Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 603
Filter
1.
Biofouling ; 40(7): 415-430, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38984682

ABSTRACT

Artificial reefs represent useful tools to revitalize coastal and ocean ecosystems. Their formulation determines the biofilm formation which is the prerequisite for the colonization process by marine micro- and macroorganisms. In comparison with concrete, biobased polymers offer improved characteristics, including architecture, formulation, rugosity and recycling. This article aims to explore a new scale of artificial reef made of biocomposites reinforced with a high flax fibre (Linum utilatissimum) content (30%). Cellular adhesion and resulting biofilm formation were assessed using two marine microorganisms: Pseudoalteromonas sp. 3J6 and Cylindrotheca closterium. The influence of flax fibre leachates and plastic monomers on the growth of those marine microorganisms were also evaluated. Results indicated that the introduction of flax fibres inside the polymer matrix modified its physicochemical properties thus modulating adhesion and biofilm formation depending on the microorganism. This study gives insights for further developments of novel functionalized artificial reefs made of biocomposites.


Subject(s)
Biofilms , Flax , Pseudoalteromonas , Biofilms/growth & development , Flax/microbiology , Flax/chemistry , Pseudoalteromonas/physiology , Bacterial Adhesion
2.
Polymers (Basel) ; 16(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39000662

ABSTRACT

The wide range of applications and the numerous advantages of plastics have led to their excessive use, with subsequent damage to ecosystems. As an environmentally friendly alternative, biocomposites have gained much attention, and microalgae have become a potential source for their production. In this study, the use of washed and unwashed Spirulina in polyethylene-based composites has been evaluated as a way to prevent the thermooxidation of polyethylene, while at the same time, reducing the amount of virgin plastic used. Biocomposites were produced by rotomolding, testing different biomass contents and determining their mechanical and thermal performances as well as their water uptake level. Composites with up to 15% of biomass (by weight), a particularly high ratio for rotomolding, were satisfactorily produced. Using 5% of both biomasses did not significantly modify the behavior when compared with the neat PE samples' properties. For higher loadings, the use of non-washed biomass allowed us to obtain better properties, with added benefits related to using an unwashed biomass (less water consumption, lower costs and fewer environmental impacts). On the other hand, this study showed a promising beneficial effect on the thermooxidative resistance of composites, as the oxidation induction times were notably increased with biomass addition.

3.
Polymers (Basel) ; 16(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39000688

ABSTRACT

Microplastics' spreading in the ocean is currently causing significant damage to organisms and ecosystems around the world. To address this oceanic issue, there is a current focus on marine degradable plastics. Polycaprolactone (PCL) is a marine degradable plastic that is attracting attention. To further improve the biodegradability of PCL, we selected a completely new protein that has not been used before as a functional filler to incorporate it into PCL, aiming to develop an environmentally friendly biocomposite material. This novel protein is derived from the mucus bubbles of the violet sea snail (VSS, Janthina globosa), which is a strong bio-derived material that is 100% degradable in the sea environment by microorganisms. Two types of PCL/bubble composites, PCL/b1 and PCL/b5, were prepared with mass ratios of PCL to bubble powder of 99:1 and 95:5, respectively. We investigated the thermal properties, mechanical properties, biodegradability, surface structure, and crystal structure of the developed PCL/bubble composites. The maximum biochemical oxygen demand (BOD) degradation for PCL/b5 reached 96%, 1.74 times that of pure PCL (≈55%), clearly indicating that the addition of protein fillers significantly enhanced the biodegradability of PCL. The surface morphology observation results through scanning electron microscopy (SEM) definitely confirmed the occurrence of degradation, and it was found that PCL/b5 underwent more significant degradation compared to pure PCL. The water contact angle measurement results exhibited that all sheets were hydrophobic (water contact angle > 90°) before the BOD test and showed the changes in surface structure after the BOD test due to the newly generated indentations on the surface, which led to an increase in surface toughness and, consequently, an increase in surface hydrophobility. A crystal structure analysis by wide-angle X-ray scattering (WAXS) discovered that the amorphous regions were decomposed first during the BOD test, and more amorphous regions were decomposed in PCL/b5 than in PCL, owing to the addition of the bubble protein fillers from the VSS. The differential scanning calorimeter (DSC) and thermal gravimetric analysis (TGA) results suggested that the addition of mucus bubble protein fillers had only a slight impact on the thermal properties of PCL. In terms of mechanical properties, compared to pure PCL, the mucus-bubble-filler-added composites PCL/b1 and PCL/b5 exhibited slightly decreased values. Although the biodegradability of PCL was significantly improved by adding the protein fillers from mucus bubbles of the VSS, enhancing the mechanical properties at the same time poses the next challenging issue.

4.
Biosens Bioelectron ; 262: 116562, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39018975

ABSTRACT

Non-invasive detection of tumors is of utmost importance to save lives. Nonetheless, identifying tumors through gas analysis is a challenging task. In this work, biosensors with remarkable gas-sensing characteristics were developed using a self-assembly method consisting of peptides and MXene. Based on these biosensors, a mimetic biosensor array (MBA) was fabricated and integrated into a real-time testing platform (RTP). In addition, machine learning (ML) algorithms were introduced to improve the RTP's detection and identification capabilities of exhaled gas signals. The synthesized biosensor, with the ability to specifically bind to targeted gas molecules, demonstrated higher performance than the pristine MXene, with a response up to 150% greater. Besides, the MBA successfully detected 15 odor molecules affiliated with five categories of alcohols, ketones, aldehydes, esters, and acids by pattern recognition algorithms. Furthermore, with the ML assistance, the RTP detected the breath odor samples from volunteers of four categories, including healthy populations, patients of lung cancer, upper digestive tract cancer, and lower digestive tract cancer, with accuracies of 100%, 94.1%, 90%, and 95.2%, respectively. In summary, we have developed a cost-effective and precise model for non-invasive tumor diagnosis. Furthermore, this prototype also offers a versatile solution for diagnosing other diseases like nephropathy, diabetes, etc.

5.
Bioresour Bioprocess ; 11(1): 57, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836876

ABSTRACT

The canola oil industry generates significant waste as canola meal (CM) which has limited scope and applications. This study demonstrates the possibility of valorization of CM as a sustainable natural filler in a biodegradable polymer composite of Poly(lactic acid) (PLA). Generally, interfacial bonding between natural fibers and the polymer matrix in the composite is weak and non-uniform. One possible solution is to derivatize natural fibre to introduce interfacial bond strength and compatibility with the PLA polymer matrix. Here, CM was succinylated in a reactive extrusion process using succinic anhydride at 30 wt% to get 14% derivatization with 0.02 g of -COOH density per g of CM. The CM or succinylated CM at 5 and 15 wt% was co-extruded with amorphous PLA to get composite fibers. CM-PLA and succinylated CM-PLA biocomposites were foamed using a mild and green microcellular foaming process, with CO2 as an impregnating agent without any addition of organic solvents. The properties of the foams were analyzed using differential scanning calorimetry (DSC), Dynamic mechanical thermal analysis (DMTA), shrinkage, and imaging. The addition of CM or succinylated CM as a natural filler did not significantly change the glass transition temperature, melting point, percent crystallization, stiffness, and thermal stability of PLA foams. This suggests succinylation (modification) of CM is not a mandatory step for improving interphase compatibility with the amorphous PLA. The new PLA-CM foams can be a good alternative in the packaging industry replacing the existing petroleum-based polymer foams.

6.
ACS Appl Mater Interfaces ; 16(24): 30819-30832, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38845592

ABSTRACT

Sodium alginate (SA) biopolymeric films have various limitations such as poor mechanical properties, high vapor permeability, lack of antibacterial activity, excessive burst release, and weak cell adhesion. To overcome these limitations, a strategy involving the integration of nanofillers into an SA film matrix is explored. In this context, a cost-effective iron-containing carbon nano biocomposite (FeCNB) nanofiller is developed using a solvent-free technique. This nanocomposite is successfully incorporated into the alginate film matrix at varying concentrations (0.05, 0.1, and 0.15%) aimed at enhancing its physicochemical and biological properties for biomedical applications. Characterization through FESEM and BET analyses confirms the porous nature of the FeCNB. EDX shows the FeCNB's uniform distribution upon its integration into the film matrix, albeit without strong chemical interaction with SA. Instead, hydrogen bonding interactions become apparent in the FTIR spectra. By incorporating the FeCNB, the mechanical attributes of the films are improved and the water vapor permeability approaches the desired range (2000-2500 g/m2day). The film's swelling ratio reduction contributes to a decrease in water permeability. The antibacterial activity and sustained release property of the FeCNB-incorporated film are established using tetracycline hydrochloride (TCl), a model drug. The drug release profile resembled Korsmeyer-Peppas's release pattern. In vitro assessments via the MTT assay and scratch assay on NIH-3T3 cells reveal that FeCNB has no adverse effects on the biocompatibility of alginate films. The cell proliferation and adhesion to the SA film are significantly enhanced after infusion of the FeCNB. The in vivo study performed on the rat model demonstrates improved wound healing by FeCNB-impregnated films. Based on the comprehensive findings, the proposed FeCNB-incorporated alginate films prove to be a promising candidate for robust skin repair.


Subject(s)
Alginates , Anti-Bacterial Agents , Iron , Animals , Alginates/chemistry , Iron/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Rats , Skin/drug effects , Nanocomposites/chemistry , Wound Healing/drug effects , Mice , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Staphylococcus aureus/drug effects , Permeability , Tetracycline/chemistry , Tetracycline/pharmacology
7.
Materials (Basel) ; 17(12)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38930336

ABSTRACT

Rapid industrial growth is associated with an increase in the production of environmentally harmful waste. A potential solution to significantly reduce pollution is to replace current synthetic materials with readily biodegradable plastics. Moreover, to meet the demands of technological advancements, it is essential to develop materials with unprecedented properties to enhance their functionality. Polysaccharide composites demonstrate significant potential in this regard. Polysaccharides possess exceptional film-forming abilities and are safe for human use, biodegradable, widely available, and easily modifiable. Unfortunately, polysaccharide-based films fall short of meeting all expectations. To address this issue, the current study focused on incorporating carbon quantum dots (CQDs), which are approximately 10 nm in size, into the structure of a starch/chitosan biocomposite at varying concentrations. This modification has improved the mechanical properties of the resulting nanocomposites. The inclusion of nanoparticles led to a slight reduction in solubility and an increase in the swelling degree. The optical characteristics of the obtained films were influenced by the presence of CQDs, and the fluorescence intensity of the nanocomposites changed due to the specific heavy metal ions and amino acids used. Consequently, these nanocomposites show great potential for detecting these compounds. Cellular viability assessments and comet assays confirm that the resulting nanocomposites do not exhibit any cytotoxic properties based on this specific analytic method. The tested nanocomposites with the addition of carbon quantum dots (NC/CD II and NC/CD III) were characterised by greater genotoxicity compared to the negative control. The positive control, the starch/chitosan composite alone, was also characterised by a greater induction of chromatin damage in mouse cells compared to a pure mouse blood sample.

8.
Int J Biol Macromol ; 274(Pt 1): 133318, 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38917917

ABSTRACT

The presence of tetracycline and dye as organic contaminants has led to the poisoning of wastewater. The aim of this study is to synthesize a novel biocomposite material by decorating natural starch polymer granules with metal-organic framework (MIL100) and cobalt ferrite magnetic (CoFe2O4) nanoparticles. The synthesized ternary magnetic biocomposite (Starch/MIL100/CoFe2O4) was used for the photocatalytic degradation of methylene blue (MB) and tetracycline (TCN) using LED visible light. The synthesis of the biocomposite was confirmed through comprehensive analyses (XRD, SEM, FTIR, BET, EDX, MAP, DRS, pHzpc, TGA, and Raman). The evaluation examined the influence of initial pollutant concentration, catalyst dosage, pH, and the impact of anions on pollutant removal. The results show that the pollutant degradation ability of biocomposite has been significantly improved, so that the base biopolymer, starch, achieved 18% tetracycline degradation, but when decorated with MIL100 and cobalt ferrite, it increased to 91.2%. It was observed that the degradation for methylene blue improved from 12% for starch to 96.6% for the magnetic biocomposite. The tetracycline degradation decreased by more than 20% in the presence of NaCl, NaNO3, and Na2SO4. The finding shows that the biocomposite adheres to first-order kinetics for both pollutants. The scavengers test identified hydroxyl radicals as the most effective active species in the degradation process. High stability, even after passing 5 cycles of recycling was observed for the biocomposite. The results indicated that the facile and green synthesized Starch/MIL100/CoFe2O4 magnetic biocomposite could be used as an effective photocatalyst for the degradation of Tetracycline and dye at room temperature.

9.
Polymers (Basel) ; 16(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38932026

ABSTRACT

Regenerative endodontics is a developing field involving the restoration of tooth structure and re-vitality of necrotic pulp. One of the most critical clinical considerations for regenerative endodontic procedures is the disinfection of the root canal system, since infection interferes with regeneration, repair, and stem cell activity. In this study, we aimed to provide the synthesis of injectable biopolymeric tissue scaffolds that can be used in routine clinical and regenerative endodontic treatment procedures using Gelatin methacryloyl (GelMA), and to test the antimicrobial efficacy of Gelatin methacryloyl/Silver nanoparticles (GelMA/AgNP), Gelatin methacryloyl/Hyaluronic acid (GelMA/HYA), and Gelatin methacryloyl/hydroxyapatite (GelMA/HA) composite hydrogels against microorganisms that are often encountered in stubborn infections in endodontic microbiology. Injectable biocomposite hydrogels exhibiting effective antimicrobial activity and non-cytotoxic behavior were successfully synthesized. This is also promising for clinical applications of regenerative endodontic procedures with hydrogels, which are proposed based on the collected data. The GelMA hydrogel loaded with hyaluronic acid showed the highest efficacy against Enterococcus faecalis, one of the stubborn bacteria in the root canal. The GelMA hydrogel loaded with hydroxyapatite also showed a significant effect against Candida albicans, which is another bacteria responsible for stubborn infections in the root canal.

10.
Int J Biol Macromol ; 271(Pt 1): 132569, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38797303

ABSTRACT

Food packaging based on natural polymers from polysaccharides and proteins can be an alternative to replace conventional plastics. In the present study, semi-refined iota carrageenan (SRIC) and fish gelatin (FG) were used as polymer matrix film with different concentration ratios (0.5:1.5 %, 1.0:1.0 % and 1.5:0.5 % w/w) and SiO2-ZnO nanoparticles were incorporated as fillers with the same concentration in all formulas (0.5:1.5 % w/w carrageenan-fish gelatin). This study aimed to develop films for food packaging applications with desirable physical, mechanical, optical, chemical, and microbiological properties. The results showed that incorporating SiO2-ZnO nanoparticles significantly (p < 0.05) improved the films' elongation at break, UV-screening properties, and antimicrobial activity. Also, the films' thickness, degradability, and transparency significantly (p < 0.05) increased with the higher concentration of fish gelatin addition in the SRIC matrix polymer. The best formula was obtained on the SRIC-FG film at the ratio of 1.5:0.5 % w/w, which performed excellent antimicrobial activity. Thus, semi-refined iota carrageenan/fish gelatin-based biocomposite film incorporated with SiO2-ZnO nanoparticles can be potentially developed as eco-friendly and intelligent food packaging materials to resolve traditional plastic-related issues and prevent food waste.


Subject(s)
Carrageenan , Food Packaging , Gelatin , Nanoparticles , Silicon Dioxide , Zinc Oxide , Carrageenan/chemistry , Gelatin/chemistry , Zinc Oxide/chemistry , Silicon Dioxide/chemistry , Nanoparticles/chemistry , Food Packaging/methods , Animals , Fishes , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology
11.
Environ Sci Pollut Res Int ; 31(27): 39331-39349, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38816631

ABSTRACT

In this study, a biogenic magnetic nanocomposite, HAP@DEX@MNP, using hydroxyapatite from eggshell waste and dextran was developed to efficiently remove 2,4-D from aqueous solutions. The magnetic nano biocomposite underwent rigorous characterization using a comprehensive suite of analytical techniques, including FTIR, XRD, FESEM, EDX, TEM, and VSM. FTIR analysis was used to validate the existence of pivotal functional groups, such as phosphate, carbonyl, hydroxyl, and iron oxide. XRD analysis verified both the crystalline nature of hydroxyapatite and the successful integration of dextran and hematite within the composite structure. FESEM and EDX examinations provided valuable insights into the surface morphology and elemental composition. TEM observations elucidated the existence of nano-sized particles underscoring the unique structural characteristics of the nanocomposite. Batch adsorption experiments were conducted under optimized conditions, highlighting the critical role of pH 2 for efficient 2,4-D removal. The mechanisms driving the binding of 2,4-D to HAP@DEX@MNP were found to encompass diverse interactions, encompassing electrostatic forces, hydrogen bonding, π-π interactions, and van der Waals forces. Adsorption isotherm studies revealed both monolayer and multilayer adsorption, with the Langmuir and Freundlich models fitting well, indicating a maximal adsorption capacity of 217.39 µg/g at 25 °C. Kinetic investigations supported the pseudo-second-order model for efficient adsorption dynamics, and thermodynamic analysis emphasized the versatility of HAP@DEX@MNP across different temperatures. Importantly, the study highlighted the remarkable regenerative capacity of the nanocomposite using a 0.1 M NaOH solution, positioning it as an environmentally friendly option for water treatment. In conclusion, HAP@DEX@MNP holds significant potential for diverse applications in addressing global water treatment and environmental challenges.


Subject(s)
Dextrans , Durapatite , Nanocomposites , Water Pollutants, Chemical , Durapatite/chemistry , Nanocomposites/chemistry , Adsorption , Dextrans/chemistry , Water Pollutants, Chemical/chemistry , 2,4-Dichlorophenoxyacetic Acid/chemistry , Water Purification/methods , Kinetics
12.
Int J Biol Macromol ; 270(Pt 2): 132385, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754668

ABSTRACT

CNCs are intensively studied to reinforce biocomposites. However, it remains a challenge to homogeneously disperse the CNC in biocomposites for a smooth film surface. Mechanochemical treatment via ultrasonication in deep eutectic solvent (DES) generated a stable dispersion of CNC before incorporation into carrageenan biocomposite. Shifted peaks of choline chloride (ChCl) methylene groups to 3.95-3.98 ppm in 1H NMR indicated a formation of eutectic mixture between the hydrogen bond acceptor (HBA) and hydrogen bond donor (HBD) at the functional group of CH3···OH. The swelling of CNC in the DES was proven by the formation of intermolecular H-bond at a length of 2.46 Å. The use of DES contributed to a good dispersion of CNC in the solution which increased zeta potential by 43.2 % compared to CNC in deionized water. The ultrasonication amplitude and feed concentration were varied for the best parameters of a stable dispersion of CNC. The crystallinity of 1 wt% of CNC at 20 % sonication amplitude improved from 76 to 81 %. The high crystallinity of CNCDES resulted in an increase in film tensile and capsule loop strength of Carra-CNCDES by 20.7 and 19.4 %, respectively. Improved dispersion of CNCDES reduced the surface roughness of the biocomposite by 21.8 %. H-bond network in CNCDES improved the biocomposite properties for an ingenious reinforcement material.


Subject(s)
Carrageenan , Cellulose , Nanoparticles , Carrageenan/chemistry , Cellulose/chemistry , Nanoparticles/chemistry , Sonication/methods , Hydrogen Bonding , Solvents/chemistry , Tensile Strength , Biocompatible Materials/chemistry
13.
Int J Biol Macromol ; 270(Pt 2): 132486, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38763238

ABSTRACT

Naproxen (NPX) as an emerging anthropogenic contaminant was detected in many water sources, which can pose a serious threat to the environment and human health. Peroxymonosulfate (PMS) decomposed by Cu(I) has been considered an effective activation method to produce reactive species. However, this decontamination process is restricted by the slow transformation of Cu(II)/Cu(I) by PMS. Herein, new N-(L-cysteine/triazine)-O-(carboxymethyl)-chitosan/cobalt ferrate-rice hull hybrid biocomposite was constructed to anchor the mixed-valent Cu(I)-Cu (II) (CuI, II-CCCF) for removing pharmaceutical pollutants (i.e., naproxen, ciprofloxacin, tetracycline, levofloxacin, and paracetamol). The structural, morphological, and catalytic properties of the CuI,II-CCCF have been fully identified by a series of physicochemical characterizations. Results demonstrated that the multifunctional, hydrophilic character, and negative ζ-potential of the activator, accelerating the redox cycle of Cu(II)/Cu(I) with hydroxyl amine (HA). The negligible metal leaching, well-balanced thermodynamic-kinetic properties, and efficient adsorption-catalysis synergy are the main reasons for the significantly enhanced catalytic performance of CuI,II-CCCF in the removal of NPX (98.6 % at 7.0 min). The main active species in the catalytic degradation of NPX were identified (●OH > SO4●- > 1O2 > > O2●-) and consequently suggested a degradation path. It can be noted that these types of carbohydrate-based nanocomposite offer numerous advantages, encompassing simple preparation, excellent decontamination capabilities, and long-term stability.


Subject(s)
Chitosan , Cobalt , Copper , Nanocomposites , Naproxen , Water Pollutants, Chemical , Chitosan/chemistry , Chitosan/analogs & derivatives , Nanocomposites/chemistry , Copper/chemistry , Naproxen/chemistry , Kinetics , Catalysis , Adsorption , Cobalt/chemistry , Water Pollutants, Chemical/chemistry , Peroxides/chemistry , Cysteine/chemistry , Water Purification/methods , Iron
14.
J Biomed Mater Res B Appl Biomater ; 112(6): e35415, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38773744

ABSTRACT

This study reports the synthesis and characterization of hydroxyapatite (HA)-based bio-composites reinforced with varying amounts (by weight, 1-15 wt.%) of bio-medium entropy alloy (BioMEA) for load-bearing implant applications. BioMEA powders consisting of Ti, Nb, Zr, and Mo were mechanically alloyed for 100 h and subsequently added to HA using powder metallurgy techniques. To show the effect of BioMEA, the microstructure, density, and mechanical tests have been conducted and the synthesized BioMEA was characterized by scanning electron microscope (SEM), x-ray diffractometer (XRD), and Fourier-transform infrared spectroscopy (FTIR) analysis. In addition, in vitro degradation behavior and bioactivity analyses of bio-composites have been conducted. XRD analysis revealed the formation of BioMEA after 20 h of mechanical alloying. The highest density value of 2.47 g/cm3 was found in 15 wt.% BioMEA-reinforced bio-composite. The addition of BioMEA reinforcement led to a significant increase in hardness and tensile strength values, with the highest values observed at 15 wt.% reinforcement. Compression tests demonstrated a significant increase in compressive strength and deformation capability of the bio-composites with the highest values observed at 15 wt.% BioMEA addition. The highest toughness of 7.68 kJ/m2 was measured in 10 wt.% MEA-reinforced bio-composites. The produced bio-composite materials have an elastic modulus between 3.5-5.5 GPa, which may provide a solution to the stress shielding problems caused by the high elastic modulus of metallic implant materials. The most severe degradation occurred in 15 wt.% MEA-reinforced bio-composites, and the effect of degradation caused a decrease in Ca and an increase in Ti-Ni-Zr-Mo in all bio-composites. These findings suggest that HA/BioMEA bio-composites have the potential to be developed as advanced biomaterials with moderate mechanical and biological properties for load-bearing implant applications.


Subject(s)
Stress, Mechanical , Titanium/chemistry , Niobium/chemistry , Zirconium/chemistry , Molybdenum/chemistry , Entropy , Alloys/chemistry , Biocompatible Materials/chemistry , X-Ray Diffraction
15.
ACS Appl Bio Mater ; 7(6): 3854-3864, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38820558

ABSTRACT

Nanotechnology offers an innovative application as an eco-friendly food packaging film fabricated along with a degradable active mixture (AM). The AM is an assortment of alloyed metal oxide nanoparticles (Ag-ZnO), citron powder (AA), and Curcuma peel powder (CPP). Alloyed nanoparticles (NPs) were observed to exhibit a hexagonal structure from the experimental X-ray diffraction. Compositional and morphological study of the NPs (22.69 nm) and AM (32 nm) was done using energy-dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and ζ- potential was observed to be -14.7 mV, indicating the stability of NPs. The prepared film was observed to be more effective with antibacterial analysis against Escherichia coli, exhibiting 72% of inhibition and antioxidant activity with IC50: 51.56% using the 2,2 diphenyl-1-picrylhydrazyl (DPPH) assay. Film 1, Film 2, Film 3, and Film 4 were fabricated with the AM and observed to be perfectly encapsulated by PVA using XRD. FESEM images of the film exhibit the aggregation of NPs with biocomposites in perfect distribution. The mechanical properties such as Young's modulus, elongation at break, tensile strength, and ultimate tensile strength (UTS- 5.37 MPa) were experimented for the films. The degradation rate was observed to be 6.12% for film 1 using the soil burial method. The study emphasizes that NPs along with biocomposite upgrade the sustainability of the packaging film with improved mechanical and physicochemical properties. The synthesized film with biomaterials could be used as a "green" food package to store fruits, vegetables, and sweets in the food industry.


Subject(s)
Anti-Bacterial Agents , Biocompatible Materials , Escherichia coli , Materials Testing , Particle Size , Silver , Zinc Oxide , Zinc Oxide/chemistry , Zinc Oxide/pharmacology , Escherichia coli/drug effects , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Biocompatible Materials/chemical synthesis , Silver/chemistry , Silver/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/chemical synthesis , Microbial Sensitivity Tests , Curcuma/chemistry , Food Packaging , Metal Nanoparticles/chemistry , Green Chemistry Technology , Citrus/chemistry
16.
Materials (Basel) ; 17(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38730826

ABSTRACT

Woven flax-carbon hybrid polyamide biocomposites offer a blend of carbon fibers' mechanical strength and flax's environmental advantages, potentially developing material applications. This study investigated their thermal behavior, degradation kinetics, and durability to water uptake and relative humidity exposure and compared them with pure flax and carbon composites with the same matrix. The hybrid composite exhibited intermediate water/moisture absorption levels between pure flax and carbon composites, with 7.2% water absorption and 3.5% moisture absorption. It also displayed comparable thermal degradation resistance to the carbon composite, effectively maintaining its weight up to 300 °C. Further analysis revealed that the hybrid composite exhibited a decomposition energy of 268 kJ/mol, slightly lower than the carbon composite's value of 288.5 kJ/mol, indicating similar thermal stability. Isothermal lifetime estimation, employing the activation energy (Ed) and degree of conversion facilitated by the Model Free Kinetics method, indicated a 41% higher service life of the hybrid laminate at room temperature compared to the carbon laminate. These insights are crucial for understanding the industrial applications of these materials without compromising durability.

17.
Polymers (Basel) ; 16(9)2024 May 04.
Article in English | MEDLINE | ID: mdl-38732758

ABSTRACT

Biopolymers are biodegradable and renewable and can significantly reduce environmental impacts. For this reason, biocomposites based on a plasticized starch and cross-linker matrix and with a microfibrillated OCC cardboard cellulose reinforcement were developed. Biocomposites were prepared by suspension casting with varied amounts of microfibrillated cellulose: 0, 4, 8, and 12 wt%. Polyethylene glycol diglycidyl ether (PEGDE) was used as a cross-linking, water-soluble, and non-toxic agent. Microfibrillated cellulose (MFC) from OCC cardboard showed appropriate properties and potential for good performance as a reinforcement. In general, microfiber incorporation and matrix cross-linking increased crystallization, reduced water adsorption, and improved the physical and tensile properties of the plasticized starch. Biocomposites cross-linked with PEGDE and reinforced with 12 wt% MFC showed the best properties. The chemical and structural changes induced by the cross-linking of starch chains and MFC reinforcement were confirmed by FTIR, NMR, and XRD. Biodegradation higher than 80% was achieved for most biocomposites in 15 days of laboratory compost.

18.
Int J Biol Macromol ; 268(Pt 2): 131757, 2024 May.
Article in English | MEDLINE | ID: mdl-38657934

ABSTRACT

This review addresses the current trend of replacing petroleum-based polymers in food packaging with bio-based alternatives, specifically focusing on proteins and polysaccharides. While these biopolymers exhibit excellent film-forming properties and are abundant in nature, their individual use in packaging lacks ideal plastic-like characteristics, especially in terms of mechanical and barrier properties. A recent solution involves the formulation of biocomposites through the reinforcement of one biopolymer with another (e.g., protein with a polysaccharide), significantly enhancing the physical, mechanical, and barrier properties of packaging materials. The review concentrates on the integration of proteins and polysaccharides in biocomposite materials, emphasizing their potential applications in active and intelligent food packaging systems. It covers sources, manufacturing methods, interaction mechanisms, recent developments, perspectives, and opportunities. The exploration extends to practical implementations of these biocomposites in enhancing food quality, safety, and shelf life-a green technological approach contributing to the reduction of food waste and loss.


Subject(s)
Food Packaging , Polysaccharides , Proteins , Food Packaging/methods , Polysaccharides/chemistry , Proteins/chemistry , Biocompatible Materials/chemistry , Biopolymers/chemistry
19.
Environ Res ; 252(Pt 2): 118893, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38604485

ABSTRACT

Pesticides can have harmful impacts on the environment and living organisms. Thus, removing them from polluted water is crucial. In this study, a bionanocomposite of carboxymethyl tragacanth-grafted-poly(3-aminophenol)/zinc oxide@iron oxide (CMT-g-P3AP/ZnO@Fe3O4) synthesized by in situ copolymerization as an efficient adsorbent to eliminate the acetamiprid pesticide from polluted water. The CMT-g-P3AP/ZnO@Fe3O4 magnetic nanocomposite was analyzed utilizing various techniques including FTIR, EDX, FESEM, XRD, BET, CHNSO, and TGA. The results displayed that the resulting nanocomposite with maximum adsorption capacity (Qmax) successfully removed the acetamiprid pesticide from polluted water under optimal conditions such as pH of 7.00, 5.00 mg of adsorbent, 20.0 min duration, and 400 mg/L acetamiprid concentration. According to the linear Langmuir isotherm, the Qmax of the biosorbent was 833 mg/g. The experimental adsorption data fitted well with Temkin's nonlinear isotherm model. The adsorption kinetic data were closely related to the Weber-Morris intraparticle diffusion nonlinear model. After three repetitive cycles, CMT-g-P3AP/ZnO@Fe3O4 can be outstandingly renewed and recycled without significant reduction in its adsorption efficacy, as evidenced by the adsorption-desorption experiments. In addition, the CMT-g-P3AP/ZnO@Fe3O4 displayed the good antibacterial activity against E. coli and S. aureus.


Subject(s)
Anti-Bacterial Agents , Neonicotinoids , Water Pollutants, Chemical , Zinc Oxide , Water Pollutants, Chemical/chemistry , Zinc Oxide/chemistry , Adsorption , Anti-Bacterial Agents/chemistry , Neonicotinoids/chemistry , Tragacanth/chemistry , Nanocomposites/chemistry , Water Purification/methods , Pesticides/chemistry
20.
Macromol Rapid Commun ; : e2400064, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594967

ABSTRACT

Polyethylene (PE), a highly prevalent non-biodegradable polymer in the field of plastics, presents a waste management issue. To alleviate this issue, bio-based PE (bio-PE), derived from renewable resources like corn and sugarcane, offers an environmentally friendly alternative. This review discusses various production methods of bio-PE, including fermentation, gasification, and catalytic conversion of biomass. Interestingly, the bio-PE production volumes and market are expanding due to the growing environmental concerns and regulatory pressures. Additionally, the production of PE and bio-PE biocomposites using agricultural waste as filler materials, highlights the growing demand for sustainable alternatives to conventional plastics. According to previous studies, addition of ≈50% defibrillated corn and abaca fibers into bio-PE matrix and a compatibilizer, results in the highest Young's modulus of 4.61 and 5.81 GPa, respectively. These biocomposites have potential applications in automotive, building construction, and furniture industries. Moreover, the advancement made in abiotic and biotic degradation of PE and PE biocomposites is elucidated to address their environmental impacts. Finally, the paper concludes with insights into the opportunities, challenges, and future perspectives in the sustainable production and utilization of PE and bio-PE biocomposites. In summary, production of PE and bio-PE biocomposites can contribute to a cleaner and sustainable future.

SELECTION OF CITATIONS
SEARCH DETAIL
...