intensive hunting period may have a particularly negative impact on game animals. The aim of this study was to determine the plasma cortisol level and biochemical parameters in 25 wild red deer (Cervus elaphus) harvested during stalking hunts in correlation with the sex and age of the animals. The mean cortisol concentrations in the stags and hinds analyzed in this study were similar (20.2 and 21.5 ng/mL, respectively). Higher HDL cholesterol values were found in the blood of the hinds than in stags (p < 0.05). Similarly, the mean levels of LDL cholesterol, lactate dehydrogenase, and alanine aminotransferase were higher by 21%, 16%, and 42%, respectively, in the blood of the hinds. In contrast, the levels of alkaline phosphatase, bilirubin, and aspartate aminotransferase were higher in the stags (by 30%, 49%, and 36%, respectively). There was a negative correlation of the cortisol concentration with urea and bilirubin and a positive correlation between cortisol and aspartate aminotransferase in the stags (p < 0.05). In turn, a negative correlation was found between the cortisol and urea levels in the hinds (p < 0.05). In summary, the stress caused by stalking hunts and the characteristic behavior of red deer during the mating season had an impact on chosen biochemical parameters. The increased concentration of cortisol resulted in a decrease in the carcass mass, which may lead to the deterioration of the physical condition of animals on hunting grounds.

19.
Cureus ; 16(3): e56661, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38646205

ABSTRACT

Background Internally displaced persons (IDP) camps are still home to a large number of female survivors of the Yazidi genocide carried out in Iraq in 2014 by the Islamic organization known as the Islamic State of Iraq and Syria (ISIS). Many of these women suffer from a persistent form of post-traumatic stress disorder (PTSD), which can last for many years. On the other hand, little is known about the intricate etiology of PTSD. Objectives In this observational cross-sectional study, the biochemical parameters, including inflammatory and oxidative stress (OXS) markers, were evaluated in two groups: the case group (women with newly diagnosed PTSD) and the control group (apparently healthy women). Furthermore, how the environment impacts the biochemical and OXS parameters of people not diagnosed with PTSD but living in IDP camps was also analyzed. Materials and methods The PTSD group (n=55, age=30.0 years) was made up of women survivors of genocide-related events living in IDP camps in the Kurdistan region of Iraq. The studied parameters in the PTSD group have been compared to two healthy control groups: (1) internal control group (n=55, age=28.1 years): healthy women living inside the IDP camps; and (2) external control group (n=55, age=28.3 years): healthy women living outside the IDP camps. The diagnosis of PTSD was conducted using a validated Kurdish version of the PTSD Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) (PCL-5) scale. Blood samples were collected to determine the level of glycated hemoglobin (HbA1c) and the concentrations of fasting serum glucose (FSG), C-reactive protein (CRP), ceruloplasmin (CP), 8-hydroxydeoxyguanosine (8-OHdG), glutathione (GSH), malondialdehyde (MDA), protein carbonyls (PC), and catalase (CAT) activity. Results Women with PTSD presented increased values of FSG (4.41%, p<0.05), HbA1c (4.74%, p<0.05), and CRP (114.29%, p<0.05), as well as increased levels of 8-OHdG (185.97%, p<0.001), CP (27.08%, p<0.001), MDA (141.97%, p<0.001), and PC (63.01%, p<0.001), besides increased CAT activity (121.5%, p<0.001), when compared with the control groups. A significant reduction of GSH (-20.33%, p<0.05) was observed in PTSD patients as compared to the external control group. In relation to the internal control group, women diagnosed with PTSD presented significantly increased levels of FSG (3.88%, p<0.05), HbA1c (2.83%, p<0.05), CRP (77.97%, p<0.05), and PC (41.3%, p<0.05), as well as increased levels of 8-OHdG (118.84%, p<0.001), CP (22.72%, p<0.001), MDA (90.67%, p<0.001), and CAT activity (55.31%, p<0.001). Healthy individuals residing in IDP camps, compared with external healthy control, presented significantly elevated levels of 8-OHdG (30.68%, p<0.001), MDA (26.91%, p<0.001), PC (15.37%, p<0.001), and CAT activity (42.62%, p<0.001). Conclusion Our findings indicate that PTSD significantly influences glycemic, inflammatory, oxidant, and antioxidant parameters, as evidenced by increased levels of FSG, HbA1C, CRP, PC, MDA, 8-OHdG, and CP, as well as increased CAT activity and a reduced GSH concentration in the PTSD group in comparison to the external control group. Additionally, our results suggest that the environmental context in IDP camps by itself can potentially affect oxidant and antioxidant parameters, as evidenced by the increased concentrations of 8-OHdG, MDA, and PC and increased CAT activity found in individuals not diagnosed with PTSD but living inside the camps.

20.
Toxicol Res (Camb) ; 13(2): tfae058, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38617714

ABSTRACT

The present study aimed to elucidate the short term biodistribution of nano sized graphene oxide (GO) along with the toxicological assessment under in-vivo condition with an intent to analyse the toxic effects of sudden accidental exposure of GO The synthesised GO was characterized using UV-Visible spectroscopy, XRD, FTIR, Raman spectroscopy, TGA and DLS. The morphological imaging was performed using SEM, TEM and AFM. With a lateral size of less than 300 nm, these nanoparticles exhibit significant organ barrier permeability of up to 20%. Upon acute exposure to 10 mg/kg dose of ICG-tagged GO nanoflakes through intravenous route, various organs such as kidney, spleen and liver were observed, and the nanoparticles predominantly accumulated in the liver upon 24 h of exposure. Upon confirming the accumulation of these particles in liver through IVIS imaging, our next attempt was to analyse various biochemical and serum parameters. An elevation in various serum parameters such as ALT, AST, Creatinine and Bilirubin was observed. Similarly, in the case of biochemical parameters tested in liver homogenates, an increase in NO, Catalase, GSH, SOD, ROS, LPO, GR, GPx, and GST was observed. This study highlights the potential toxicological risk associated with GO exposure which must be taken into account for any risk analysis associated with GO based consumer products and the occupational hazards.

SELECTION OF CITATIONS
SEARCH DETAIL
...