Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 789
Filter
1.
Article in English | MEDLINE | ID: mdl-38954337

ABSTRACT

Seed coating with pesticides is used extensively for the protection of both seeds and plants against pests. In this study, the uptake and transport of seed-coating pesticides (insecticides), including cyantraniliprole (CYN) and thiamethoxam (THX), were investigated. The translocation of these pesticides from the soil to the plant and their accumulation in different plant parts were also calculated. After sowing the seeds with seed coating pesticides, soil and plant samples were taken across the study area. These samples were extracted and analyzed in liquid chromatography with tandem mass spectrometry (LC-MS/MS). CYN and THX were used in maize plants for the first time to observe soil degradation kinetics, and CYN showed a higher half-life than THX in soil. Both pesticides have been taken up by the corn maize plant and transferred and accumulated to the upper parts of the plant. Although the THX concentration was between 2.240 and 0.003 mg/kg in the root, between 3.360 and 0.085 mg/kg in the stem, it was between 0.277 and 3.980 mg/kg in the leaf, whereas CYN was detected at higher concentrations. The concentration of CYN was 1.472 mg/ kg and 0.079 mg/kg in the roots and stems of the maize plant, respectively. However, the bioconcentration factor (BCF) indicates the soil-to-plant accumulation of CYN from 28 to 34.6 and that of 12.5 to 4567.1 for THX on different sampling days. The translocation factor (TFstem) represents the ratio of pesticides absorbed from the stem and transported to the roots. For CYN, TFstem ranges from 3.6 to 20.5, while for THX, it varies between 1.5 and 26.8, indicating a higher translocation rate for THX. The ratio of leaf to root concentration are 3.6 to 20.5 for CYN and 1.8 to 87.7 for THX, demonstrating effective translocation for both pesticides. The TF values for both pesticides are above 1, signifying successful root-to-stem-to-leaf movement. Notably, THX exhibits a notably higher transport rate compared to CYN.

2.
Environ Res ; 258: 119412, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38876418

ABSTRACT

Human activities have changed the natural rates at which metals are moved and accumulated in both land and water environments, resulting in negative impacts on local wildlife. In this study, concentrations of Cr, Ni, Cd, Pb, Cu, Mn, Co, and Zn were evaluated in water and riverbed sediment samples collected from the Verde River basin (VR), as well as in tissue samples from five native Loricariidae species. Sediment samples collected from the central section of the VR riverbed indicated the presence of metal concentrations, which were primarily attributed to scattered pollution sources linked to rural activities in the surrounding areas. The bioconcentration factor in the Loricariids liver presented the highest average values for Zn (1.27-58.21), Co (0.48-14.91) and Cu (1.15-11.14). The same pattern was observed in the muscle, but in a lower proportion. Regarding the bioaccumulation factor, Co (1.54-34.84), Cu (5.85-25.22) and Zn (0.64-18.08) attained the highest average values in the liver. The co-inertia analysis examined the spatial distribution of metal concentrations in riverbed sediments and in tissues of Loricariids from the upper, middle, and lower stretches of the river, including the river mouth. The analysis revealed varying patterns, with samples from some regions showing higher bioaccumulation levels. This suggests that riverbed sediments are a primary source of metal contamination in Loricariids from these areas. The pollution has had a significant impact on the bioaccumulation of metals in the VR' Loricariids, which are good indicators of sediment-associated metal bioaccumulation. The metal concentrations recorded in both the riverbed sediments and Loricariids surpassed international and Brazilian limits set for aquatic health and safe human consumption. Given the importance of the Verde River in terms of its ecological, social, cultural, and economic roles, it is essential to implement biomonitoring and control measures to safeguard both terrestrial and aquatic resources.

3.
Plant Physiol Biochem ; 214: 108846, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38945095

ABSTRACT

Eco-friendly and sustainable practices must be followed while using the right plants and microbes to remove harmful heavy metals from the soil. The goal of the current study was to ascertain how effectively sorghum plants removed cadmium (Cd) from the soil using polyamines and mycorrhiza. Plant-biochemicals such as free amino acids, ascorbic acids, anthocyanin, proline, and catalase, APX, peroxidase activities were considered as markers in this study which revealed the adverse plant growth performance under 70 and 150 ppm of Cd concentration (w/w) after 30,60, and 90 days of treatment. The plants showed a mitigating effect against high Cd-concentration with exogenous use of mycorrhiza and putrescine. The treatment T17 (mycorrhiza +5 mM putrescine) showed a substantial decrease in the content of total free amino acid, ascorbic acid, catalase, APX, peroxidase by 228.36%, 39.79%, 59.06%, 182.79% 106.97%, respectively after 90 days as compared to T12 (150 ppm Cd). Anthocyanin content was negatively correlated (-0.503, -0.556, and -0.613) at p < 0.01 with other studied markers, with an increase by 10.52% in T17 treated plant as compared to T12. The concentration of Cd in root increased by 49.6% (141 ppm) and decreased in the shoot by 71% (17.8 ppm) in T17 treated plant as compared to T12 after 90 days. The application of mycorrhiza and putrescine significantly increased BCF (>1) and decreased TF (<1) for Cd translocation. The administration of mycorrhiza and putrescine boosted the Cd removal efficiency of sorghum plants, according to FTIR, XRD, and DSC analysis. As a result, this study demonstrates novel approaches for induced phytoremediation activity of plants via mycorrhiza and putrescine augmentation, which can be a promising option for efficient bioremediation in contaminated sites.

4.
Environ Pollut ; 356: 124358, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38871168

ABSTRACT

Metal(loid) bioaccumulation in acanthocephalans (Dentitruncus truttae) and intestines of fish (Salmo trutta) from the Krka River, influenced by industrial and municipal wastewaters, was investigated in relation to exposure to metal(loid)s from fish gut content (GC), water, and sediment to estimate potentially available metal (loid)s responsible for toxic effects and cellular disturbances in biota. Sampling was performed in two seasons (spring and autumn) at the reference site (river source, KRS), downstream of the wastewater outlets (Town of Knin, KRK), and in the national park (KNP). Metal(loid) concentrations were measured by ICP-MS. The highest accumulation of As, Ba, Ca, Cu, Fe, Pb, Se and Zn was observed mainly in organisms from KRK, of Cd, Cs, Rb and Tl at KRS, and of Hg, Mn, Mo, Sr and V at KNP. Acanthocephalans showed significantly higher bioaccumulation than fish intestine, especially of toxic metals (Pb, Cd and Tl). Metal(loid) bioaccumulation in organisms partially coincided to exposure from water, sediments and food, while in GC almost all elements were elevated at KNP, reflecting the metal(loid) exposure from sediments. Seasonal differences in organisms and GC indicated higher metal (loid) accumulation in spring, which follows enhanced fish feeding rates. Higher number of acanthocephalans in the intestine influenced biodilution process and lower concentrations of metal(loid)s in fish, indicating positive effects of parasites to their host, as supported by high values of bioconcentration factors. Fish intestine and acanthocephalan D. truttae were confirmed as sensitive indicators of available metal fraction in conditions of generally low environmental exposure in karst ecosystem. Since metal(loid) accumulation depended on ecological, chemical and biological conditions, but also on the dietary habits, physiology of organisms and parasite infection, continuous monitoring is recommended to distinguish between the effects of these factors and environmental exposure when assessing dietary associated metal(loid) exposure in aquatic organisms.

5.
Sci Total Environ ; 946: 174274, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38942320

ABSTRACT

Limited attention has been given to the interaction between antibiotics and arsenic in the soil-plant system. In this investigation, Medicago sativa seedlings were grown in soil treated with cow manure containing oxytetracycline (OTC) or sulfadiazine (SD), as well as arsenic (introduced through roxarsone, referred to as ROX treatment). The study revealed a notable increase in As(III) and dimethylarsinic acid (DMA(V)) levels in rhizosphere soils and plant root tissues as arsenic contamination intensified in the presence of antibiotics, while concentrations of As(V) and monomethylarsonic acid (MMA(V)) decreased. Conversely, elevated antibiotic presence resulted in higher levels of As(V) but reduced DMA concentrations in both rhizosphere soils and plant root tissues in the presence of arsenic. The arsenic biotransformation gene aioA was inhibited by arsenic contamination when antibiotics were present, and suppressed by antibiotic contamination in the presence of arsenic, especially in SD treatments, resulting in reduced expression levels at higher SD concentrations. Conversely, the arsM gene exhibited consistent upregulation under all conditions. However, its expression was found to increase with higher concentrations of ROX in the presence of antibiotics, decrease with increasing SD concentrations, and initially rise before declining with higher levels of OTC in the presence of arsenic. Bacterial genera within the Proteobacteria phylum, such as Geobacter, Lusitaniella, Mesorhizobium, and Methylovirgula, showed significant co-occurrence with both aioA and arsM genes. Correlation analysis demonstrated associations between the four arsenic species and the two arsenic biotransformation genes, emphasizing pH as a critical factor influencing the transformation and uptake of different arsenic species in the soil-plant system. The combined stress of antibiotics and arsenic has the potential to modify arsenic behavior and associated risks in soil-plant systems, highlighting the necessity of considering this interaction in future research endeavors.

6.
J Environ Sci Health B ; : 1-14, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38853697

ABSTRACT

Selected wild-growing edible fungi (Boletus edulis, Neoboletus luridiformis, Cantharellus cibarius, Macrolepiota procera, Amanita rubescens, Russula virescens, Lycoperdon perlatum, and Flammulina velutipes) along with the poisonous medicinal species Amanita muscaria were collected from five sites in the Bohemian Forest, the Czech Republic and analyzed regarding the contents of 19 elements (Ag, Al, As, Be, Ca, Cd, Co, Cr, Cu, Fe, Li, Mg, Mn, Ni, Pb, Rb, Se, Tl, and Zn) in their fruiting bodies. The contents of the elements as well as bioconcentration factors (ratios of the element content in dry matter of the mushroom to the content in the soil; BCF) were significantly species dependent. In general, the analysis revealed the most intensive accumulation of Cd, Rb, Ag, Cu, Se, and Zn in the studied mushrooms. B. edulis accumulated Ag, Se, Cd, Rb, Cu, and Zn with average BCF of 31, 25, 18, 13, 3.9, and 2.6, respectively. On the other hand, A. rubescens accumulated Cd, Rb, Ag, Cu, Zn, and As (BCF of 41, 27, 4.8, 3.3, 2.1, and 1.4). The data concerning the detrimental elements in sporocarps of edible mushrooms indicate no negative effect on human health if the fungi are consumed occasionally or as a delicacy.

7.
Regul Toxicol Pharmacol ; 151: 105651, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38825065

ABSTRACT

In the European Medicines Agency (EMA) "Guideline for Environmental Risk Assessment of Medicinal Products for Human Use," a fish bioconcentration factor (BCF) study is triggered in Phase I for pharmaceuticals having log Kow >4.5, to support Persistence, Bioaccumulation and Toxicity (PBT) screening, and in Phase II to assess secondary poisoning and bioaccumulation ('B') potential when log Kow ≥3. The standard sampling schedule outlined in OECD Test Guideline 305 (TG305) may require assessment of approximately 200 fish following exposure to low- and high-test concentrations and a negative control. We report experimental log Kow and BCF values for 64 human pharmaceuticals that were used to evaluate the current BCF testing trigger of log Kow ≥3, and whether a single BCF exposure concentration allows accurate classification of bioaccumulation potential. Our data support raising the BCF testing trigger to log Kow ≥4, and use of a single test concentration. The resulting reduction in the use of fish is consistent with the 3 R s principle and did not adversely affect classification accuracy. An assessment of potential risk of secondary poisoning was also conducted for three drugs classified as either B or vB, and no risks were identified.

8.
Environ Res ; 256: 119222, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38795949

ABSTRACT

This study investigated the bioindicator potential of Amaranthus retroflexus L., Plantago lanceolata L., Rumex acetosa L., and Trifolium pratense L. including the use of Lolium multiflorum L. as a reference species, for heavy metal pollution monitoring, in particular Zinc (Zn), Cadmium (Cd), Nickel (Ni), and Lead (Pb). Controlled heavy metal contamination was applied through irrigation with metal nitrate solutions two levels of contamination (low and high). The study also focused on analyzing heavy metals concentration in plant tissues and related physiological responses. Distinct physiological responses to heavy metal stress were observed among the investigated species, highlighting unique variations in their reactions. Hydrogen peroxide, malondialdehyde content, and enzymatic activities emerged as reliable indicators of plant stress induced by heavy metal solutions. P. lanceolata displayed elevated Zn concentrations in both roots and leaves (3271 ± 337 and 4956 ± 82 mg kg-1). For Pb, L. multiflorum and P. lanceolata showed highest root concentrations (2964 ± 937 and 1605 ± 289 mg kg-1), while R. acetosa had higher leaf concentration (1957 ± 147 mg kg-1). For Ni, L. multiflorum had the highest root concentration (1148 ± 93 mg kg-1), and P. lanceolata exhibited the highest leaf concentration (2492 ± 28 mg kg-1). P. lanceolata consistently demonstrated the highest Cd concentrations in both roots (126 ± 21 mg kg-1) and leaves (163 ± 12 mg kg-1). These results provide valuable insights for selecting effective bioindicator species to establish control strategies for heavy metal pollution.


Subject(s)
Environmental Monitoring , Metals, Heavy , Soil Pollutants , Metals, Heavy/analysis , Environmental Monitoring/methods , Soil Pollutants/analysis , Amaranthus/chemistry , Amaranthus/metabolism , Plant Leaves/chemistry , Plant Roots/chemistry , Plant Roots/metabolism , Trifolium/metabolism , Trifolium/drug effects , Trifolium/chemistry
9.
Front Plant Sci ; 15: 1392904, 2024.
Article in English | MEDLINE | ID: mdl-38766469

ABSTRACT

Mercury (Hg), as a global pollutant, is persistent, migratory, insidious, highly biotoxic and highly enriched, and is widely distributed in the atmosphere, hydrosphere, biosphere and lithosphere. Wetland ecosystems, as active mercury reservoirs, have become the most important sources and sinks of heavy metal mercury. Distinguished from natural wetlands, artificial wetlands located in urban sections of rivers face problems such as diverse urban pollution sources and complex spatial and temporal changes. Therefore, in this study, five intermittently distributed artificial wetlands were selected from the upstream to the downstream of the Changchun section of the Yitong River, a tributary of the Songhua River basin in the old industrial base of Northeast China. The mercury levels in the water bodies, sediments and plants of the artificial wetlands were collected and tested in four quarters from April 2023 to analyse the spatial and temporal distribution characteristics of total mercury. The results showed that the mercury levels in the water bodies, sediments and plants of the five wetlands showed a fluctuating trend with the river flow direction and had certain spatial and temporal distribution characteristics. This phenomenon was attributed to the sinking of external mercury pollution sources. In general, the wetland ecosystems showed a decreasing trend in the total Hg output of the downstream watershed. This may be due to the retention of particulate matter by aquatic plants in artificial wetlands to regular salvage of dead aquatic plants. At the same time urbanization and industrialization affect mercury levels in aquatic environments, so the risk of residential exposure needs to be looked at.

10.
Toxicol Rep ; 12: 594-606, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38813462

ABSTRACT

Soil infertility is a global problem, amendments such as organic fertilizers and mineral fertilizers are used to improve crop yields. However, these fertilizers contain heavy metals as well as essential mineral elements. The objective of the study was to determine the effect of organic and inorganic fertilizer on the accumulation and health risk of heavy metals in tubers. The plants were cultivated at an altitude of 3970 m using four treatments (poultry manure, alpaca manure, island guano and inorganic fertilizer) and a control group. Soil contamination levels and the degree of metal accumulation in the tubers were also determined. As a result, it was found that the use of inorganic fertilizer and poultry manure increased the values of Cu and Zn in soils, exceeding the recommended standards. The accumulation of heavy metals in potato tubers did not exceed the maximum recommended limits with the exception of Pb, which exceeded the limit allowed by the FAO/WHO (0.1 mg kg-1). Poultry manure contributed to the highest accumulation of Zn, Cu and Pb in tubers with 11.62±1.30, 3.48±0.20 and 0.12 ±0.02 mg kg-1 respectively. The transfer of metals from the soil to the tubers was less than 1. Individual and total non-carcinogenic risk values were less than 1, indicating a safe level of consumption for children and adults. The cancer risk was found to be within an acceptable range. However, poultry manure and inorganic fertilizer treatments had the highest total cancer risk values in both age groups, suggesting a long-term carcinogenic risk.

11.
Chemosphere ; 360: 142405, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38782134

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) with the properties of structural stability, semi-volatility, and hydrophobicity are toxic and persistent in environments; thus, their transport and fate in agroecosystems is essential for reducing PAH accumulation in the edible parts of crops. Here, we cultivated cabbages (Brassica pekinensis L.) and carrots (Daucus carota L.) in PAH-contaminated soils under the greenhouse and field conditions. After harvesting, we observed a 9.5-46% reduction in soil ∑PAH concentrations. There were 37% of bioconcentration factors (BCFbs) > 1 and 93% of translocation factors (TFab) > 1, while low-molecular-weight (LMW) PAHs had higher BCFbs than high-molecular-weight (HMW) PAHs. The PAH concentrations showed significant and positive correlations among soils, the belowground parts, and the aboveground parts. The toxicity equivalent concentration (TEQBaP) followed the order of cabbage (greenhouse) > cabbage (field) > carrot (greenhouse) > carrot (field), suggesting potentially higher health risks in cabbage relative to carrot and vegetables under the greenhouse relative to field condition. Our study suggested growing carrots under field conditions as a management strategy for reducing the risks of vegetables grown in PAH-contaminated soils.


Subject(s)
Brassica , Daucus carota , Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Soil , Polycyclic Aromatic Hydrocarbons/analysis , Daucus carota/chemistry , Daucus carota/metabolism , Soil Pollutants/analysis , Soil Pollutants/metabolism , Brassica/chemistry , Brassica/metabolism , Soil/chemistry , Environmental Monitoring , Vegetables/chemistry , Vegetables/metabolism
12.
Mar Environ Res ; 198: 106547, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38739970

ABSTRACT

Micro/nanoplastics in aquatic environments is a noteworthy environmental problem. Zooplankton, an important biological group in aquatic ecosystems, readily absorb micro/nanoplastics and produce a range of toxic endpoints due to their small size. This review summarises relevant studies on the effects of micro/nanoplastics on zooplankton, including combined effects with conventional pollutants. Frequently reported adverse effects include acute/chronic lethal effects, oxidative stress, gene expression, energetic homeostasis, and growth and reproduction. Obstruction by plastic entanglement and blockage is the physical mechanism. Genotoxicity and cytotoxicity are molecular mechanisms. Properties of micro/nanoplastics, octanol/water partition coefficients of conventional pollutants, species and intestinal environments are important factors influencing single and combined toxicity. Selecting a wider range of micro/nanoplastics, focusing on the aging process and conducting field studies, adopting diversified zooplankton models, and further advancing the study of mechanisms are the outstanding prospects for deeper understanding of impacts of micro/nanoplastics on aquatic ecosystem.


Subject(s)
Microplastics , Water Pollutants, Chemical , Zooplankton , Zooplankton/drug effects , Animals , Water Pollutants, Chemical/toxicity , Microplastics/toxicity , Environmental Monitoring , Ecosystem , Oxidative Stress/drug effects
13.
Sci Total Environ ; 931: 172968, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38705310

ABSTRACT

Dieldrin, an organochlorine pesticide (OCP) widely used for crop protection in the second half of the 20th century till the 70's, is worldwide still present in arable soils. It can be transferred to crops, notably cucurbits, depending on plant species and cultivars. Finding strategies to decrease OCP bioavailability in soil is therefore a main concern. Phytomanagement strategies could provide (i) ready-to-use short term solution for maintaining the production of edible plant parts with dieldrin concentrations below the Maximum Residue Limits (MRL) and (ii) long-term solution for dieldrin phytoextraction reducing progressively its bioavailability in the soil. This field study aimed at determining dieldrin accumulation capacities and allocation pattern in 17 non-Cucurbitaceae species and 10 Cucurbita pepo varieties, and assessing the dieldrin phytoextraction potential of these plant species when grown to maturity in a historically dieldrin-contaminated soil. Out of the non-Cucurbitaceae species, vetiver was the only one able to accumulate significant amounts of dieldrin, which mainly remained in its roots. All C. pepo varieties were able to uptake and translocate high dieldrin amounts into the shoots, leading to the highest phytoextraction potential. Despite the intraspecific variability in dieldrin concentration in zucchini plant parts, mainly in the reproductive organs, the phytoextraction capacity for shoots and fruits was high for all tested varieties (147 to 275 µg dieldrin plant-1, corresponding to 5.6 % of the n-heptane extractable soil dieldrin), even for the one with low fruit dieldrin concentration. Both food safety and phytoextraction could be achieved by selecting productive zucchini varieties displaying low dieldrin concentration in fruits and high one in shoots.


Subject(s)
Biodegradation, Environmental , Cucurbita , Dieldrin , Soil Pollutants , Dieldrin/metabolism , Cucurbita/metabolism , Soil Pollutants/metabolism , Soil Pollutants/analysis , Soil/chemistry
14.
Chemosphere ; 359: 142371, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38768784

ABSTRACT

Neonicotinoid insecticides (NNIs) have caused widespread contamination of multiple environmental media and posed a serious threat to ecosystem health by accidently injuring non-target species. This study collected samples of water, soil, and rice plant tissues in a water-soil-plant system of paddy fields after spaying imidacloprid (IMI), thiamethoxam (THM), and clothianidin (CLO) to analyze their distribution characteristics and migration procedures and to assess related dietary risks of rice consumption. In the paddy water, the concentrations of NNIs showed a dynamic change of increasing and then decreasing during about a month period, and the initial deposition of NNIs showed a trend of CLO (3.08 µg/L) > THM (2.74 µg/L) > IMI (0.97 µg/L). In paddy soil, the concentrations of the three NNIs ranged from 0.57 to 68.3 ng/g, with the highest residual concentration at 2 h after application, and the concentration trend was opposite to that in paddy water. The initial deposition amounts of IMI, THM, and CLO in the root system were 5.19, 3.02, and 5.24 µg/g, respectively, showing a gradual decrease over time. In the plant, the initial deposition amounts were 19.3, 9.36, and 52.6 µg/g for IMI, THM, and CLO, respectively, exhibiting concentration trends similar to those in the roots. Except for IMI in soil, the dissipation of the NNIs conformed to the first-order kinetic equation in paddy water, soil, and plant. The results of bioconcentration factors (BCFs) and translocation factor (TF) indicated that NNIs can be bi-directionally transported in plants through leaf absorption and root uptake. The risk of NNIs intake through rice consumption was low for all age groups, with a slightly higher risk of exposure in males than in females.


Subject(s)
Insecticides , Neonicotinoids , Oryza , Soil Pollutants , Insecticides/analysis , Neonicotinoids/analysis , Oryza/chemistry , Soil Pollutants/analysis , Soil/chemistry , Environmental Monitoring , Nitro Compounds/analysis , Dietary Exposure/statistics & numerical data , Dietary Exposure/analysis , Humans , Risk Assessment , Thiamethoxam , Guanidines/analysis , Thiazoles
15.
Sci Total Environ ; 934: 173169, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38735339

ABSTRACT

Soil cadmium (Cd) contamination is an urgent environmental problem, which endangers human health through the food chain. Bioremediation attracted extensive attention around the world due to the high cost-efficiency. However, the remediation efficiency of different plant and earthworm species of soil Cd pollution is still unclear, it is thus of great significance to explore the combined effects of different remediation plants and earthworm species to improve the bioremediation capacity. In the present study, we consequently selected three species of Cd hyperaccumulator plants (vetiver, P. vittata and S. emarginatum) and three species of earthworms (E. fetida P1, E. fetida P2, and P. guillelmi) to compare the differences in Cd accumulation among various earthworm-plant combinations. Results indicated that the changes of soil pH and SOM in plant-animal combined application induced the higher soil Cd removal efficiency. The Cd removal efficiency showed highest in combination groups P. vittata-E. fetida P2 and P. vittata-P. guillelmi. Meanwhile, the improvements of biomass of plants and animals also were consistent with the increasing of Cd concentration in both plants and earthworms after combined application. It showed that the Cd concentrations in P. vittata were the highest while the TFs of Cd in S. emarginatum displays significantly more than that in others. In conclusion, the recommended combined system of earthworm-plant (P. vittata-E. fetida P2 and P. vittata-P. guillelmi) to provide reference for soil Cd bioremediation system in practice.


Subject(s)
Biodegradation, Environmental , Cadmium , Oligochaeta , Soil Pollutants , Oligochaeta/metabolism , Soil Pollutants/metabolism , Cadmium/metabolism , Animals , Soil/chemistry , Environmental Restoration and Remediation/methods
16.
Chemosphere ; 359: 142266, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38714245

ABSTRACT

Effective, post-accidental management needs an accurate understanding of the biogeochemical behavior of radionuclides in surface environments at a regional scale. Studies on stable isotopes (element homologs) can improve this knowledge. This work focuses on the biogeochemical behavior of stable cesium (Cs) along a major European fluvial-estuarine system, the Gironde Estuary (SW France). We present results obtained from (i) a long-term monitoring (2014-2017) of dissolved (Csd) and particulate (Csp) Cs concentrations at five sites along the freshwater continuum of the Garonne watershed, (ii) Csd and Csp concentrations during four oceanographic campaigns at contrasting hydrological conditions along longitudinal profiles of the estuarine system, (iii) a 24 h cycle of Csp at the estuary mouth, and (iv) a historical trend of Cs bioconcentration in wild oysters at the estuary mouth (RNO/ROCCH, 1984-2017). In addition, we model the partitioning of Cs within the estuarine environment for clay mineral interactions via PhreeqC. At fluvial sites, we observe a geogenic dependence of the Csp and a seasonal variability of Csd, with a downstream increase of the solid-liquid partitioning (log10 Kd values from 3.64 to 6.75 L kg-1) for suspended particulate matter (SPM) < 200 mg L-1. Along the estuarine salinity gradients, Cs shows a non-conservative behavior where fresh SPM (defined as Cs-depleted particles recently put in contact with Csd) act as a Cs sink during both flood and low discharge (drought) conditions. This sorption behavior was explained by the geochemical model, highlighting the relevance of ionic strength, water and SPM residence times. However, at high salinities, the overall log10 Kd value decreases from 6.02 to 5.20 for SPM ∼300-350 mg L-1 due to the Csd oceanic endmember. Despite wild oysters showing low bioconcentration factors (∼1220 L kg-1) at the estuary mouth, they are sensitive organisms to Cs fluxes.


Subject(s)
Cesium , Environmental Monitoring , Estuaries , Animals , Cesium/analysis , France , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism , Fresh Water/chemistry , Ostreidae/metabolism , Ostreidae/chemistry , Rivers/chemistry
17.
Mar Pollut Bull ; 203: 116402, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701601

ABSTRACT

The progressive establishment of gas platforms and increasing petroleum accidents pose a threat to zooplankton communities and thus to pelagic ecosystems. This study is the first to compare the impacts of gas-condensate and crude oil on copepod assemblages. We conducted microcosm experiments simulating slick scenarios at five different concentrations of gas-condensate and crude oil to determine and compare their lethal effects and the bioconcentration of low molecular weight polycyclic aromatic hydrocarbons (LMW-PAHs) in eastern Mediterranean coastal copepod assemblages. We found that gas-condensate had a two-times higher toxic effect than crude oil, significantly reducing copepod survival with increased exposure levels. The LMW-PAHs bioconcentration factor was 1-2 orders of magnitude higher in copepods exposed to gas-condensate than in those exposed to crude oil. The median lethal concentration (LC50) was significantly lower in calanoids vs. cyclopoid copepods, suggesting that calanoids are more susceptible to gas-condensate and crude oil pollution, with potential trophic implications.


Subject(s)
Copepoda , Petroleum , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Copepoda/drug effects , Copepoda/physiology , Animals , Petroleum/toxicity , Water Pollutants, Chemical/toxicity , Polycyclic Aromatic Hydrocarbons/toxicity , Petroleum Pollution , Environmental Monitoring , Ecosystem
18.
Bull Environ Contam Toxicol ; 112(5): 76, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733550

ABSTRACT

Traffic-related particulate matter emissions have been considerably reduced due to stringent regulations in Europe. However, emission of diesel-powered vehicles still poses a significant environmental threat, affecting rural ecosystems and agriculture. Several studies have reported that polycyclic aromatic hydrocarbons (PAHs), a group of potentially toxic organic compounds, can accumulate in crops and vegetables. In our study, white mustard (Sinapis alba L.) plants were experimentally treated with an extract of diesel exhaust. PAH concentrations were measured in the different plant compartments (stems, leaves and seeds), bioconcentration factors (BCFs) were also calculated. Significant accumulation was measured in the leaves and seeds, stems showed lower accumulation potential. All plant matrices showed high tendency to accumulate higher molecular weight PAHs, BCF was the highest in the 6-ring group. The fact that considerable accumulation was experienced in the seeds might show the risk of cultivating crops nearby roads highly impacted by traffic-related emissions.


Subject(s)
Air Pollutants , Environmental Monitoring , Polycyclic Aromatic Hydrocarbons , Seeds , Seeds/chemistry , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/metabolism , Air Pollutants/analysis , Sinapis , Vehicle Emissions/analysis , Particulate Matter/analysis
19.
Sci Total Environ ; 935: 173358, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38768727

ABSTRACT

The presence of contaminants of emerging concern in aquatic ecosystems represents an ever-increasing environmental problem. Aquatic biota is exposed to these contaminants, which can be absorbed and distributed to their organs. This study focused on the assessment, distribution, and ecological risk of 32 CECs in a Spanish river impacted by effluents from a wastewater treatment plant, analyzing the organs and plasma of common carp. Environmental concentrations in water and sediment were examined at sites upstream and downstream of the wastewater treatment plant. The two downstream sites showed 15 times higher total concentrations (12.4 µg L-1 and 30.1 µg L-1) than the two upstream sites (2.08 µg L-1 and 1.66 µg L-1). Half of the CECs were detected in fish organs, with amantadine having the highest concentrations in the kidney (158 ng g-1 w.w.) and liver (93 ng g-1 w.w.), followed by terbutryn, diazepam, and bisphenol F in the brain (50.2, 3.82 and 1.18 ng g-1 w.w.). The experimental bioaccumulation factors per organ were compared with the bioconcentration factors predicted by a physiologically based pharmacokinetic model, obtaining differences of one to two logarithmic units for most compounds. Risk quotients indicated a low risk for 38 % of the contaminants. However, caffeine and terbutryn showed an elevated risk for fish. The mixed risk quotient revealed a medium risk for most of the samples in the three environmental compartments: surface water, sediment, and fish.


Subject(s)
Environmental Monitoring , Geologic Sediments , Wastewater , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Wastewater/chemistry , Animals , Geologic Sediments/chemistry , Risk Assessment , Carps , Rivers/chemistry , Spain , Fishes
20.
Sci Total Environ ; 937: 173481, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38795983

ABSTRACT

Various bisphenols (BPs) have been frequently detected in the aquatic environment and coexist in the form of mixtures with potential huge risks. As we all know, food chain is a media by which BPs mixtures and their mixtures probably enter the organisms at different trophic levels due to their environmental persistence. As a result, the concentrations of BPs and their mixtures may continuously magnify to varying degrees, which can produce higher risks to different levels of organisms, and even human health. However, the related researches about mixtures are few due to the complexity of mixtures. So, the ternary BP mixtures were designed by the uniform design ray method using bisphenol A (BPA), bisphenol S (BPS) and bisphenol F (BPF) to investigate their food chain effects including bioconcentration and biomagnification. Here, Chlorella pyrenoidosa (C. pyrenoidosa) and Daphnia magna (D. magna) were selected to construct a food chain. The toxic effects of single BPs and their mixtures were also systematically investigated by the time-dependent microplate toxicity analysis (t-MTA) method. Toxicity interaction within the ternary mixture was analyzed by the concentration addition model (CA) and the deviation from the CA model (dCA). The results show that the C. pyrenoidosa and D. magna had obvious bioconcentration and biomagnification effects on BPs and their mixture. The mixture had the potential to enrich at higher nutrient levels. And BPF had the largest bioconcentration effect (BCF1 = 481.86, BCF2 = 772.02) and biomagnification effect (BMF = 1.6). Three BPs were toxic to C. pyrenoidosa by destroying algal cells and decreasing protein and chlorophyll contents, and their toxicity order was BPF > BPA > BPS. Moreover, their ternary mixture exhibits synergism with time/concentration-dependency. The obtained results are of significant reference value for objectively and accurately assessing the ecological and environmental risks of bisphenol pollutants.


Subject(s)
Benzhydryl Compounds , Daphnia , Food Chain , Phenols , Sulfones , Water Pollutants, Chemical , Phenols/toxicity , Benzhydryl Compounds/toxicity , Water Pollutants, Chemical/analysis , Animals , Sulfones/toxicity , Chlorella/metabolism , Toxicity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...